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Abstract
Legendre curves, biharmonic Legendre curves and mean curvature vector of a Legendre

curve satisfying some recurrent conditions on a three dimensional contact metric manifold with
Tanaka-Webster connection have been studied.

1 Introduction

A contact manifold is a (2n+1)-dimensional differentiable manifold which satisfies η∧(dη)n 6=
0 for a 1-form η defined on the manifold [2]. Recently the study of contact manifolds has be-
come a subject of growing interest due to its application in different field of science. In [1],
the authors introduced a class of contact metric manifolds for which the characteristic vector
field ξ belongs to the (k, µ)−nullity distribution for some real numbers k and µ. Such manifolds
are known as (k, µ)−contact metric manifolds. The class of (k, µ)−contact metric manifolds
encloses both Sasakian and non-Sasakian manifolds. Before Boeckx [4], two classes of non-
Sasakian (k, µ)−contact metric manifolds were known. The first class consists of the unit tan-
gent sphere bundles of spaces of constant curvature, equipped with their natural contact metric
structure, and the second class contains all the three-dimensional unimodular Lie groups, except
the commutative one, admitting the structure of a left invariant (k, µ)−contact metric manifold
[1], [4], [18]. A full classification of (k, µ)−contact metric manifolds was given by E. Boeckx
[1].

In the study of contact manifolds, Legendre curves play an important role, e.g., a diffeomor-
phism of a contact manifold is a contact transformation if and only if it maps Legendre curves to
Legendre curves. Legendre curves on contact manifolds have been studied by C. Baikoussis and
D. E. Blair in the paper [3]. Belkhelfa et al [5] have investigated Legendre curves in Rieman-
nian and Lorentzian manifolds. In [9] slant curves, as a generalization of Legendre curves, have
been studied on three-dimensional Sasakian space forms. Legendre curves on almost contact
and contact manifolds have also been studied in the papers [13], [16], [27]. The first author of
the present paper has also studied Legendre curves in the papers [21], [22].

The study of mean curvature vector field in Euclidean space was initiated by Chen [6]. Again
mean curvature of curves and submanifolds have been studied in the papers [11], [14], [16].
Motivated by these works, in the present paper we study mean curvature vector field, satisfying
some recurrent conditions, of Legendre curves in three-dimensional contact metric manifolds
with Tanaka-Webster connection.

From the papers [8], [12], it is known that there exists no biharmonic Legendre curve on
S3 with respect to Levi-Civita connection ∇. The study of Legendre curves and slant curves
as a generalization of Legendre curves on three-dimensional contact manifolds with Tanaka-
Webster connection ∇̃ [23], [28] was initiated by J. T. Cho and collaborators [7] [9]. Slant
curves on contact metric manifolds with Tanaka-Webster connection have also been studied in
the papers [10] and [17]. In [9], corresponding to biharmonicity of the Levi-Civita connection
∇, the authors investigated ∇̃ Jacobi equations for ∇̃ geodesic vector fields with Tanaka-Webster
connections ∇̃ on contact three manifolds.

In [9], Cho and Lee proved that with respect to Tanaka Webster connection a geodesic on a
Sasakian manifold(Sasakian space form) is a slant curve. Now the natural question arises that, is
the result also true for non-Sasakian contact metric manifold? To get the answer of the question,
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we have shown that with respect to Tanaka Webster connection a geodesic on a non-Sasakian
contact metric manifold is not a slant curve and hence not a Legendre curve. It is also estab-
lished that a Legendre curve on a three dimensional contact metric manifold is a geodesic when
the curve is biharmonic.
The present paper is organized as follows:
After the introduction in Section 1, we give some required preliminaries in Section 2. In Sec-
tion 3, we study Legendre curves whose mean curvature vector field satisfies some recurrent
conditions with respect to Tanaka-Webster connection ∇̃ on a three-dimensional contact metric
manifold. Here we obtain some interesting equivalent relations regarding the recurrence of the
mean curvature vector field with respect to Tanaka-Webster connection. In the last section, we
prove that a geodesic on a non-Sasakian contact metric manifold is not a slant curve and hence
not a Legendre curve. This section also shows that a Legendre curve on a three-dimensional
contact metric manifold is a geodesic when it is biharmonic.

2 Preliminaries

Let M be a (2n+ 1)−dimensional C∞−differentiable manifold. The manifold is said to admit
an almost contact metric structure (φ, ξ, η, g) if it satisfies the following relations [2]:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(X, ξ) = η(X), (2.1)

where φ is a tensor field of type (1, 1), ξ is a vector field, η is an 1-form and g is a Riemannian
metric on M. Further from above the following can be obtained:

φξ = 0, ηφ = 0, g(X,φY ) = −g(φX, Y ), g(X,φX) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2.3)

A manifold equipped with an almost contact metric structure is called an almost contact
metric manifold. An almost contact metric manifold is called a contact metric manifold if it
satisfies g(X,φY ) = dη(X,Y ) for a 1-form η defined on the manifold [2].

Given a three-dimensional contact metric manifold M(φ, ξ, η, g), we consider a (1, 1) tensor
field h defined by h = 1

2Lξφ, where L denotes the Lie differentiation. h is a symmetric operator
and satisfies hφ = −φh. If λ is an eigenvalue of h with eigenvector X, then −λ is also an
eigenvalue of h with eigenvector φX. Again, we have trh = trφh = 0, and hξ = 0. Moreover, if
∇ denotes the Levi-Civita connection of g, then the following relation holds [1]:

∇Xξ = −φX − φhX, (∇Xη)Y = g(X + hX, φY ). (2.4)

The vector field ξ is a Killing vector field with respect to g if and only if h = 0. A contact
metric manifold M(φ, ξ, η, g) for which ξ is a Killing vector is said to be a K−contact manifold.
An almost contact structure on M gives rise to an almost complex structure on the product
M × R. If this almost complex structure is integrable, the contact metric manifold is said to be
Sasakian. Equivalently, a contact metric manifold is said to be Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y

holds for all X,Y, where R denotes the Riemannian curvature tensor of the manifold M with
respect to Levi-Civita connection. The (k, µ)−nullity distribution of a contact metric manifold
M(φ, ξ, η, g) is a distribution [1]

N(k, µ) : p→ Np(k, µ)

= {Z ∈ Tp(M) : R(X,Y )Z

= k(g(Y,Z)X − g(X,Z)Y ) + µ(g(Y, Z)hX − g(X,Z)hY )}, (2.5)

for any vector fields X,Y on the manifold. Hence, if the characteristic vector field ξ belongs
to the (k, µ)−nullity distribution, we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.6)

A contact metric manifold with ξ belonging to (k, µ)−nullity distribution is called a
(k, µ)−contact metric manifold. The manifold is Sasakian if and only if k = 1 [1]. In particular,
if µ = 0, then the notion of (k, µ)−nullity distribution reduces to k−nullity distribution intro-
duced by S. Tanno [26]. A contact metric manifold with ξ belonging to k−nullity distribution is
known as N(k)−contact metric manifold.
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Given a contact structure η, we have two compatible structures. One is a Riemannian struc-
ture or metric g and then we call (M,η, g) a contact Riemannian manifold. The other is an
almost CR-structure (η, L), where L is the Levi form associated with an endomorphism J on
the contact distribution D such that J2 = −I. In particular, if J is integrable, then we call it
the integrable CR-structure. The associated almost CR-structure is said to be pseudo-Hermitian,
strongly pseudo-convex if the Levi form is Hermitian and positive definite. Such a manifold is
called contact strongly pseudo convex pseudo-Hermitian manifold. There is a one to one corre-
spondence between the two associated structures by the relation g = L+η⊗η, where we denote
by the same letter L the natural extension of the Levi form to a (0, 2) tensor field onM. From this
point of view we have two geometries on a given contact structure, one is formed by the Levi-
Civita connection ∇ the other is derived by the Tanaka webster connection ∇̃,(gives pseudo-
Hermitian geometry), which is a canonical affine connection on a strongly pseudo-convex CR-
manifold [9]. Let us recall the Tanaka-Webster connection on a strongly pseudo-convex pseudo-
Hermitian manifold M(η, L) with the associated contact Riemannian structure (φ, ξ, η, g). The
Tanaka-Webster connection ∇̃ is defined by [23], [28]

∇̃XY = ∇XY +A(X,Y ), (2.7)

where
A(X,Y ) = η(X)φY + η(Y )(φX + φhX)− g(φX + φhX, Y )ξ. (2.8)

The torsion T̃ of ∇̃ is given by

T̃ (X,Y ) = 2g(X,φY )ξ + η(Y )φhX − η(X)φhY. (2.9)

Proposition 2.1. The Tanaka-Webster connection ∇̃ on a three-dimensional contact Riemannian
manifold is the unique linear connection satisfying the following conditions [25]:

(i) ∇̃η = 0, ∇̃ξ = 0,
(ii) ∇̃g = 0, ∇̃φ = 0,
(iii) T̃ (X,Y ) = −η([X,Y ])ξ, T̃ (ξ, φY ) = −φT̃ (ξ, Y ).
Let ∇̃γ̇ denote the covariant differentiation along γ with respect to Tanaka-Webster connec-

tion on M. We shall say that γ is a Frenet curve with respect to Tanaka-Webster connection if
one of the following three cases holds:

(a) γ is of osculating order 1, i.e., ∇̃TT = 0 (geodesic).
(b) γ is of osculating order 2, i.e., there exist two orthonormal vector fields T (= γ̇), N and a

non-negative function k̃ (curvature) along γ such that ∇̃TT = k̃N, ∇̃TN = −k̃T.
(c) γ is of osculating order 3, i.e., there exist three orthonormal vectors T (= γ̇), N, B and

two non-negative functions k̃(curvature) and τ̃ (torsion) along γ such that

∇̃TT = k̃N, (2.10)

∇̃TN = −k̃T + τ̃B, (2.11)

∇̃TB = −τ̃N. (2.12)

The above formulas are Serret-Frenet formulas for Tanaka-Webster connection.
With respect to pseudo-Hermitian connection, a Frenet curve of osculating order 3 for which

k̃ is a positive constant and τ̃ = 0 is called a circle in M ; a Frenet curve of osculating order 3
is called a helix in M if k̃ and τ̃ both are positive constants and the curve is called a generalized
helix if k̃

τ̃ is a constant. If k̃ = 0, the curve is geodesic.
A Frenet curve γ in a contact metric manifold is said to be a Legendre curve if it is an integral

curve of the contact distribution D = kerη, i.e., if η(γ̇) = 0.
The curve is called a slant curve if η(γ̇) = cosα, where α is a constant. For more details we

refer [2], [3], [9], [15].

3 Legendre curves on three-dimensional contact metric manifolds with the
mean curvature vector satisfying some recurrent conditions

In this section we study Legendre curves on three-dimensional contact metric manifolds with
the mean curvature vector satisfying some recurrent conditions with respect to Tanaka-Webster
connections. Mean curvature vector of a Legendre curve has been studied in the papers [14] and
[16]. For the definition of recurrent, 2-recurrent and generalized 2-recurrent tensors we refer
[19] and [20].
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Definition 3.1. With respect to Tanaka-Webster connnection ∇̃, the mean curvature vector
H = ∇̃γ̇ γ̇ of a Legendre curve γ on a three-dimensional contact metric manifold will be called
• parallel if ∇̃γ̇H = 0,
• recurrent if ∇̃γ̇H = A(γ̇)H,
• 2-recurrent if ∇̃2

γ̇H = A(γ̇)H,

• generalized 2-recurrent if ∇̃2
γ̇H = A(γ̇)H +B(γ̇, γ̇)H,

where A is an 1-form and B is a 2-form defined on the tangent space of γ.
In this section we consider γ̇, φγ̇, ξ as orthonormal Frenet frame.

Proposition 3.1. With respect to Tanaka-Webster connection, the mean curvature vector of a
Legendre curve on a three-dimensional contact metric manifold is parallel if and only if the
pseudo-Hermitian curvature k̃ of the curve is zero.
Proof. By definition of H and Serret-Frenet formula, we get

∇̃γ̇H = ∇γ̇(k̃φγ̇)
= k̃′φγ̇ + k̃∇̃γ̇(φγ̇)
= k̃′φγ̇ + k̃(∇̃γ̇φ)γ̇ + k̃φ(∇̃γ̇ γ̇). (3.1)

ConsiderH is parallel with respect to Tanaka-Webster connection. Then ∇̃γ̇H = 0.Hence using
Proposition 2.1, we get from the above equation

−k̃2γ̇ + k̃′φγ̇ = 0.

Taking inner product with γ̇ in both sides of the above equation we get k̃ = 0. The converse is
trivial.
Proposition 3.2. With respect to Tanaka-Webster connection, the mean curvature vector of a
Legendre curve on a three-dimensional contact metric manifold is recurrent if and only if the
pseudo-Hermitian curvature k̃ of the curve is zero.
Proof. Suppose H is recurrent with respect to Tanaka-Webster connection. So

∇̃γ̇H = A(γ̇)H.

After simplification and using Serret-Frenet formula we get

−k̃2γ̇ + (k̃′ −A(γ̇)k̃)φγ̇ = 0.

Taking inner product with γ̇ in both sides of the above equation we get k̃ = 0. The converse is
trivial.
Proposition 3.3. With respect to Tanaka-Webster connection, the mean curvature vector of a
Legendre curve on a three-dimensional contact metric manifold is 2-recurrent if and only if the
pseudo-Hermitian curvature k̃ of the curve is zero.
Proof. Let us consider H as 2-recurrent with respect to Tanaka-Webster connection. So ∇̃2

γ̇H =
A(γ̇)H. Using Serret-Frenet formula, we get from above after straight forward calculation

3k̃k̃′γ̇ + (k̃3 − k̃′′ +A(γ̇)k̃)φγ̇ = 0.

Taking inner product with γ̇ in both sides of the above equation we get k̃k̃′ = 0. Hence either
k̃ = 0 or k̃′ = 0. Suppose k̃′ = 0. Taking inner product with φγ̇ in both sides of the above
equation we have k̃3 − k̃′′ +A(γ̇)k̃ = 0. Hence we must get k̃ = 0. The converse is trivial.
Proposition 3.4. With respect to Tanaka-Webster connection, the mean curvature vector of a
Legendre curve on a three-dimensional contact metric manifold is generalized 2-recurrent if and
only if the pseudo-Hermitian curvature k̃ of the curve is zero.
Proof. Let us consider H as generalized 2-recurrent with respect to Tanaka-Webster connection.
So

∇̃2
γ̇H = A(γ̇)H +B(γ̇, γ̇)H.

After simplification and using Serret-Frenet formula we get as before

3k̃k̃′ + (k̃3 − k̃′′ +A(γ̇)k̃ +B(γ̇, γ̇)k̃)φγ̇ = 0.

As before, here we also get k̃ = 0. The converse is trivial.
Theorem 3.1. For a Legendre curve γ on a three-dimensional contact metric manifold with
Tanaka-Webster connection the following conditions are equivalent:
• the mean curvature vector of γ is parallel,
• the mean curvature vector of γ is recurrent,
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• the mean curvature vector of γ is 2-recurrent,
• the mean curvature vector of γ is generalized 2-recurrent,
• γ is a geodesic.

Proof. Proof follows from the combination of the above propositions.
Proposition 3.5. A Legendre curve on a contact metric manifold is a geodesic with respect to
Tanaka-Webster connection if and only if it is so with respect to Levi-Civita connection.
Proof. In view of (2.4), (2.7) and (2.8), we get

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + η(γ̇)φγ̇ + (∇γ̇η)(γ̇)ξ − η(γ̇)∇γ̇ξ (3.2)

= ∇γ̇ γ̇ + 2η(γ̇)φ(γ̇) + η(γ̇)φhγ̇. (3.3)

Since for a Legendre curve η(γ̇) = 0, we get

∇̃γ̇ γ̇ = ∇γ̇ γ̇ (3.4)

The above equation proves the proposition.
By Theorem 3.1 and Proposition 3.5 we have the following

Corollary 3.1. For a Legendre curve γ on a three-dimensional contact metric manifold with
Levi-Civita connection the following conditions are equivalent:
• the mean curvature vector of γ is parallel,
• the mean curvature vector of γ is recurrent,
• the mean curvature vector of γ is 2-recurrent,
• the mean curvature vector of γ is generalized 2-recurrent,
• γ is a geodesic.

4 Legendre curves on contact metric manifolds

In [9], Cho and Lee proved that with respect to Tanaka Webster connection a geodesic on a
Sasakian manifold is a slant curve. In the following we prove that the above result is not true for
a non-Sasakian contact metric manifold.
Theorem 4.1. A geodesic on a non-Sasakian contact metric manifold is not necessarily a Slant
curve and hence not a Legendre curve.
Proof. Let us first construct the following example of non-Sasakian contact metric manifold. To
construct M we have followed the paper [1].

Consider M = R3, which is generated by three linearly independent vector fields e1, e2 and
e3 satisfying

[e2, e3] = 2e1, [e3, e1] = e2, [e1, e2] = 2e3. (4.1)

We take e1 = ξ. Define the Riemannian metric by g(ei, ej) = δij and η(X) = g(X, e1). Let
φe3 = −e2, φe2 = e3. For g as an associated metric, we have φ2X = −X + η(X)ξ. Hence
M(φ, ξ, η, g) is a contact metric manifold. By Koszul formula we can calculate the following:

∇e1e1 = 0, ∇e2e2 = 0, ∇e3e3 = 0,
∇e1e2 =

1
2e3, ∇e2e1 = − 3

2e3, ∇e1e3 = − 1
2e2,

∇e3e1 =
1
2e2, ∇e2e3 =

3
2e1 ∇e3e2 = − 1

2e1.

From above it can be shown that the manifold is a (k, µ)-contact metric manifold with k = 3
4

and µ = −1. Obviously the manifold is non-Sasakian. Using (2.7) and (2.8) we get

∇̃e1e1 = 0, ∇̃e2e2 = 0, ∇̃e3e3 = 0,
∇̃e1e2 =

3
2e3, ∇̃e2e1 =

1
2e3, ∇̃e1e3 = − 3

2e2,

∇̃e3e1 =
1
2e2, ∇̃e2e3 = e1 ∇̃e3e2 = − 1

2e1.

Let γ be a geodesic on M. After a straight forward calculation, using the values of ∇̃eiej calcu-
lated above, we get

∇̃TT = (T ′
1(T1 + T2 + T3) +

1
2
T2T3)e1

+ (T ′
2(T1 + T2 + T3)− T1T3)e2

+ (T ′
3(T1 + T2 + T3) + 2T1T2)e3. (4.2)
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If the curve is a geodesic, that is, ∇̃TT = 0, we get from (4.2) by taking inner product with
e1

T ′
1 = − T2T3

2(T1 + T2 + T3)
.

From above it follows that T1 is not necessarily a constant. Hence η(γ̇) = T1 is not a constant.
Therefore the geodesic is not a slant curve and hence not a Legendre curve. This completes the
proof of the theorem.

In the following we show that a Legendre curve on any three-dimensional contact metric
manifold is a geodesic if the curve is biharmonic.

Following [9] and [13] we give the following
Definition 4.1. A Legendre curve on a three-dimensional contact metric manifold is called
biharmonic with respect to Tanaka-Webster connections if it satisfies the equation

∇̃3
TT + ∇̃T T̃ (∇̃TT, T ) + R̃(∇̃TT, T )T = 0. (4.3)

If instead of pseudo-Hermitian connections ∇̃, we take Levi-Civita connection∇, then the above
equation becomes

∇3
TT +R(∇TT, T )T = 0. (4.4)

Theorem 4.2. With respect to Tanaka-Webster connection a biharmonic Legendre curve on a
three-dimensional contact metric manifold is a geodesic.
Proof. Let us consider a biharmonic Legendre curve on a (k, µ)-contact metric manifold M.
By Proposition 2.1, we have ∇̃φ = 0. So ∇XφY = φ∇XY. Hence it can be shown that
R(φX, Y )Z = φR(X,Y )Z for any vector fields X,Y, Z on M. We consider (T, φT, ξ) as Frenet
frame of the Legendre curve γ, where γ̇ = T . Consequently, by use of Serret Frenet formula, we
obtain

R̃(∇̃TT, T )T = 0, (4.5)

where T = γ̇. By virtue of (2.9),

T̃ (∇̃γ̇ γ̇, γ̇) = 2g(∇̃γ̇ γ̇, φγ̇)ξ.

By covariant differentiation along γ we get from above equation

∇̃γ̇ T̃ (∇̃γ̇ γ̇, γ̇) = 2g(∇̃2
γ̇ γ̇, φγ̇) + 2g(∇̃γ̇ γ̇, ∇̃γ̇φγ̇)ξ + 2g(∇̃γ̇ γ̇, φγ̇)∇̃γ̇ξ.

Applying Proposition 2.1 in the above equation we get

∇̃γ̇ T̃ (∇̃γ̇ γ̇, γ̇) = 2g(∇̃2
γ̇ γ̇, φγ̇) + 2g(∇̃γ̇ γ̇, (∇̃γ̇φ)γ̇ − φ∇̃γ̇ γ̇)ξ.

Again using Proposition 2.1 in the above equation we have

∇̃T T̃ (∇̃TT, T ) = 0, (4.6)

where T = γ̇.
By Serret Frenet formula for ∇̃

∇̃3
TT = −3k̃k̃′T + (k̃′′ − k̃3 − k̃τ̃ 2)N + (2τ̃ k̃′ + k̃τ̃ ′)B. (4.7)

Combining (4.5), (4.6) and (4.7) we get

∇̃3
TT + ∇̃T T̃ (∇̃TT, T ) + R̃(∇̃TT, T )T = −3k̃k̃′T + (k̃′′ − k̃3 − k̃τ̃ 2)N + (2τ̃ k̃′ + k̃τ̃ ′)B

From above it follows that the curve is biharmonic if and only if
• k̃k̃′ = 0,
• k̃′′ − k̃3 − k̃τ̃ 2 = 0,
• 2τ̃ k̃′ + k̃τ̃ ′ = 0.
By the above three-conditions we get k̃ = 0. Thus the theorem follows.
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