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Abstract. A detailed study of quasi-conformal curvature tensor for the spacetime of gen-
eral relativity has been made. The spacetimes satisfying Einstein field equations with vanish-
ing quasi-conformal curvature tensor have been considered and the existence of Killing and
conformal Killing vector fields has been established. Perfect fluid spacetimes with vanishing
quasi-conformal curvature tensor have also been considered. The divergence of quasi-conformal
curvature tensor is studied in the setting of perfect fluid with the derivation of many physical
results.

1. INTRODUCTION

In 1968, Yano and Sewaki [8] have given the concept of quasi-conformal curvature tensor,
which is given by the expression

C̃(X,Y )Z = AR(X,Y )Z

+B[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

−R
n

(
A

n− 1
+ 2B

)
[g(Y, Z)X − g(X,Z)Y ]

(1)

Or, for covariant form, one can write

C̃(X,Y, Z, T ) = g(C̃(X,Y )Z, T )

= AR(X,Y, Z, T ) + B[Ric(Y,Z)g(X,T )− Ric(X,Z)g(Y, T )

+g(Y,Z)g(QX,T )− g(X,Z)g(QY, T )]− R

n

(
A

n− 1
+ 2B

)

[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )]

(2)

where, R(X,Y, Z, T ) = g(R(X,Y, Z), T ) and R(X,Y, Z) = DXDY Z −DYDXZ −D[X,Y ]Z
is the Riemann curvature tensor, Ric(X,Y ) = g(R(X), Y ) is the (0,2) type Ricci tensor, R is
the scalar curvature, D is the Riemannian connection and A & B are the constants. Also Ricci
operator Q is defined as Ric(X,Y ) = g(QX,Y ). Now equation (2) can be written in local
coordinates as following

C̃ijkl = ARijkl + B[Rjlgik +Rikgjl −Rilgjk −Rjkgil]

−R
n

(
A

n− 1
+ 2B

)
[gikgjl − gilgjk]

(3)

and satisfies the following properties:

C̃ijkl = −C̃jikl, C̃ijkl = −C̃ijlk (4)

C̃ijkl = C̃klij (5)

C̃ijkl + C̃iklj + C̃iljk = 0 (6)
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which in index-free notation can be expressed as

C̃(X,Y, Z, T ) = −C̃(Y,X,Z, T ), C̃(X,Y, Z, T ) = −C̃(X,Y, T, Z) (4a)

C̃(X,Y, Z, T ) = C̃(Z, T,X, Y ) (5a)

C̃(X,Y, Z, T ) + C̃(X,Z, T, Y ) + C̃(X,T, Y, Z) = 0 (6a)

For A = 1 and B = − 1
n− 2

, equation (3) gives

C̃ijkl = Rijkl −
1

n− 2
[Rjlgik +Rikgjl −Rilgjk −Rjkgil]

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

≡ Cijkl

(7)

where, Cijkl is Weyl conformal tensor.

Motivation for the study of quasi-conformal curvature tensor comes from the work of Chaki
and Ghosh, 1997 ( [2]) for Riemannian manifold. The study of quasi-conformal curvature tensor
for perfect fluid spacetime has been done by Sarbari Guha in 2003 (c.f., [5]). In this paper we
have made a detailed study of this tensor on the spacetime of general relativity. Section-wise we
have given algebraic properties of quasi-conformal curvature tensor. A detailed study of diver-
gence of quasi-conformal curvature tensor and perfect fluid spacetimes is also given.

2. PRELIMINARIES

In general theory of relativity, the curvature tensor describing the gravitational field consists
of two parts viz., the matter part and the free gravitational part. The interaction between these
parts is described through Bianchi identities. For a given distribution of matter, the construction
of gravitational potential satisfying Einstein field equations is the principal aim of all investiga-
tions in gravitational physics; and this has often been achieved by imposing symmetries on the
geometry compatible with the dynamics of the chosen distribution of matter. The geometrical
symmetries of spacetime are expressed through the equation

£ξA− 2ΩA = 0 (8)

whereA represents a geometrical/physical quantity, £ξ denotes the Lie derivative with respect to
a vector field ξ and Ω is a scalar [7]. The symmetry assumptions on the spacetime manifold are
also known as collineations. The literature on collineations is very large and still expanding with
results of elegance. As an example, we define a symmetry (conformal motion) of a spacetime as
following

Definition 1 : Consider an n-dimensional Riemannian space Vn and referred to co-ordinate
system (x) in Vn we consider the point transformation

T : ′ξx = fx (ξν) ; Det
(
∂fx

∂ξλ

)
6= 0 (9)

When point transformation (9) does not change the angle between two directions at a point it
is said to define a conformal motion in Vn. The necessary and sufficient condition for this is that
the infinitesimal Lie difference of gij is proportional to gij

£ξgij = 2σgij (10)

Similarly, we define

Definition 2 : A symmetry property of a spacetime is said to be “the symmetry inheritance" if
and only if the Lie derivative of the energy momentum tensor Tij is proportional to Tij i.e.,

£ξTij = 2ΩTij (11)
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where Ω and σ are constants.

The Einstein field equations, with a cosmological term are given by (c.f., [6])

Rij −
1
2
Rgij + Λgij = −kTij (12)

The Riemann curvature tensor satisfies ([1])

Rijkl;m +Rijlm;k +Rijmk;l = 0 (13)

where, a semi-colon denotes the covariant differentiation. Equation (13) called as Bianchi iden-
tity can be written in index-free notation as

(∇UR)(X,Y, Z, T ) + (∇ZR)(X,Y, T, U) + (∇TR)(X,Y, U, Z) = 0 (14)

Now for spacetime of general relativity (4-dimensional), equation (3) changes to

C̃(X,Y, Z, T ) = AR(X,Y, Z, T )

+B[Ric(Y,Z)g(X,T )− Ric(X,Z)g(Y, T ) + g(Y,Z)Ric(X,T )

−g(X,Z)Ric(Y, T )]− R

4

(
A
3
+ 2B

)

.[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )]

(15)

In local coordinates, we write above equation as

C̃ijkl = ARijkl + B[Rjlgik +Rikgjl −Rilgjk −Rjkgil]

−R
4

(
A
3
+ 2B

)
[gikgjl − gilgjk]

(15a)

Using equations (13) and (15a), we get

C̃ijkl;m + C̃ijlm;k + C̃ijmk;l

= B[gik(Rjl;m −Rjm;l) + gjl(Rik;m −Rim;k) + gil(Rjm;k −Rjk;m)

+gjm(Ril;k −Rik;l) + gim(Rjk;l −Rjl;k) + gjk(Rim;l −Ril;m)]
(16)

Definition 3 : If the Ricci tensor Rij is of Codazzi type, then

(∇XRic)(Y,Z) = (∇Y Ric)(X,Z) = (∇ZRic)(X,Y ) (17)

or, in local coordinates
Rij;k = Rik;j = Rjk;i (18)

Note 1 : The geometrical and topological consequences of the existence of a non-trivial Codazzi
tensor on a Riemannian or Pseudo Riemannian manifold have been given by Derdzinski and
Shen [3].

Note 2 : The simplest Codazzi tensors are parallel one.

3. MAIN RESULTS

From equations (16) and (18), we have

C̃ijkl;m + C̃ijlm;k + C̃ijmk;l = 0 (19)

equation (19) can be called as Bianchi-like identity for quasi-conformal curvature tensor. Now,
Conversely if quasi-conformal curvature tensor satisfies the Bianchi-like identity (19), then equa-
tion (16) reduces to

gik(Rjl;m −Rjm;l) + gjl(Rik;m −Rim;k) + gil(Rjm;k −Rjk;m)

+gjm(Ril;k −Rik;l) + gim(Rjk;l −Rjl;k) + gjk(Rim;l −Ril;m) = 0
(20)
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On contraction, we get
Rjl;k = Rjk;l

which shows that the Ricci tensor is Codazzi.

Thus, we have

Theorem 1 : In a 4-dimensional spacetime of general relativity, the Ricci tensor is Codazzi if
and only if quasi-conformal curvature tensor satisfies the Bianchi-like identity (19).

From equation (3), we have

C̃hijk = ARhijk + B[gikRhj + δhjRik − gjkRhi − δhi Rjk]

−R
n

(
A

n− 1
+ 2B

)
[δhj gik − δhi gjk]

(21)

Contraction over h and k leads to
C̃ij = ARij (22)

For non-null electromagnetic field, the energy momentum tensor Tij is expressed as

Tij = FimF
m
j −

1
4
gijFpqF

pq (23)

and Einstein’s equation (12), without cosmological term, reduces to

Rij = kTij (24)

Thus by using equations (22) and (24), we have

Theorem 2 : In a non-null electromagnetic field, the quasi-conformal curvature tensor and en-
ergy momentum tensor are related through

C̃ij = AkTij (25)

The vanishing of Lie derivative of quasi-conformal curvature tensor gives rise to a new sym-
metry of the spacetime, one can termed as “quasi-conformal collineation”. From equation (22),
we write

£ξC̃ij = A£ξRij (26)

and we have following

Theorem 3 : A four dimensional spacetime admits quasi-conformal collineation if it admits the
Ricci collineation and conversely.

Thus, by using equation (25), we have the following

Corollary 1 : A four dimensional spacetime admits quasi-conformal collineation if it admits the
symmetry inheritance property and conversely.

The Bianchi identities in contravariant form are given by

Rhijk;l +Rhikl;j +Rhilj;k = 0 (27)

Contracting equation (27) over h and l, using the symmetry properties of Riemann curvature
tensor, we get

Rhijk;h = Rij;k −Rik;j (28)

We know that Riemannian manifolds for which the divergence of curvature tensor vanish
identically are identified as manifolds with harmonic curvature. The curvature of such manifolds
arise as a special case of Young-Mills fields. These manifolds also form a natural generalization
of Einstein spaces and of conformally flat manifolds with constant scalar curvature.

Now from equation (15a), we have
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C̃hijk = ARhijk + B[gikRhj + δhjRik − gjkRhi − δhi Rjk]

−R
4

(
A
3
+ 2B

)
[δhj gik − δhi gjk]

(29)

so that the divergence of quasi-conformal curvature tensor is given by

C̃hijk;h = ARhijk;h + B[(Rik;j −Rjk;i) + (gikR,j − gjkR,i)] (30)

From equation (28), we thus have

Theorem 4 : A spacetime of constant curvature possess harmonic curvature if and only if space-
time has divergence-free quasi-conformal curvature tensor.

The Einstein field equations in the presence of matter are given by

Rij −
1
2
Rgij = −kTij (31)

On multiplication with gij , equation (31) leads to

R = −kT (32)

From equations (32), equation (31) becomes

Rij = −k(Tij − Tgij) (33)

Thus using equations (28) and (33), equation (30) leads to

C̃hijk;h = (A+B)k(Tij;k − Tik;j +
1
2
gikT,j −

1
2
gijT,k) +Bk(gikT,j − gjkT,i) (34)

which for purely electromagnetic distribution, reduces to

C̃hijk;h = (A+B)k(Tij;k − Tik;j) (35)

Thus, we have

Theorem 5 : For a spacetime satisfying the Einstein field equations for a purely electromag-
netic distribution, the quasi-conformal curvature tensor is conserved if the energy momentum
tensor is Coddazi type and conversely.

The energy-momentum tensor for a perfect fluid is

Tij = (µ+ p)uiuj + pgij (36)

where p is isotropic pressure and ui is velocity vector of the fluid.
Equation (36) leads to

T = −µ+ 3p (37)

Now if Tij is Coddazi and C̃hijk;h = 0, equation (34) then reduces to

−
(

1
2
A+

3
2
B

)
kgij(µ− 3p); j − (A+B)k

2
gij(µ− 3p); k +Bkgjk(µ− 3p); i = 0

which leads to
(µ− 3p); i = 0

and this leads to
(µ− 3p) = Constant (38)

we thus have

Theorem 6 : If for a perfect fluid spacetime, the divergence of quasi-conformal curvature tensor
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vanishes and the energy-momentum tensor is Codazzi type then (µ− 3p) is constant.

It is known that for a radiative perfect fluid spacetime (µ = 3p) the resulting universe is
isotropic and homogeneous ([4]). Thus by choosing the constant in equation (38) as zero, we
have

Corollary 2 : If the energy-momentum tensor for a divergence-free quasi-conformal curvature
tensor is Codazzi type in perfect fluid spacetime then the resulting spacetime is radiative and
consequently isotropic and homogeneous.

Now for spacetimes which have divergence-free quasi-conformal curvature tensor, the equa-
tion (34) leads to

(A+B)

(
Tij;k − Tik;j −

1
2
gijT,k

)
+

(
A

2
+

3
2
B

)
gikT,j −BgjkT,i = 0 (39)

Using equations (36) and (37), we have

(A+B)[(µ+ p);kuiuj + (µ+ p)ui;kuj + (µ+ p)uiuj;k + p;kgij

−(µ+ p);juiuk − (µ+ p)ui;juk − (µ+ p)uiuk;j + p;jgik +
1
2
gij(µ− 3p);k]

−
(
A

2
+

3B
2

)
gik(µ− 3p);j +Bgjk(µ− 3p);i = 0

(40)

Contracting the equation (40)with uk, we get

(A+B)[(µ+ p)̇uiuj + (µ+ p)u̇iuj + (µ+ p)uiu̇j + ṗgij

−(µ+ p);juiuk − (µ+ p)ui;juk − (µ+ p)uiuk;j + p;jgik +
1
2
gij(µ− 3p)̇]

−(A
2
+

3B
2

)(µ− 3p);jui +B(µ− 3p);iuj = 0

(41)

where an over head dot denotes the covariant derivative along the fluid flow vector ua (that is,
(µ+ p)̇ = (µ+ p);ku

k, u̇j = ubj;ku
k, ṗ = p;ku

k, ui;jui = 0, etc.).

Also, the conservation of energy-momentum tensor (T ij;j = 0) leads to

(µ+ p)u̇i = −p;i + ṗui (force equation) (42)

µ̇ = −(µ+ p)ui;i = −(µ+ p)θ (energy equation) (43)

Moreover, the covariant derivative of the velocity vector can be splitted into kinematical quanti-
ties as ([4])

ui;j =
1
3
θ(gij + uiuj)− u̇iuj + σij + ωij (44)

where θ = ui;i, is the expansion scalar, u̇i = ui;ju
j , the acceleration vector σij = hki h

l
ju(k;l) −

1
3
θhij , the symmetric shear tensor (hij = gij−uiuj) and ωij = hki h

d
ju[k;l] is the skew symmetric

virticity or rotation tensor.

Using force equation (42) in equation (41), we get

(A+B)[(µ+ p)̇uiuj − p;iuj + ṗujui − p;jui + ṗuiuj + ṗgij

−(µ+ p);jui − (µ+ p)ui;j + p;jui +
1
2
gij(µ− 3p)̇]

−(A
2
+

3B
2

)(µ− 3p);jui +B(µ− 3p);iuj = 0

(45)
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which can be expressed as

(A+B)[(µ+ 3p)̇uiuj − p;iuj − p;jui + ṗgij − p;jui

−(µ+ p)ui;j − p;jui +
1
2
µ̇gij −

3
2
ṗgij ]− (

A

2
+

3B
2

)µ;jui

+(
3A
2

+
9B
2

)p;jui +Bµ;iuj + 3Bp;iuj = 0

(46)

Now, contracting the equation (46) with ui, we get

(A+B)[(µ+ 3p)̇uj −
1
2
(ṗ+ µ̇)uj ] + (

−3A
2

+
3B
2

)p;j

−(A+ 4B)ṗuj −
(

3A
2

+
5B
2

)
µ;j +Bµ̇uj = 0

(47)

which on simplification (
3A
2

+
5B
2

)
µ̇uj +

(
3A
2
− 5B

2

)
ṗuj

−3
2
(A−B)p;j −

1
2
(3A− 5B)µ;j = 0

(48)

we thus have

Theorem 7 : For a perfect fluid spacetime with the divergence free quasi-conformal curva-
ture tensor, the pressure and density are constant.

Moreover, contracting equation (46) with uj , we get

(A+ 4B)(−p;i + ṗui) +B(µ̇ui + µ;i)− (A+B)(µ+ p)u̇i (49)

Using the force equation (42), we get

3B(−p;i + ṗui) +B(µ̇ui + µ;i) = 0 (50)

or,
(µ− 3p);i + (µ+ p)̇θui = 0 (51)

While using the energy equation (43), we have

(µ− 3p);i + p;ju
jui − (µ+ p)θui = 0 (52)

Thus, we have

Theorem 8 : For a perfect fluid spacetime having conserved quasi-conformal curvature ten-
sor, either pressure and density are constant over the space-like hypersurface orthogonal to the
fluid four velocity or the fluid is expansion-free.
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