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Abstract. Casazza and Christensen in [5], introduced and studied the reconstruction property
in Banach spaces. In this paper sufficient conditions for the existence of the reconstruction prop-
erty in Banach spaces are obtained. Casazza and Christensen gave Paley- Wiener type pertur-
bation of the reconstruction property which does not force equivalence of the sequences. Some
Paley-Wiener type perturbations concerning the reconstruction property are discussed. Moti-
vated by a paper by Holub [18], the notion of Besselian type reconstruction property in Banach
spaces is introduced and its application to Banach frames is obtained.

1 Introduction

The Fourier transform has been widely used in analysis for more than a century. However, it only
provides frequency information, and hides (in its phases) information concerning the moment of
emission and duration of a signal. D. Gabor in 1946, introduced a fundamental approach to
signal decomposition in terms of elementary signals and resolve this problem [14]. Duffin and
Schaeffer [11] in 1952, while addressing some deep problems in non-harmonic Fourier series,
abstracted Gabor’s method to define frames for Hilbert spaces. Later, in 1986, Daubechies,
Grossmann and Meyer [10] found new applications to wavelet and Gabor transforms in which
frames played an important role.

Let H be a separable Hilbert space. A countable system {fn} ⊂ H is called frame (Hilbert)
for H if there exists positive constants A and B such that

A‖f‖2 ≤ ‖{〈f, fn〉}‖2
`2 ≤ B‖f‖2, for all f ∈ H.

The positive constants A and B, respectively, are called lower and upper frame bounds of
the frame {fn}. They are not unique. The operator T : `2 → H defined as T ({ck}) =∑∞
k=1 ckfk, {ck} ∈ `2, is called the pre-frame operator or the synthesis operator and its ad-

joint T ∗ : H → `2 given by T ∗(f) = {〈f, fk〉}, for all f ∈ H, is called the analysis operator.
Composing T and T ∗ we obtain the frame operator S = TT ∗ : H → H given by

S(f) =
∞∑
k=1

〈f, fk〉fk, for all f ∈ H.

The frame operator S is a positive, self-adjoint invertible operator on H. For all f ∈ H, we have

f = SS−1f =
∞∑
k=1

〈S−1f, fk〉fk =
∞∑
k=1

〈f, S−1fk〉fk.

The series converges unconditionally and is called the reconstruction formula for the frame.
The representation of f in the reconstruction formula need not be unique. Today, frames play
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important roles in many applications in mathematics, science and engineering. In the theoret-
ical direction, powerful tools from operator theory and Banach spaces are being employed to
study frames. For a nice introduction to theory of frames an interested reader may refer to
[1, 2, 8, 17, 34] and references therein.

During the development of redundant building blocks (elementary signals), in the later half of
twentieth century, Coifman and Weiss in [9] introduced the notion of atomic decomposition for
function spaces. Later, Feichtinger and Gröchenig [12, 13] extended this idea to Banach spaces.
This concept was further generalized by Gröchenig [15] who introduced the notion of Banach
frames for Banach spaces. Casazza, Han and Larson [4] also carried out a study of atomic
decompositions and Banach frames. Recently, various generalization of frames in Banach spaces
have been introduced and studied. Han and Larson [16] defined a Schauder frame for a Banach
space X to be an inner direct summand (i.e. a compression) of a Schauder basis of X . Schauder
frames were further studied in [22, 25, 26, 31]. The reconstruction property in Banach spaces
was introduced and studied by Casazza and Christensen in [5] and further studied in [32]. The
reconstruction property is an important tool in several areas of mathematics and engineering. As
the perturbation result of Paley and Wiener preserves reconstruction property, it becomes more
important from an application point of view. Further, the reconstruction property is used as a tool
to recover certain Banach spaces. The reconstruction property is also used to study the geometry
of Banach spaces. In fact, it is related to bounded the approximated property as observed in [1,
3, 4]. In [5], Casazza and Christensen gave some perturbation results. In fact, they develop a
more general perturbation theory that does not force equivalence of the frames.

This paper is organized as follows: In Section 2 we give basic definitions and results which
will be used throughout the paper. Sufficient conditions for the existence of the reconstruction
property are discussed in Section 3. Section 4 is devoted to perturbation of reconstruction prop-
erty. Casazza and Christensen give Paley- Wiener type perturbation of reconstruction property
which does not force equivalence of the sequences. A perturbation result concerning the re-
construction property in which equivalence of sequences is one of the sufficient conditions is
given. Uniform approximation of a compact operator on a Banach space which admits a recon-
struction property is discussed. By inspiration from a paper by Holub [18], we introduce the
notion of Besselian type reconstruction property in Banach spaces in Section 5. An application
of the Besselian type reconstruction property to Banach frames have also been obtained. Banach
frames for operator spaces associated with the reconstruction property are discussed in Section
6.

2 Preliminaries

Throughout this paper X will denote an infinite dimensional Banach space over the scalar field
K (which will be R or C), X ∗ the conjugate space (topological) of X . The map π : X → X ∗∗
denotes the canonical mapping from X into X ∗∗. The closure of the linear hull of a system
{fn} ⊂ X in the norm topology of X is denoted by [fn]. The space of all bounded linear
operators from a Banach space X into a Banach space Y is denoted by B(X ,Y). For a pair
({fk}, {f∗k}) ⊂ X × X ∗, {Pn} is the sequence of finite rank operators defined by Pn(f) =∑n
k=1 f

∗
k (f)fk, f ∈ X . The sequence of canonical unit vectors in `2 is denoted by {ek}.

Definition 2.1. [15] Let X be a Banach space and let Xd be an associated Banach space of scalar
valued sequences indexed by N. Let {f∗k} ⊂ X ∗ and S : Xd → X be given. The pair ({f∗k},S)
is called a Banach frame for X with respect to Xd if

(i) {f∗k (f)} ∈ Xd, for all f ∈ X .

(ii) There exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖f‖X ≤ ‖{f∗k (f)}‖Xd ≤ B‖f‖X , for all f ∈ X . (2.1)
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(iii) S is a bounded linear operator such that

S({f∗k (f)}) = f, for all f ∈ X .

Definition 2.2. [5] Let X be a separable Banach space . A sequence {f∗k} ⊂ X ∗ has the recon-
struction property for X with respect to a sequence {fk} ⊂ X if

f =
∞∑
n=1

f∗n(f)fn, for all f ∈ X . (2.2)

In short, we will say that the pair ({fk}, {f∗k}) has the reconstruction property for X . More
precisely, we say that ({fk}, {f∗k}) is a reconstruction system or reconstruction property for X .
Remark 2.3. An interesting example for the reconstruction property is given in [5]: Let {f∗k} ⊂
`∞ and {f∗k} is unitarily equivalent to the unit vector basis of `2. Then, {f∗k} has the reconstruc-
tion property with respect to its own pre-dual (that is, expansions with respect to the orthonormal
basis).

Regarding the existence of Banach spaces which have a reconstruction system, Casazza and
Christensen proved the following result.

Proposition 2.4. [5] There exists a Banach space X with the following properties:

(i) There is a sequence {fk} such that each f ∈ X has a expansion f =
∑∞
k=1 f

∗
k (f)fk.

(ii) X does not have the reconstruction property with respect to any pair ({hk}, {h∗k}).

Definition 2.5. [4] A separable Banach space X has the λ-bounded approximation property (i.e.
λ-BAP) if there is a sequence of finite rank operators {Ti} defined on X so that for every f ∈ X ,
Tif → f in norm. We say that X has the Bounded approximation property (denoted by BAP) if
X has the λ-BAP, for some λ.

The notion of reconstruction property is related to the Bounded Approximation Property(BAP).
If ({fk}, {f∗k}) has the reconstruction property for X , then X has the bounded approximation
property. Conversely, if X has the bounded approximation property then there exists a Banach
space A ⊃ X with a basis and by using a projection P : A → X we can find a sequence
{g∗k} ⊂ X ∗ such that {g∗k} has reconstruction property for X with respect to {P (•)}k. So, X
is isomorphic to a complemented subspace of a Banach space with a basis. The reconstruction
property is also used to study geometry of Banach spaces [3]. For more results and basics on the
reconstruction property and bounded approximation property one may refer to [4] and references
therein.

3 Reconstruction Property in Banach Spaces

Suppose that each vector of a Banach space X is expressed as an infinite linear combination of
a given system say {fk} ⊂ X . Then, a natural question arises to find further condition(s) which
guarantee the existence of {f∗k} ⊂ X ∗ such that ({fk}, {f∗k}) has the reconstruction property for
X . This problem is very deep and we do not know the answer even for Hilbert spaces. In this
direction the following proposition gives sufficient conditions for the existence of a sequence
{f∗k} ⊂ X ∗ such that ({fk}, {f∗k}) has the reconstruction property for X .

Proposition 3.1. Let {fk}\{0} ⊂ X be a sequence of vectors such that for each f ∈ X , there ex-

ists a sequence {γk} ⊂ K such that f =
∞∑
k=1

γkfk. LetY = {{γk} ⊂ K :
∑∞
k=1 γkfk converges in the norm in X}

be a Banach space with norm given by ‖{γk}‖Y = sup
1≤n<∞

∥∥∥∥ n∑
k=1

γkfk

∥∥∥∥
X

. IfZ = {{γk} ⊂ K :
∑∞
k=1 γkfk = 0}
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is a complemented subspace of Y , then there exists a sequence {f∗k} ⊂ X ∗ such that {f∗k} has
the reconstruction property for X with respect to {fk}.

Proof. Let us write Y = M⊕ Z . Define S : Y → X by S({γk}) =
∑∞
k=1 γkfk, {γk} ∈ Y.

Then, S|M is an isomorphism ofM onto X .
Fix f ∈ X . Choose {f∗k (f)} = (S|M)−1(f) ∈M. Then, each f∗k is linear and f = S{f∗k (f)} =
∞∑
k=1

f∗k (f)fk. It can be verified that each f∗k is bounded. Indeed, for each k ∈ N, ‖f∗k‖ ≤

α‖(S|M)−1‖, where α ≤ 2
‖fk‖

. Thus, each f∗k is bounded. Hence {f∗n} ⊂ X ∗ is such that

({fk}, {f∗k}) has the reconstruction property for X .

Remark 3.2. Note that in Proposition 3.1, corresponding to fk = 0, we can choose arbitrary
g = f∗k ∈ X ∗.

Let X0 be a finite dimensional Banach space. Then, we can find a pair ({f (n)j }, {f
∗(n)
j })mnj=1 ⊂

X0 × X0
∗ such that ({f (n)j }, {f

∗(n)
j })mnj=1 has the

reconstruction property for X0. Using this and of certain ideas developed in
[21, 23, 24, 28, 29, 30], the following theorem give sufficient conditions for the existence of
a reconstruction property in Banach spaces.

Theorem 3.3. Let {pn} (pn : X → X ) be a sequence of bounded linear operators of finite

rank such that f =
∞∑
i=1

pi(f), f ∈ X . For each n, suppose that ({f (n)j }, {f
∗(n)
j })mnj=1 has the

reconstruction property for pn(X ) such that

sup
1≤n<∞

1≤j≤mn

‖u(n)j ‖ ≤ K <∞, where u(n)j (•) =
j∑
i=1

f
∗(n)
i (•)f (n)i .

Then, there exists a sequence {f∗n} ⊂ X ∗ such that {f∗n} has the reconstruction property for X
with respect to some {fn} ⊂ X .

Proof. Since ({f (n)j }, {f
∗(n)
j })mnj=1 has the reconstruction property for pn(X ), we have

g =
mn∑
j=1

f
∗(n)
j (g)f

(n)
j , for all g ∈ pn(X ).

Define sequences {fn} ⊂ X and {f∗n} ⊂ X ∗ by

fm0+m1+mn+i = f
(n+1)
i

f∗m0+m1+mn+i
= f

∗(n+1)
i ◦ pn+1

}
i = 1, . . . ,mn+1; n = 0, 1, 2, . . . ; m0 = 0.

Put ωn = m0 +m1 + . . .+mn (n = 0, 1, 2, . . .).
Then, for all f ∈ X , we have

uωn+in (f) =
ωn+in∑
j=1

f∗j (f)fj

=
n∑
k=1

mk∑
j=1

f
∗(k)
j (pk(f))f

(k)
j +

in∑
j=1

f
∗(n+1)
j (pn+1(f))f

(n+1)
j

=
n∑
k=1

pk(f) + u
(n+1)
in

(pn+1(f)), in = 1, . . . ,mn+1.
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Now
n∑
k=1

pk(f) → f and ‖u(n+1)
in

(pn+1(f))‖ ≤ K‖pn+1(f)‖ → 0 as n → ∞. Therefore,

‖uωn+in(f) − f‖ → 0 as n → ∞. Thus, f =
∞∑
j=1

f∗j (f)fj , for all f ∈ X . Hence {f∗n} ⊂ X has

the reconstruction property for X with respect to {fn} ⊂ X .

4 Perturbation of Reconstruction Property in Banach Spaces

Perturbation theory is a very important tool in various areas of applied mathematics [5, 6, 7]. It
began with the fundamental perturbation result of Paley and Wiener [27, 34]. The basic idea of
Paley and Wiener was that a system that is sufficiently close to an orthonormal system (basis) in
a Hilbert space is also form an orthonormal system (basis). Since then, a number of variations
and generalization of this perturbation to the setting of Banach space and then to perturbation of
atomic decompositions, frames (Hilbert) and Banach frames have been observed in [7]. Casazza
and Christensen proved the following theorem in [5], which is a Banach space version of the
Paley-Wiener theorem for frames in Hilbert spaces.

Theorem 4.1. [5] Suppose that ({fi}, {f∗i }) has the reconstruction property for X . Let Xd be a
sequence space which has the unit vectors {ei} as a basis.
Assume that

T{ci} =
∞∑
i=1

cifi

defines a bounded linear operator fromXd intoX . Assume further that the operatorR : X → Xd
given by

Rf = {f∗i (f)}
is a bounded operator. Let {gi} be a sequence in X for which there exist constants λ, µ such that
λ+ µ‖R‖ < 1 and

‖
∞∑
i=1

ci(fi − gi)‖ ≤ λ‖
∞∑
i=1

cifi‖+ µ‖{ci}‖,

for all finitely non-zero scalar sequences {ci}. Then, there are functionals {g∗i } ⊂ X ∗ so that
({gi}, {g∗i }) has the reconstruction property for X .

Moreover, U : Xd → X given by U{ci} =
∑∞
i=1 cigi is a bounded linear and surjective

operator, and

1
‖R‖

(1− (λ+ µ‖R‖))‖f‖ ≤ ‖U∗f‖ ≤ ‖T‖(1 + λ+
µ

‖T‖
)‖f‖,

for all f ∈ X . Finally, if the unit vectors form an unconditional basis for Xd, then the series∑∞
i=1 cigi converges unconditionally for all {ci} ∈ Xd.

Remark 4.2. An important aspect of Theorem 4.1 is that it does not require the perturbed family
{gi} to be equivalent to the original reconstruction sequence {fi}. Recall that two sequences {fi}
and {gi} in a Banach space are said to be equivalent if the mapping fi → gi can be extended to
a well defined bounded linear map of [fi] onto [gi].

The following proposition provides a Paley-Wiener type perturbation, where the equivalence
of two sequences is one of the sufficient conditions.

Proposition 4.3. Suppose that ({fk}, {f∗k}) has the reconstruction property for X . Let λ ∈ (0, 1)
and let {gk} ⊂ X be such that

‖
∞∑
k=1

f∗k (f)(fk − gk)‖ ≤ λ‖f‖, for all f ∈ X .
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If there exists U ∈ B(X ,X ) such that U(fk) = gk, for all k ∈ N, then we can find {g∗k} ⊂ X ∗
such that ({gk}, {g∗k}) is a reconstruction system for X .

Proof. Define L : X → X as L(f) =
∑∞
k=1 f

∗
k (f)gk. Then, L is well defined bounded linear

operator. Indeed, for all n ≥ m, we have∥∥∥∥∥
n∑
k=1

f∗k (f)gk −
m∑
k=1

f∗k (f)gk

∥∥∥∥∥
=

∥∥∥∥∥U(
n∑
k=1

f∗k (f)fk −
m∑
k=1

f∗k (f)fk)

∥∥∥∥∥
≤ ‖U‖

∥∥∥∥∥
n∑
k=1

f∗k (f)fk −
m∑
k=1

f∗k (f)fk

∥∥∥∥∥ −→ 0 as n,m→∞.

Fix f ∈ X . Then,

‖(I − L)f‖
= ‖f − L(f)‖

=

∥∥∥∥∥
∞∑
k=1

f∗k (f)fk −
∞∑
k=1

f∗k (f)gk

∥∥∥∥∥
≤ λ‖f‖.

Therefore, ‖I−L‖ < 1. Thus, L is an invertible operator. Choose g∗k = (L−1∗)f∗k , for all k ∈ N.
Then, we have

∞∑
k=1

g∗k(f)(gk) =
∞∑
k=1

((L−1)∗f∗k )(f)gk

=
∞∑
k=1

f∗k (L
−1(f))gk

= L(L−1f)

= f, for all f ∈ X .

Hence ({gk}, {g∗k}) is a reconstruction system for X .

Recall that if a Banach space X has the reconstruction property ({fk}, {f∗k}), then each
f ∈ X can be written as a linear combination (infinite) of {fk} over {f∗k (f)} (coefficients in the
sense of Fourier). Consider a situation where a given system {gk} ⊂ X is close to {fk}, but it is
not possible to find {g∗k} ⊂ X such that ({gk}, {g∗k}) is a reconstruction property for X . In such
a situation one direction is to reconstruct the space X via its image under a continuous invertible
operator over the same coefficients {f∗k (f)}, which is discussed in Proposition 4.5. This leads
us to define the support of the reconstruction property for the underlying space.

Definition 4.4. Let F ≡ ({fk}, {f∗k}) be a reconstruction system for X and let {gk} ⊂ X . We
say that G ≡ ({gk}, {f∗k}) support F , if there exists an invertible operator T ∈ B(X ,X ) such
that T (f) =

∑∞
k=1 f

∗
k (f)gk, for all f ∈ X .
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The following proposition provides sufficient conditions for a given reconstruction system
F ≡ ({fk}, {f∗k}) for X such that G ≡ ({gk}, {f∗k}), ({gk} ⊂ X ) support F .

Proposition 4.5. Let F ≡ ({fk}, {f∗k}) be a reconstruction system for X . Choose δ > 0 such
that

‖
N∑
k=1

f∗k (f)(fk)‖ ≤ δ‖f‖, for all f ∈ X and for all N ≥ 1. (4.1)

Let ε ∈ (0, 1) and let {gn} ⊂ X be a sequence such that for all n ≤ m ≤ l

‖
m∑
k=n

f∗k (f)(fk − gk)‖ ≤
ε

δ
sup

n≤l≤m
‖

l∑
k=n

f∗k (f)(fk)‖, n ∈ N for all f ∈ X . (4.2)

Then, G ≡ ({gk}, {f∗k}) support F .

Proof. Define Θ : X −→X by Θ(f) =
∑∞
k=1 f

∗
k (f)(fk−gk). Then, Θ is a well defined bounded

linear operator. By using inequality (4.2), we have

‖Θf‖ ≤ lim
n→∞

ε

δ
sup

1≤l≤n
‖

l∑
k=1

f∗k (f)fk‖, for all f ∈ X .

Therefore, by using (4.1), we obtain ‖Θf‖ ≤ ε‖f‖, for all f ∈ X . Thus, ‖Θ‖ < 1. Hence
T = I −Θ is a continuously invertible operator .
Now for all f ∈ X , we have

T (f) = T

( ∞∑
k=1

f∗k (f)fk

)

= f −
∞∑
k=1

f∗k (f)(fk − gk)

=
∞∑
k=1

f∗k (f)gk.

Hence G ≡ ({gk}, {f∗k}) support F .

The following proposition shows that if {f∗k} has the reconstruction property for X , then we
can determine a compact operator on X under certain closeness of {f∗k} and its image under a
bounded linear operator on the conjugate space of the underlying space.

Proposition 4.6. Suppose that ({fk}, {f∗k}) has the reconstruction property for X . Let Θ ∈
B(X ∗,X ∗) be such that

∞∑
k=1

‖Θ(f∗k )− f∗k‖‖fk‖ <∞.

Then, f 7→
∑∞
k=1[(Θ(f∗k )− f∗k )(f)]fk defines a compact operator on X .
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Proof. Let T : X → X be an operator defined as

T (f) =
∞∑
k=1

[(Θ(f∗k )− f∗k )(f)]fk, f ∈ X .

Then, for n ≥ m, we have ∥∥∥∥∥
n∑

k=m

[(Θ(f∗k )− f∗k )(f)]fk

∥∥∥∥∥
≤

∣∣∣∣∣
n∑

k=m

[(Θ(f∗k )− f∗k )(f)]

∣∣∣∣∣ ‖fk‖
≤

(
n∑

k=m

‖Θ(f∗k )− f∗k‖‖fk‖

)
‖f‖.

Therefore, T is a well defined bounded linear operator onX . For each n ∈ N, define Tn : X → X
by

Tn(•) =
n∑
k=1

[(Θ(f∗k )− f∗k )(•)]fk.

Then, ‖T − Tn‖ ≤
∑
k≥n+1 ‖Θ(f∗k ) − f∗k‖‖fk‖ −→ 0 as n → ∞. Since each Tn is a finite

dimensional and continuous operator, T is compact.

Suppose that ({fk}, {f∗k}) has the reconstruction property for X . Then, the sequence of
finite rank operators Pn : X → X , Pn(f) =

∑n
k=1 f

∗
k (f)fk has the property that Pn(f) → f

in the norm, for all f ∈ X . To conclude the section we show that if a Banach space admits
a reconstruction property, then every compact operator can be approximated uniformly by a
system of operators of finite rank defined on the underlying space. In Banach space theory, this
is called the “Compact Approximation Property".

Proposition 4.7. Suppose that {f∗k} ⊂ X ∗ has the reconstruction property for X with respect to
a sequence {fk} ⊂ X . Let Θ : X → X be a compact operator. Then, there exists a sequence
{Θ̂n} of bounded linear operators of finite rank on X such that lim

n→∞
Θ̂n = Θ uniformly.

Proof. Assume thatW ⊂ X is a compact set. Let µ = sup
1≤n<∞

‖Pn‖ and let ε > 0 be arbitrary.

Choose a finite ε
2(1+µ)(= ε0)-net, {gl}rl=1 forW . Let f ∈ W be arbitrary. Then, there exist an gj

such that ‖f − gj‖ < ε0. Also, we can find a positive integer N ≡ N(ε) such that∥∥∥∥∥gk −
n∑
i=1

fi
∗(gk)fi

∥∥∥∥∥ < ε

2
, for all n ≥ N, (k = 1, 2, ...., r).

Now∥∥∥∥∥f −
n∑
i=1

fi
∗(f)fi

∥∥∥∥∥ ≤ ‖f − gj‖+
∥∥∥∥∥gj −

n∑
i=1

fi
∗(gj)fi

∥∥∥∥∥+
∥∥∥∥∥
n∑
i=1

fi
∗(gj)fi −

n∑
i=1

fi
∗(f)fi

∥∥∥∥∥
≤ (1 + µ)‖f − gj‖+

∥∥∥∥∥gj −
n∑
i=1

fi
∗(gj)fi

∥∥∥∥∥
≤ (1 + µ)ε0 +

ε

2
= ε, for all n ≥ N.
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Thus, since f ∈ W was arbitrary, we have

lim sup
f∈W

∥∥∥∥∥f −
n∑
i=1

fi
∗(f)fi

∥∥∥∥∥ = 0. (4.3)

Let D = {f ∈ X : ‖f‖ ≤ 1}. Then, T = Θ(D) is compact. Choose Θ̂n = PnΘ, for each n ∈ N.
Then, each Θ̂n is of finite rank and by using (4.3), we have

‖Θ− Θ̂n‖ = sup
f∈X
‖f‖≤1

‖Θ(f)− Θ̂n(f)‖

= sup
f0∈T
‖f0 − Pn(f0)‖ → 0 as n→∞.

Hence {Θ̂n} is the required system of bounded linear operators of finite rank such that
lim
n→∞

Θ̂n = Θ uniformly.

5 Reconstruction Property of Besselian Type

On the problem concerned with diagnosis of frames, which are actually a Riesz basis for a Hilbert
spaceH or more generally, when a frame is a “near-Riesz basis" (in the sense that the deletion of
a finitely many terms from a frame leaves a Riesz basis), Holub in [18] introduced and studied
Besselian frames.
Definition 5.1. [18] A frame {fk} for H is said to be

(i) Besselian if whenever
∑∞
k=1 akfk converges, then {ak} ∈ `2.

(ii) a near Riesz basis if there is a finite set σ for which {fk}k/∈ σ is a Riesz basis for H.

One of the fundamental results in [18] says “A frame for Hilbert space is Besselian if and
only if it a near-Riesz basis" . Further by motivation from a result which gives a characterization
of a given frame in a Hilbert space as images of a complete orthonormal system under a quotient
map, we introduce Besselian type reconstruction property in Banach spaces.
Definition 5.2. A reconstruction system ({fk}, {f∗k}) for X is said to be

(i) X -Besselian if
∑∞
k=1 |f∗k (f)|2 <∞, for all f ∈ X .

(ii) X ∗-Besselian if
∑∞
k=1 |f∗(fk)|2 <∞, for all f∗ ∈ X ∗.

(iii) X ∗∗-Besselian if
∑∞
k=1 |Φ(f∗k )|2 <∞, for all Φ ∈ X ∗∗.

Example 5.3. Let X = L1(Ω), where Ω is the set of positive integers with counting measure.
Consider a system {fk} ⊂ X given by f1 = χ1, fk = χk−1, where
χk = {0, 0, 0, ....., 1︸︷︷︸

kth−place

, 0, 0, ...}. Define {f∗k} ⊂ X ∗ by f∗1 (f) = 0, f∗k (f) = ξk−1, f =

{ξj} ∈ X . Then, it can be verified that ({fk}, {f∗k}) is X -Besselian, but not X ∗-Besselian. Thus,
we conclude from this that

X -Besselian 6⇒ X ∗-Besselian 6⇒ X ∗∗-Besselian.

Remark 5.4. One may observe that if ({fk}, {f∗k}) is X ∗∗-Besselian, then ({fk}, {f∗k}) is X -
Besselian. If X is reflexive, then ({fk}, {f∗k}) is X -Besselian if and only if ({fk}, {f∗k}) is
X ∗∗-Besselian.
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The following proposition provides a sufficient condition for a reconstruction property for X
to be X -Besselian.

Proposition 5.5. If ({fk}, {f∗k}) has the reconstruction property for X and Θ̂ ∈ B(X , `2) is such
that Θ̂(fk) = ek, for all k ∈ N, then ({fk}, {f∗k}) is X -Besselian, where {ek} is the sequence of
unit vectors in `2.

Proof. Since f =
∑∞
k=1 f

∗
k (f)fk, for all f ∈ X ,

∞ > ‖Θ̂(f)‖2

=

∥∥∥∥∥
∞∑
k=1

f∗k (f)Θ̂(fk)

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
k=1

f∗k (f)ek

∥∥∥∥∥
2

=
∞∑
k=1

|f∗k (f)|2, for all f ∈ X .

Hence ({fk}, {f∗k}) is X -Besselian.

Holub in [18] characterizes frames which are images of an orthonormal basis.

Theorem 5.6. [18] A sequence of vectors {fk} ⊂ H is a frame for H if and only if there exists a
bounded linear operator Q from `2 onto H for which Qek = fk, for all k.

By motivation from this result, the following proposition gives sufficient conditions for a
reconstruction property to be X ∗-Besselian.

Proposition 5.7. Suppose that ({fk}, {f∗k}) has the reconstruction property for X . If there exists
an operator Θ̂ ∈ B(`2,X ) such that Θ̂(ek) = fk, for all k ∈ N, then ({f∗k}, {fk}) is X ∗-
Besselian

Proof. We compute∥∥∥∥∥
n∑
k=1

f∗(fk)fk

∥∥∥∥∥
=

∥∥∥∥∥
n∑
k=1

f∗(fk)Θ̂(ek)

∥∥∥∥∥
≤ ‖Θ̂‖

∥∥∥∥∥
n∑
k=1

f∗(fk)ek

∥∥∥∥∥
= ‖Θ̂‖

√√√√ n∑
k=1

|f∗(fk)|2, for all n ∈ N and for all f∗ ∈ X ∗. (5.1)
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Now for all f∗ ∈ X ∗, by using (5.1), we have

n∑
k=1

|f∗(fk)|2

= f∗

(
n∑
k=1

f∗(fk)fk

)

≤ ‖f∗‖

∥∥∥∥∥
n∑
k=1

f∗(fk)fk

∥∥∥∥∥
≤ ‖f∗‖‖Θ̂‖

√√√√ n∑
k=1

|f∗(fk)|2, for all n ∈ N.

Therefore,
√∑n

k=1 |f∗(fk)|2 ≤ ‖f∗‖‖Θ̂‖, for all n ∈ N and for all f∗ ∈ X ∗. Thus,∑∞
k=1 |f∗(fk)|2 < ∞, for all f∗ ∈ X ∗. Hence the system ({fk}, {f∗k}) is

X ∗-Besselian.

Suppose that ({fk}, {f∗k}) has the reconstruction property forX and let {gk} ⊂ X be close to
{fk} in some sense. Then, in general, ({g∗k}, {π(gk)}) does not serve as reconstruction property
for X ∗. Note that instead of {π(gk)} the choice of arbitrary {ψk} ⊂ X ∗∗ is also valid in the
said argument. In such situations we may recover each element of X ∗ via a bounded linear
operator (associated with ({π(gk)}). The following theorem provides sufficient conditions for
the existence of a reconstruction operator S such that ({π(gk)},S) is a Banach frame for X ∗.

Theorem 5.8. Suppose that ({fk}, {f∗k}) has reconstruction property forX which isX -Besselian
and let {gk} ⊂ X be such that for every f ∈ X

∆×

√√√√ ∞∑
k=1

|f∗k (f)|2 < δ‖f‖ (0 < δ < 1),

where

∆ = sup
φ∗∈X∗
‖φ∗‖≤1

√√√√ n∑
k=1

|φ∗(fk − gk)|2, n ∈ N.

Then, there exists a reconstruction operator S such that ({π(gk)},S) is a Banach frame for X ∗.

Proof. For each n choose ψ∗n ∈ X ∗ with ‖ψ∗n‖ = 1 such that

ψ∗n

(
n∑
k=1

f∗k (f)(fk − gk)

)
=

∥∥∥∥∥
n∑
k=1

f∗k (f)(fk − gk)

∥∥∥∥∥ .
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Therefore, for all f ∈ X , we have∥∥∥∥∥
n∑
k=1

f∗k (f)(fk − gk)

∥∥∥∥∥
=

n∑
k=1

f∗k (f)ψ
∗
n(fk − gk)

≤

√√√√ ∞∑
k=1

|f∗k (f)|2 ×

√√√√ n∑
k=1

|ψ∗n(fk − gk)|2

≤

√√√√ ∞∑
k=1

|f∗k (f)|2 × ∆

≤ δ × ‖f‖. (5.2)

Assume that there is no reconstruction operator S such that ({π(gk)},S) is a Banach frame for
X ∗ with respect to an associated sequence space Zd (say). Then, by Riesz Lemma [33], there ex-
ists f0 ∈ X such that ‖f0‖ = 1 and dist(f0, [gk]) > ε
(0 ≤ ε < 1). Therefore, the Hahn-Banach Theorem gives a non-zero functional ψ∗ ≡ ψ∗f0

∈ X ∗

such that ψ∗(gk) = 0, k ∈ N;ψ∗(f0) = 1 and ‖ψ∗‖ = 1
dist(f0,[gk])

.
By using (5.2), we have

1 = |ψ∗(f0)|

= lim
n→∞

∣∣∣∣∣ψ∗
(

n∑
k=1

f∗k (f0)fk

)∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣ψ∗
(

n∑
k=1

f∗k (f0)(fk − gk)

)∣∣∣∣∣
≤ lim
n→∞

‖ψ∗‖

∥∥∥∥∥
n∑
k=1

f∗k (f0)(fk − gk)

∥∥∥∥∥
≤ ‖ψ∗‖ × δ × ‖f0‖. (5.3)

In particular for δ = ε, (5.3) gives dist(f0, [gk]) ≤ ε, a contradiction.

6 Banach Frames Associated with Reconstruction Property

Suppose that ({fk}, {f∗k}) has the reconstruction property for X . Then, we can find a recon-
struction operator S such that ({f∗k},S) is a Banach frame for X , associated with the system
({fk}, {f∗k}). Similarly we can find a reconstruction operator associated with the system {fk}.
It is natural to ask whether we can find Banach frames for a large class of spaces associated with
a given reconstruction system. In this direction we introduce Banach Λ-frames for the operator
spaces.

Definition 6.1. Let X and Y be Banach spaces and let Yd be a sequence space associated with
Y . A system {fk} ⊂ X is called a Banach Λ-frame for B(X ,Y) if there exist positive constants
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0 < a0 ≤ b0 <∞ such that

a0‖Λ‖ ≤ ‖{Λ(fk)}‖Yd ≤ b0‖Λ‖, for all Λ ∈ B(X ,Y). (6.1)

Remark 6.2. If Y = K, then B(X ,Y) ≡ X ∗. Therefore, {π[Λ(fk)]} becomes a
Banach frame for X ∗ with respect to some associated Banach space Z0.

Suppose that ({fk}, {f∗k}) has the reconstruction property for X where
{f∗k} ⊂ X ∗ \ {0}. Let V be a Banach space and let
Vd = {{ξk} ⊂ V : sup

n
sup
f∈X
‖f‖≤1

‖
∑n
k=1 f

∗
k (f)ξk‖ < ∞} be its associated Banach space of se-

quences with norm given by ‖{ξk}‖Vd = sup
n

sup
f∈X
‖f‖≤1

‖
∑n
k=1 f

∗
k (f)ξk‖V . The following proposi-

tion provides the existence of a Banach Λ-frame for the operator space B(X ,V) with respect to
Vd (associated with a reconstruction system).

Proposition 6.3. Suppose that {f∗k} ⊂ X ∗ \ {0} has the reconstruction property for X with
respect to {fk} ⊂ X . Then, {fk} is a Banach Λ-frame for the operator space B(X ,V) with
respect to Vd.

Proof. Let Λ ∈ B(X ,V) be arbitrary. For each n ∈ N, define Λn : X → V by

Λn(f) =
n∑
k=1

f∗k (f)Λ(fk), f ∈ X .

Then

lim
n→∞

Λn(f)

= lim
n→∞

n∑
k=1

f∗k (f)Λ(fk)

= Λ

( ∞∑
k=1

f∗k (f)fk

)
= Λ(f).

Thus, sup
1≤n<∞

‖Λn(f)‖ < ∞, for all f ∈ X . Therefore, by the theorem of Banach-Steinhaus, we

have sup
1≤n<∞

‖Λn‖ <∞.

Fix Λ ∈ B(X ,V). Then,

‖Λ‖ = sup
f∈X
‖f‖≤1

‖Λ(f)‖

= sup
f∈X
‖f‖≤1

∥∥∥∥∥Λ

( ∞∑
k=1

f∗k (f)fk

)∥∥∥∥∥
= sup

f∈X
‖f‖≤1

∥∥∥∥∥ lim
n→∞

n∑
k=1

f∗k (f)Λ(fk)

∥∥∥∥∥
≤ sup

1≤n<∞
‖Λn‖

= ‖{Λ(fn)}‖Vd . (6.2)
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Also for all f ∈ X , we have∥∥∥∥∥
n∑
k=1

f∗k (f)Λ(fk)

∥∥∥∥∥
≤ ‖Λ‖

∥∥∥∥∥
n∑
k=1

f∗k (f)fk

∥∥∥∥∥
= ‖Λ ‖‖Pn(f)‖
≤ B‖Λ‖‖f‖, for all Λ ∈ B(X ,V), (6.3)

where B = sup
1≤n<∞

‖Pn‖.

Therefore, by using (6.3) we obtain sup
f∈X
‖f‖≤1

||
∑n
k=1 f

∗
k (f)Λ(fk)| | ≤ B‖Λ‖.

This gives

‖{Λ(fk)}‖Vd

= sup
n

sup
f∈X
‖f‖≤1

∥∥∥∥∥
n∑
k=1

f∗k (f)Λ(fk)

∥∥∥∥∥
V

≤ B‖Λ‖, for all Λ ∈ B(X ,V). (6.4)

By using (6.2) and (6.4) with A = 1, we have

A‖Λ‖ ≤ ‖{Λ(fk}‖Vd ≤ B‖Λ‖, for all Λ ∈ B(X ,V).

Hence {Λ(fk)} is a Banach Λ-frame for the operator space B(X ,V) with respect to Vd. This
completes the proof.

Remark 6.4. The Banach Λ-frame {fk} in Proposition 6.3 is associated with ({fk}, {f∗k}). We
call {fk} an associated Banach Λ-frame for X ∗.
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