
Palestine Journal of Mathematics

Vol. 3(2) (2014) , 160–167 © Palestine Polytechnic University-PPU 2014

VECTOR VALUED FUNCTIONS AND BOEHMIANS
FOR PLANCHEREL THEOREM OF MELLIN TRANSFORM

Deshna Loonker and P. K. Banerji

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 42A38; Secondary 44A35, 46B07, 46C05, 46F05, 46F12, 46F20

Keywords : Banach space valued distributions; Banach algebra; convolution; Mellin transform; Fourier transform;
Hilbert space; vector-valued Boehmians

Abstract In this paper, the Mellin transform and Mellin-Plancherel theorem are introduced
for vector-valued Boehmians and further, an isomorphism between L2(R) onto L2(R)has been
established. Moreover, we have investigated the results for the Mellin transform, invoking a
relation between Fourier and Mellin transform.

1 Introduction

The Mellin transform of a function f : Rn → C, f ∈ L1(Rn), which is denoted by f̃ , is defined
by [4, p. 194]

f̃(s) =M [f ](s) =

∫
Rn

xs−1f(x)dx, (1.1)

where s ∈ Cn, s = σ + iτ and σ, τ ∈ Rn. The inversion formula is

f(x) =M−1[f̃ ](s) = (2πi)−n
∫
x−sf̃(s)ds. (1.2)

Eqs. (1.1) and (1.2), which illustrates the relation between the Mellin and the Fourier transforms,
may be written in the following form

f̃(s) = F [e
σy
f(e

y
)](τ) [cf. [4, p. 196, Eq. (3.5)]] (1.3)

f̃(s) = F [f(ey); is] (1.4)

i.e.
f̃(is) =

∫ ∞
−∞

f(ey)esydy (1.5)

and
eσyf(ey) = F−1[f̃(σ + iτ)](y) [cf. [4, p.197]] (1.6)

i.e.
f(ey) =

1
2π

∫ ∞
−∞

f̃(is)e−syds. (1.7)

The convolution [4, p.205, Eqs. (3.24)-(3.25)], f ∨ g, where f and g are functions from Rn

(n -dimensional – Euclidean space) into C (the complex plane) (or f, g ∈ L1) , is defined by

(f ∨ g)(x) =
∫

Rn

f(t)g(x/t)t
−1
dt, (1.8)

i.e.
M [f ∨ g] =M [f ] ·M [g], (1.9)

where M stands for the Mellin transform [4, p.207].

Using Eq. (1.3), the definition of the Plancherel theorem for the Mellin transform, where
Re(s) = 1/2, x = Im(s) ∈ Rn , is given as under [4, p.207] :
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Let f ∈ L2(Rn+)and υ ∈ Rn+. If

g(x) = limυ→∞

∫ υ

1/υ
yix−

1
2 f(y)dy, x ∈ Rn (1.10)

then g ∈ L2(Rn+)and, the Parseval formula is

‖f‖L2(Rn
+ )
= (2π)−n ‖g‖2 . (1.11)

The inversion of which is given by

f(y) = (2π)−nlimR→∞

∫
Q[−R,R]

y−ix−
1
2 g(x)dx, (1.12)

where, Q[−R,R] =
n
×
j=1

[−Rj , Rj ], R ∈ Rn+.

The Plancherel theorem, by using (1.5) and (1.7), can be stated as under.

Let f ∈ L2(Rn+)

f̃(is) =

∫ ∞
−∞

f(e
y
)e
sy
dy. (1.13)

Then f(ex) ∈ L2(Rn+)and, the Parseval formula is∥∥f̃(is)∥∥
L2(Rn

+ )
= (2π)−1 ‖f(ex)‖2 . (1.14)

The inversion of which is given by

f(e
y
) = (2π)−1

∫ ∞
−∞

f̃(is)e
−sy

ds. (1.15)

The distributional Mellin transform f ∈ D (the testing function space) is defined by

f̃(is) = 〈f(ey), esy〉 ,

and the distributional Parseval relations for the Mellin transform are given with respect to the
relations, as under [1, p.166-168]:

〈
f(ex), ϕ(ex)

〉
= (2π)−1

〈
f̃(is), ϕ̃(is)

〉
,

i.e. 〈
f̃(is), ϕ̃(is)

〉
= 2π

〈
f(ex), ϕ(ex)

〉
. (1.16)

〈
f̃(is), ϕ̃(is)

〉
= 〈f(ex), ϕ̆(ex)〉 , ϕ̆(e

x
) = ϕ(e

−x
) (1.17)

i.e.
〈f(ex), ϕ̃(is)〉 =

〈
f̃(is), ϕ(ex)

〉
. (1.18)

Here ϕ ∈ D and f ∈ D′(D′is dual of D). The testing function space and relations (1.16) and
(1.18) are also proved for the tempered distribution space S ′ of the Mellin transform [1].

Karunakaran and Thiliga [5] proved the Plancherel theorem of Fourier transform for the
vector valued Boehmains. Loonker and Banerji [6] extended the results of the above citation
[5] to obtain the Plancherel theorem of the wavelet transform for vector-valued Boehmians.
Employing similar notations and terminologies, the Plancherel theorem of Mellin transform for
vector-valued Boehmians is developed in this paper.

Consider a spaceL2(A) consists of A-valued Borel measurable functions onR such that
∫
R
|f(x)|2

dx < ∞ and A is both a complex Hilbert space and a separable commuatiave Banach algebra,
with an identity e such that the norm induced by the inner product and the norm in the Banach
algebra are equivalent. The Plancherel theorem is, thus, developed. If A is a Hilbert space as well
as a complex algebra in which the left and right multiplications are continuous, then a Banach
algebraic structure is introduced such that the Banach algebra norm and the Hilbert space norm



162 Deshna Loonker and P. K. Banerji

are equivalent, which allows us to use the notation A for both the complex Hilbert space and the
complex Banach space [9].

We define the basic definitions of testing function space which are Banach space valued as
shown in [10]. Let DK(A)is the linear space of all functions ϕ from R to A such that supp
ϕ ⊆ K and, for every integer k, the kth derivative of ϕ, namely ϕ(k), is continuous, where A be a
complex Banach space and K a compact subset of R. The topology generated by the collection
{γk(ϕ) : 0 ≤ k <∞} of seminorms, where

γk(ϕ) = supp
t∈K

∥∥ϕk(t)∥∥
A
.

Let {Kj}∞j=1 be a sequence of compact subsets of R such that K1 ⊂ K2 ⊂ . . . ,
⋃
j Kj =R

and that every compact subset of R is contained in some Kj . We define D(A) =
⋃
j DKj

to
be the inductive limit of DKj

(A). When A = C, D(C) =
⋃
j DKj

(A) = D is the space of
test functions. E(A)is defined as the largest ρ-type test function space containing D(A).When
A = C, E(A) = E is called the space of smooth functions on R.

If B is any other complex Banach space, then [D(A) : B] is [A,B] - valued distributions, that
is the space of all continuous linear mappings from D(A) to B . Let τt denote the translation
operator given by (τtϕ)(x) = ϕ(x− t). Then, for y ∈ [D(A) : B], υ ∈ [E : A], their convolution,
denoted by y ∗ υ, is defined as a B-valued mapping on D by (y ∗ υ)(ϕ) = y(ψ), where ψ(t) =
υ(τ−tϕ), for all ϕ ∈ D. It can be shown that ψ ∈ D(A) [10, pp.99-100] . Thus, y ∗ υ is well
defined and the mapping υ → y ∗ υ is a continuous linear mapping of [E : A] into [D : B]. D(A)
can be identified as a subspace of [E : A] and, in particular , if y ∈ [D(A) : B]and υ ∈ D(A),
then y ∗ υ is well defined and, further, it can be identified with a smooth B-valued function
u ∈ E(B) in the sense that

(y ∗ υ)(ϕ) =
∫

R

u(x)ϕ(x)dx, ∀ϕ ∈D,

where u(x) = y(τxυ) , υ(t) = υ(−t) .

.
Definition 1.1. Let A be a separable and commutative complex Banach algebra and R be the
measurable space, 1 ≤ p <∞, such that

Lp(A) = [f ]

∣∣∣∣ f : R → A is Borel measurable
∫
R

‖f(x)‖p dm(x) <∞ , (1.20)

where dm(x) = dx/
√

2π, m(x) being measure of x and [ f ] denotes the equivalence class con-
taining f with respect to the equivalence relation f ∼ g if and only if f = g almost everywhere
on R with respect to the Lebesgue measure.

When f : R → A is Borel measurable, then f is a Bochner measurable (which is also true for
the mapping f : R×R→ A).

Theorem 1.1. If f ∈ Lp(A), g ∈ D(A), then

(f ∗ g)(x) =
∫
R

f(x− y)g(y)dm(y) (1.21)

exists, and thus, it defines a Bochner integral. �

Proof . By Definition 1.1, indeed, the mapping f is Borel measurable. If we consider A to be a
separable Banach algebra over C and f and g beA-valued Borel measurable, then f(x−y)g(y)is
Borel measurable as well as Bochner measurable. If K = supp g and ‖g‖0 = sup

x∈K
‖g(x)‖ , then∫

R

f(x− y)g(y)dm(y) =

∫
K

f(x− y)g(y)dm(y).

Now,
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∫
K

‖f(x− y)‖ ‖g(y)‖ dm(y) ≤ ‖g‖0

∫
K

‖f(x− y)‖ dm(y) ≤ C ‖g‖0 <∞,

where C = ‖f‖1 , if p = 1 and C = ‖f‖pm(K)1/q with 1
p +

1
q = 1 if p > 1.

Thus,
∫
K
f(x− y)g(y)dm(y)exists, for each x ∈ R, as a Bochner integral.

Theorem 1.2. Let 1 ≤ p <∞. If f ∈ Lp(A), g ∈ D(A), then f ∗ g ∈ Lp(A) and ‖f ∗ g‖p ≤
‖f‖p ‖g‖1 .

Proof . Let K =supp g and ‖g‖0 = sup
x∈K
‖g(x)‖.

‖f ∗ g‖pp=
∫
R

‖f ∗ g(x)‖p dm(x) ≤
∫
R

(∫
K

‖f(x− y)‖ ‖g(y)‖ dm(y)

)p
dm(x). (1.22)

Using the Jensen’s inequality and considering λ =
∫
K
‖g(y)dm(y)‖ and dµ(y) = (1/λ) ‖g(y)‖ dm(y),

relation (1.22) yields

‖f ∗ g‖pp≤ λ
p

∫
R

(∫
K

‖f(x− y)‖p dµ(y)
)p

dm(x)

= λp−1
∫
K

‖g(y)‖
(∫

R

‖f(x− y)‖p dm(x)

)
dm(y)

= λp−1λ ‖f‖pp= ‖f‖
p
p ‖g‖

p
1 .

Thus, ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1. �

Definition 1.2. If f ∈ L1(A), then

f̃(is) = lim
n→∞

∫ n

−n
f(ex)exsdx.

The Banach algebra norm in A is denoted by ‖·‖A and the norm in A, induced by the inner
product 〈f, g〉, is denoted by ‖·‖H .

Definition 1.3. For f, g ∈ L2(A), A- valued inner product is defined as

〈f, g〉=
∫
R

〈f(x), g(x)〉 dm(x).

Theorem 1.3. L2(A) is a Hilbert space with respect to the inner product 〈f, g〉.

Proof . By virtue of [2, Theorem 3, p.16], it is justified that the space Hsis a Hilbert space with
respect to the inner product space for Mellin transform. Similarly, here we say that since ‖·‖A
and ‖·‖H are equivalent in A , the inner product defined in Definition 1.3 proves L2(A)to be a
Hilbert space with respect to the inner product 〈f, g〉.

Theorem 1.4. To each f ∈ L2(A) we can assign f̃(is) ∈ L2(A) such that
(i) if f ∈ L1(A)

⋂
L2(A), then ‖f(ex)‖H =

∥∥f̃(is)∥∥
H

.
(ii) f → f̃ is a Hilbert space isomorphism of L2(A) ontoL2(A).

Proof. We have, from (1.14),
∥∥f̃(is)∥∥

L2(Rn
+ )

= (2π)−1 ‖f(ex)‖2 and in Theorem 1.3 , L2(A) is
proved to be a Hilbert space with respect to inner product 〈f, g〉.
Let f ∈ L2(A) and fn = χ[−n,n]f for all n , where χ[−n,n]denotes the characteristic function on
[−n, n], fn ∈ L1(A)

⋂
L2(A)and ‖fn − f‖A → 0 as n → ∞. Since the norms ‖·‖A and ‖·‖H
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are equivalent, ‖fn − f‖H → 0 as n → ∞. From (i),
∥∥f̃∥∥

H
= ‖f‖H , because fn is Cauchy

sequence with respect to ‖·‖Aand f̃nis Cauchy sequence with respect to ‖·‖H .
Since L2(A)is complete, (f̃n) converges in L2(A) to f̃ with respect to ‖·‖Aand, therefore, it also
converges with respect to ‖·‖H . We have∥∥f̃∥∥

H
= limn→∞

∥∥f̃n∥∥H = limn→∞ ‖fn‖H = ‖f‖H .

The continuity of Mellin transform and the Plancherel formula for the Mellin transform, where
f ∈ L2(A), imply that the mapping f → f̃ is a Hilbert space isomorphism of L2(A) onto L2(A).
The theorem is, therefore, completely proved.�

2 Mellin-Plancherel Transform for Boehmian Spaces B ∈ (L2 (A),∆) and
B ∈ (L2 (A),∆̃)

To define Boehmian spaces, which may be referred to [3, 6, 7, 8] where G be an additive com-
mutative semigroup and S ⊆ G a sub semigroup (S is multiplicative commutative semigroup)
having a mapping ∗ from G × S to G, and we consider A=Cn for some n. Let G = L2(A) and
S = D(A). For f ∈ G, g ∈ S , we define f ∗ g (see Theorem 1.2).

Lemma 2.1. (i) If g1, g2 ∈ S, then g1 ∗ g2 ∈ S.
(ii) If f, g ∈ G and h ∈ S, then (f + g) ∗ h = f ∗ h+ g ∗ h,
(iii) f ∗ g = g ∗ f , for all f, g ∈ S
(iv) If f ∈ G, g, h ∈ S, then (f ∗ g) ∗ h = f ∗ (g ∗ h) .
Proofs of (i)-(iv) are simple analogues of those given in [7].

Connection between convergence and multiplication are defined as

(i) if limαn = α and δ ∈ S, then αnδ = αδ

(ii) if limαn = α and (δ1, δ2, . . .) ∈ ∆, then αnδn = α

Convergence in this space is the δ - convergence, ∆ is the family of delta sequence. Convergence
of delta sequence can be referred to [7] and defined as
A sequence of Boehmian xn is δ-convergent to a Boehmian x and we write ∆ − limxn = x if
there exists a delta sequence (δk) such that xnδk, xδk ∈ G for all k, n ∈ N and lim

n→∞
xnδk = xδk

for each k ∈ N .
A sequence of Boehmian xn is ∆-convergent to a Boehmian x and we write δ−limxn = x if there
exists a delta sequence (δk) such that (xn − x)δn ∈ G for each n ∈ N and lim

n→∞
(xn − x)δn = 0.

Each delta sequence possessing these properties will be called ∆-convergence of the factor xn .

Definition 2.1. A sequence of A – valued functions (δn) ∈ S is said to be in ∆ if
(i)
∫

R δn(x)dx = e
(ii)
∫

R ‖δn(x)‖ dm(x) ≤M , for some M ∈ R and for all n ,
(iii) supp δn → 0 as n→∞ .

Theorem 2.1. Let f, g ∈ G and (δi) ∈ ∆ be such that f ∗ δi = g ∗ δi for all i = 1, 2. Then f = g
in L2(A).

Proof of this theorem is almost similar to the proof, that we write, for the theorem as under

We have f ∗ δi → f in L2(A). Let supp δi ⊆ K for all i. Let

‖f ∗ δi − f‖2
2≤
∫

R

(∫
K

‖f(x− y)− f(x)‖ ‖δi(y)‖ dm(y)

)2

dm(x).

Using Theorem 1.2, we have
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‖f ∗ δi − f‖2
2 ≤M

∫
|y|<η ‖δi(y)‖ ‖fy − f‖

2
2 dm(y) < ε2, for large i .

Similarly, g ∗ δi → g in L2(A)as i → ∞. The proof of the theorem now follows by taking L2
limits in the equality f ∗ δi = g ∗ δi. �

Theorem 2.2. Let δ = (δ1, δ2, δ3, . . .), ε = (ε1, ε2, ε3, . . .) be in ∆. Then δ ∗ ε =(δ1 ∗ ε1,
δ2 ∗ ε2, δ3 ∗ ε3, . . .)∈ ∆.

The proof of the theorem may be referred to [5, Theorem 3.4, p.1335].

Theorem 2.3. (i) If lim
n→∞

fn = f in L2(A), then for δ ∈ S, lim
n→∞

fn ∗ δ = f ∗ δ.
(ii) If lim

n→∞
fn = f in L2(A), then for (δn) ∈ ∆, lim

n→∞
fn ∗ δn = f .

Incidentally, proofs of (so called properties) (i) and (ii) of the theorem is a very straight forward
approach through Theorem 1.2 and Theorem 2.1 of this paper.
Thus, using Theorems 2.1, 2.2 and 2.3, respectively, we have the Boehmian space in the canoni-
cal sense, using L2(A)and ∆. This space is denoted by B(L2(A),∆).

Theorem 2.4. The mapping f → [f ∗ δi/δi], where (δi) ∈ D(A), is a continuous imbedding of
L2(A) into B(L2(A),∆).

Proof. The mapping is one-to-one since [f ∗δi/δi] = [g ∗δi/δi] implies (f ∗δi)∗δj = (g ∗δi)∗δj
for all i, j, and in particular , δi ∗ δi = δ2

i . Thus, we have(f ∗ δ2
i ) = (g ∗ δ2

i ) . Using Lemma 2.1
and Theorems 2.1 and 2.2, respectively, we have f = g.
Considering fn → 0 in L2(A), we have xn = [fn ∗ δi/δi]

δ−→ 0 in B(L2(A),∆). From Theorem
2.3, we have xn ∗ δi = fn ∗ δi → 0 in L2(A). The proof is completed. �

We follow the convention , that the set of all sequences (δ̃i) such that (δi) ∈ ∆, will be denoted
by ∆̃.

Lemma 2.2. If f ∈ L2(A), g ∈ D(A), then M(f ∗ g) =M(f) ·M(g) .

Using Plancherel theorem and the convolution formula for the Mellin transform, the lemma can
easily be proved, which is quite similar to [5, Lemma 3.7, p.1336] .
Consider another Boehmian space, which contains L2(A)and S1 = S̃ = {δ̃/δ ∈ S}, where
S = D(A). For f ∈ G, δ̃ ∈ S1 we define (f δ̃)(x) = f(x)δ̃(x),∀x ∈ R.

Lemma 2.3. If f ∈ G and δ̃ ∈ S1, then f δ̃ ∈ G.

Proof. We know f δ̃ is Borel measurable and

∫
R

∥∥f δ̃∥∥2
A
dm(t) =

∫
R

‖f(t)‖2
A

∥∥δ̃(t)∥∥2
A
dm(t)

≤
∫
R

‖f(t)‖2
A

∥∥δ̃(t)∥∥2
1 dm(t) (...∀t,

∥∥δ̃(t)∥∥
A
≤
∥∥δ̃(t)∥∥1 )

= ‖f‖2
2 ‖δ‖

2
1 <∞.

Hence f δ̃ ∈ G. �

Lemma 2.4. The mapping (f, δ̃)→ f δ̃ from G× S → G satisfies the following properties
(i) if δ̃1, δ̃2 ∈ S1, then δ̃1δ̃2 ∈ S1
(ii) if f, g ∈ G and δ̃ ∈ S1, then (f + g)δ̃ = f δ̃ + gδ̃.
(iii) δ̃1δ̃2 = δ̃2δ̃1 for δ̃1, δ̃2 ∈ S1,
(iv) if f ∈ G and δ̃, ε̃ ∈ S1, then (f δ̃)ε̃ = f(δ̃ε̃).
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Proof. Since A is commutative Banach algebra and properties defined in Lemma 2.1 proves the
results (i) – (iv). �

Lemma 2.5. Let f, g ∈ G and (δ̃i) ∈ ∆̃ such that f δ̃i = gδ̃i for all i. Then f = g in L2(A).

Using the Plancherel theorem and the definitions of the Mellin and Fourier transforms and also
using [5, Lemma 3.8, Lemma 3.9 and Lemma 3.11, p. 1337-38] the lemma can easily be proved.
For ∆̃, refer to [7].

Lemma 2.6. (i) If fn → f in L2(A) and δ̃ ∈ S1, then fnδ̃ → f δ̃in L2(A).
(ii) If fn → f in L2(A) and (δ̃n) ∈ ∆̃, then fnδ̃ → f δ̃ in L2(A).

Proof. (i) Since δ̃(t) is function of t is bounded, we have the result.
(ii) With the help of Theorem 1.4 and Theorem 2.3, we complete the proof. �

Lemma 2.7. The mapping i : f →
[
fδ̃i
δ̃i

]
, (δ̃i) ∈ ∆̃ is continuous imbedding of L2(A) into

B(L2(A), ∆̃).

Proofs of the above lemmas may be seen in [5, Lemma 3.12 and Lemma 3.13, p. 1338-39] .
The above lemmas show the convergence conditions of the space G and B(L2(A), ∆̃) can be
regarded true, as well, for a Boehmian space.

Definition 2.2. Let x = [fn/ϕn] ∈ B(L2(A),∆). The Mellin transform of x is [f̃n/ϕ̃n] ∈
B(L2(A), ∆̃), which is denoted by x̃.

The Mellin transform is well defined. If x = [fn/ϕn] = [gn/ξn], where fn, gn ∈ L2(A) and
ϕn, ξn ∈ ∆, then fn ∗ ξn = gn ∗ ϕn. Invoking the Plancerel transform on both the sides and
using Theorem 1.4 and Theorem 2.3 and the Lemma 2.2, we get f̃nξ̃n = g̃nφ̃n. Thus,

[f̃n/ϕ̃n] = [g̃n/ξ̃n] ∈ B(L2(A, ∆̃).

Theorem 2.5. Let F : B(L2(A,∆) → B(L2(A, ∆̃) be defined by F (x) = x̃. Then F is a
continuous one-to-one map from B(L2(A,∆) onto B(L2(A), ∆̃).

Proof. Let (xn)
δ−→ 0 inB(L2(A,∆), xn = [fn,i/ϕi], since x̃n = [f̃n,i/ϕ̃i]

δ−→ 0 inB(L2(A), ∆̃).
By hypothesis, for each fixed i as n → ∞, (fn,i) → 0 in L2(A) with respect to ‖·‖2. Thus, for
each fixed i , as n→∞, (fn,i)→ 0 in L2(A) with respect to the norm ‖·‖H .
By Theorem 1.4, for each fixed i , as n → ∞, (f̃n,i) → 0 in L2(A) with respect to ‖·‖H .
Therefore, for each fixed i , as n → ∞, (f̃n,i) → 0 in L2(A) with respect to ‖·‖2. Thus,
(x̃n)

δ−→ 0 in B(L2(A), ∆̃).
Now to prove the map F to be one-to-one, consider x̃1 = x̃2, which gives [f̃n/ϕ̃n] = [g̃n/ξ̃n],
and thereby, as a consequence, f̃nξ̃n = g̃nϕ̃n. By Lemma 2.2, we get (f̃n ∗ ξ̃n) = (g̃n ∗ ϕ̃n).
Since Plancherel theorem is one-to-one, (fn ∗ ξn) = (gn ∗ ϕn) implies x1 = x2, which justifies
the map F is onto. Since Plancherel transform is an onto mapping, by Theorem 1.4, given
y = [gn/ξn] in B(L2(A), ∆̃), if x = [fn/ϕn] , where f̃n = gn and φ̃n = ξn, then it verifies that
x ∈ B(L2(A),∆) and x̃ = y. The theorem is thus proved. �

Lemma 2.8. If x1, x2 ∈ B(L2(A),∆), then
(i) (x̃1 + x̃2) = x̃1 + x̃2 .
(ii) (λx)̃ = λx̃, λ ∈ C, where addition and multiplication, for Boehmians, are defined as usual.

Proof . By virtue of the Definition 2.2, cited above, the lemma can easily be proved. �

Conclusion. The Theorems 2.1 to 2.5, of Section 2, indeed, show that the Plancherel theorem is
one-to-one continuous linear mapping from B(L2(A),∆) onto B(L2(A), ∆̃), i.e.,

(i) The function f ∈ L2(A) can be identified with the element x = [f ∗ δi/δi] ∈ B(L2(A),∆),
where (δi) is any delta sequence in ∆. Its Plancherel theorem, as a Boehmian, is given by
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[M(f ∗ δi)/δ̃i] = [f̃ δ̃i/δ̃i].

The BoehmianB(L2(A),∆)is simply the identification of f̃ inB(L2(A), ∆̃). Thus, the Plancherel
theorem on B(L2(A),∆) is, indeed, an extension of the Plancherel theorem on L2(A).

(ii). If x = [fn/ϕn] ∈ B(L2(A),∆) and y = [gn/ξn], gn ∈ D(A), ξn ∈ ∆, then we define

x ∗ y = [(fn∗gn)/(ϕn∗ξn)].

In this case M(x ∗ y) =M(x)M(y) holds true due to Lemma 2.1.

Acknowledgment

This work is partially supported by the Post - Doctoral Fellowship of UGC (India) and DST -
USERS Project, respectively, sanctioned to the first and the second author.

References
[1] P. K. Banerji and Deshna Loonker, Conditional theorems for the validity of distributions of

slow growth, J. Indian Acad. Math., 23 (2), 161-171(2001)
[2] P. K. Banerji and Deshna Loonker, An Extension of Sobolev spaces to the Mellin transform,

Ganita Sandesh, 16 (1), 13-20 (2002).
[3] T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc. 176, 319-334

(1973).
[4] Yu. A. Brychkov, H. J. Glaeske, A. P. Prudnikov and Vu. K. Tuan, Multidimensional Integral

Transformations, Gordon and Breach, Philadelphia (1992).
[5] V. Karunakaran and V. B. Thilaga, Plancherel theorem for vector-valued functions and

Boehmians, Rocky Mounatin J. Math. 28 (4), 1321-1342 (1998).
[6] Deshna Loonker and P. K. Banerji, P. K. Plancherel theorem for wavelet transform for

vector-valued functions and Boehmians, J. Indian Math. Soc. 73 (1-2),31-39 (2006).
[7] P. Mikusiñski, Convergence of Boehmians, Japan J. Math. (N.S.) 9 ,159-179 (1983).
[8] P. Mikusiñski, Boehmians and generalized functions, Acta Math. Hungar. 51 , 271-

281(1988).
[9] W. Rudin, Functional Analysis ,Tata McGraw – Hill, New York (1978).

[10] A. H. Zemanian, Realizability Theory for Continuous Linear Systems, Mathematics in Sci-
ence and Engineering, Vol. 97, Academic Press, New York, London (1972).

Author information
Deshna Loonker and P. K. Banerji, Department of Mathematics, Faculty of Science, Jai Narain Vyas University
Jodhpur – 342 005, India.
E-mail: deshnap@yahoo.com and banerjipk@yahoo.com

Received: June 20, 2013

Accepted: July 25, 2013


