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Abstract. This is a survey on the usage of the module theoretic notion of a “retractable
module" in the study of algebras with actions. We explain how classical results can be interpreted
using module theory and end the paper with some open questions.

1 Introduction

This note is written for module theorists and intends to show where the module theoretic notion
of a retractable module plays a role in the context of algebras with certain additional structure.
These "additional structures" include group actions, involutions, Lie algebra actions or more gen-
erally Hopf algebra actions as well as the bimodule structure of the algebra (and combinations
of all these). Such algebra A is usually a subalgebra of a larger algebra B and has the structure
of a cyclic left B-module, while its endomorphism ring EndB(A) is isomorphic to a subalgebra
AB of A. In this intrinsic situation the condition on A to be a retractable B-module means that
the subring AB has non-zero intersection with all non-zero left ideals of A that are stable under
the module action of B. We will first recall the module theoretical notion of a retractable module
and set it in a categorical and lattice theoretical context. In the second section we will examine
various situations of algebrasAwith additional structures and recall manytheorem classical theo-
rems that can be expressed in terms of module theory. The last section deals with open problems
around retractable modules in the context of algebras. Note that all rings/algebras are considered
to be associative and unital. Modules are usually meant to be left modules and homomorphisms
are acting from the right.

2 Module Theory

A retractable module is a (left)A-moduleM , over some ringA, such that there exist non-zero ho-
momorphisms from M into each of its non-zero submodules. The notion of a retractable module
appeared first in the work of Khuri [17] and had since then been used in connection with primness
conditions and the nonsingularity of a module and its endomorphism ring (see [12, 14–16, 33]).
One of Khuri’s result is the establishment of a bijective correspondence between closed submod-
ules of a module M and closed left ideals of its endomorphism ring S = EndA(M) in case M
is non-degenerated (see [13, 33, 34]). A module is non-degenerated if its standard Morita con-
text is non-degenerated. Recall that a Morita context between two rings A and S is a quadruple
(A,M,N, S) where AMS and SNA are bimodules with bimodule maps (−,−) : M⊗SN → A
and [−,−] : N⊗AM → S satisfying m[n,m′] = (m,n)m′ and n(m,n′) = [n,m]n′ for all
m,m′ ∈ Mnon-degenerated and n, n′ ∈ N . The context is called non-degenerated if MS is
faithful and for all 0 6= m ∈M also [N,m] 6= 0. The standard Morita context of a left A-module
M is the context (A,M,M∗, S) with S = EndA(M) and M∗ = HomA(M,A) and the maps

(−,−) : M⊗SM∗ → A (m, f) := (m)f ∀m ∈M,f ∈M∗ (2.1)

[−,−] : M∗⊗AM → S [f,m] := [n 7→ (n)fm] ∀m ∈M,f ∈M∗ (2.2)
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MS is obviously always faithful and M is non-degenerated if and only if [M∗,m] 6= 0 for
all 0 6= m ∈ M . In this case there exist for any non-zero submodule N of M and non-zero
element m ∈ N a homomorphism f : M → A such that the map f̃ : M → N with (n)f̃ =
(n)fm ∈ Am ⊆ N , for n ∈M , is non-zero. Hence any non-degenerated module is in particular
retractable.

Retractable modules have gained recently further attention in [8–10, 18, 19, 26–28], but have
previously also played a major role in the context of algebras. The theorems of Bergman-Isaacs
or Rowen say that in certain situations an algebra A with a group action G or considered as bi-
module is a retractable module considered over the skew group ring A∗G or over the enveloping
algebra Ae = A⊗Aop. In case ∂ is a derivation on an algebra A, then A is a retractable A[x; ∂]-
module if ∂ is locally nilpotent. Furthermore Cohen’s question raises the problem as to whether
a semiprime algebra A with an action of a semisimple Hopf algebra H is a retractable A#H-
module. With this in mind, the survey was written to illustrate the use of the module theoretic
notion of retractability in the context of algebras.

2.1 Categorical notions

A retractable module is clearly a generalisation of a self-generator. Here we shortly review this
notion in the context of category theory.

Definition 2.1. Let C be a category. An object X of C is generated by an object G of C if for
every pair of distinct morphisms f, g : X → Y in C there exists a morphism h : G → X with
hf 6= hg.

In particular if C is an Abelian category and X is not the zero object, then Mor(G,X) 6= {0},
because for the identity f = idX and the zero morphism g = 0, there exist a morphism h : G→
X such that h 6= 0. Having this in mind the definition of a retractable object seems to be a direct
generalisation of a generator.

Definition 2.2. An object M of an Abelian category C is called retractable if Mor(M,N) 6= {0}
for all subobjects N of M , different from the zero object.

Ler C be an Abelian category with arbitrary coproducts. Let M be any object in C and N a
subobject of it. Then there exists a unique subobject Tr(M,N) of N such that every morphism
f : M → N factors through Tr(M,N). Suppose that M is a retractable object, then Tr(M,N)
is essential in N for each non-zero subobject N ∈ L in the sense that for all non-zero subobjects
K of N the meet K ∩ Tr(M,N) is non-zero (as any f : M → K can be considered a morphism
f : M → N and hence factored through Tr(M,N)). This means in the case of a module
category C, that a module M is retractable if and only if for all submodules N of M , the trace
Tr(M,N), which is the sums of images of all homomorphisms f : M → N , is essential in
N . Loosely speaking every submodule of a retractable module M can be "approximated" by an
M -generated submodule.

2.2 Lattice theoretical meaning

Let R be ring and M a left R-module with endomorphism ring S = End(M). To link module
theoretical properties of M with properties of S one can use the following map from the lattice
L(M) of left R-submodules of M to the lattice L(S) of left ideals of S:

Hom(M,−) : L(M)→ L(S) N 7→ Hom(M,N) = {f ∈ S | (M)f ⊆ N}.

This map Hom(M,−) is always a homomorphism of semilattices between (L(M),∩) and
(L(S),∩) since Hom(M,N ∩L) = Hom(M,N)∩Hom(M,L) holds for all N,L ∈ L(M). Call
a homomorphism ϕ : L → L′ of semilattice with least element 0 faithful if ϕ(x) = 0 ⇒ x = 0.
The following Lemma can be proven easily:

Lemma 2.3. Let M be a left A-module.

(i) Hom(M,−) is injective if and only if M is a self-generator.

(ii) Hom(M,−) is faithful if and only if M is a retractable module.

While the injectivity or faithfulness of Hom(M,−) has to do with M being a generator or
retractable, the surjectivity of Hom(M,−) deals with the projectivity of M (we refer the reader
to [30] for all undefined notion.):
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Lemma 2.4. Let M be a left A-module and S = EndA(M).

(i) All cyclic left ideals of S belong to the range of Hom(M,−) if and only if M is semi-
projective.

(ii) All finitely generated left ideals of S belong to the range of Hom(M,−) if and only if M is
intrinsically-projective.

(iii) Hom(M,−) is surjective if M is Σ-self-projective, i.e. projective in the Wisbauer category
σ[M ].

Considering semi-projective retractable modules combines the light self-generator and self-
projectivity condition on M . Such modules were studied for example in [9].

3 Algebras with additional structures

An (associative, unital) algebra A over a commutative ring R is an R-module A such that there
exist R-linear maps

µ : A⊗RA→ A and η : R→ A,

called the multiplication of A and unit of A respectively, such that A with µ as multiplication,
defined as ab = µ(a ⊗ b) for a, b ∈ A, and 1A = η(1) as unit element forms an associative and
unital ring.

It is easy to see that by taking R = Z, any (associative, unital) ring is an (associative,
unital) algebra over Z. Thus for those that do not like the idea of R-algebras, they might
for the beginning just ignore R and think of A being and ordinary ring. Clearly η does not
need to be injective, just think of A = Zn[x], for some n > 1, which is a Z-algebra and
η : Z → Zn ⊆ Zn[x] is the canonical map, where Zn = Z/nZ. Moreover the image of η
lies always in the centre of A and in particular A is an R′-algebra for any subring R′ of the
centre Z(A) = {a ∈ A | ab = ba ∀b ∈ A}. In the following let R be always a commutative ring
and A an R-algebra.

3.1 Algebras that are retractable as bimodule

The endomorphism ring EndR(A) of A as R-module is itself an R-algebra whose R-module
structure is given as follows: for all r ∈ R, f ∈ EndR(A) set r ·f : A→ A by (r ·f)(x) := rf(x)
for all x ∈ A. The multiplication of EndR(A) is given by the composition of functions and the
unit map is given by η : R→ EndR(A) sending r 7→ r · idA.

For each element a ∈ A there are two R-linear maps of A which are the left and the right
multiplication by a:

la : A→ A la(x) := ax ∀x ∈ A,
ra : A→ A ra(x) := xa ∀x ∈ A.

Note that since the multiplication of A is supposed to be associative, la and rb commute, i.e.
la ◦ rb = rb ◦ la in EndR(A), for any a, b ∈ A. The subalgebra of EndR(A) generated by all maps
la and rb for a, b ∈ A. Is called the multiplication algebra of A and denoted by M(A).

Left M(A)-modules M can be considered as bimodules over A, where one defines for all
a, b ∈ A and m ∈M :

am := la •m and mb := rb •m.
The bimodule compatibility condition (am)b = a(mb) for all m ∈ M holds, because of (rb ◦
la − la ◦ rb) • M = 0. Analogously any A-bimodule has a natural structure as left M(A)-
module given by la • m = am and rb • m = mb, for a, b ∈ A and m ∈ M . The enveloping
algebra Ae = A⊗RAop is also an R-algebra, where Aop denotes the opposite ring of A. The
multiplication of Ae is defined as

(a⊗ x)(b⊗ y) := (ab)⊗ (yx) ∀a, b, x, y ∈ A.

Moreover the map ψ : Ae → EndR(A) given by

a⊗ b 7→ la ◦ rb ∀a, b ∈ A

is a surjective algebra map from Ae to M(A) whose kernel is the annihilator of A, where A is
naturally considered a left Ae-module by (a⊗ b) • x = axb for all a, b, x ∈ A. Hence

Ker(ψ) =

{
n∑
i=1

ai ⊗ bi ∈ Ae |
n∑
i=1

aixbi = 0 ∀x ∈ A

}
= AnnAe(A).
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For a bimodule M ∈ Ae-Mod one defines its centre as

Z(M) = {m ∈M | am = ma ∀a ∈ A}.

The canonical map

ψM : HomAe(A,M) −→ Z(M) given by f 7→ (1)f ∀f ∈ HomAe(A,M). (3.1)

is a bijection, where the left Ae-module homomorphism is applied from the right. The inverse
of this map is

ψ−1
M : Z(M) −→ HomAe(A,M) given by m 7→ [a 7→ a ·m] ∀m ∈ Z(M). (3.2)

In particular ψA : EndAe(A) ' Z(A) is an isomorphism of R-algebras and the bijections ψM
are left Z(A)-linear maps.

Lemma 3.1. A is a retractable left Ae-module if and only if A has a large centre Z(A), i.e. every
non-zero two-sided ideal of A contains a non-zero central element.

Proof. This follows from the the fact that the Ae-submodules of A are precisely the two-sided
ideals I and from the bijection

ψI : HomAe(A, I) ' Z(I) = I ∩ Z(A).

There are at least two important results that have to be mentioned in this context. The first is
due to Rowen and says the following (see [25]):

Theorem 3.2 (Rowen, 1972). Any semiprime PI algebra has a large centre.

Recall that anR-algebraA is a PI-algebra if it there exists an element f(x1, . . . , xn) in the free
algebra R〈x1, . . . , xn〉 over R such that f(a1, . . . , an) = 0 for any substitution a1, . . . , an ∈ A
and such that one of the coefficients of a monomial of highest degree of f is 1. Examples
of semiprime PI-algebras are matrix algebras over division algebras that are finite dimensional
over their centre or more generally any semiprime algebra that is a finitely generated when
considered a module over its centre. Thus Rowen’s theorem says that any semiprime PI-algebra
is a retractable left Ae-module. For a non-trivial example one might consider the quantum plane
at root of unity. Let q ∈ C \ {0}. The quantum plane over C with parameter q is the algebra

A = Cq[x, y] = C〈x, y〉/〈yx− qxy〉.

Elements of A can be uniquely written as linear combinations of monomials of the form xiyj

for i, j ≥ 0. The relation yx = qxy makes Cq[x, y] a non-commutative algebra if q 6= 1. An
elementary calculation shows that the centre of Cq[x, y] is Z(A) = C if q is not a root of unity
and that it is Z(A) = C[xn, yn] if q is a primitive n-th root of unity. In the later case A is
generated by all monomials of the form xiyj with 0 ≤ i, j < n as a module over Z(A). Hence
A is a PI-algebra. Since A is also a domain the centre is large, i.e. any non-zero ideal of Cq[x, y]
contains a non-zero polynomial of the form f(xn, yn).

The second result in this context is Puczyłowski and Smoktunowicz’ description of the
Brown-McCoy radical of an algebraA from [23]. Recall that the Brown-McCoy radical BMc(A)
of A is the intersection of all maximal two-sided ideals. This means that the Brown-McCoy rad-
ical is the module theoretic radical of A as bimodule, i.e. BMc(A) = Rad(AeA). Puczyłowski
and Smoktunowicz described the Brown-McCoy radical of A[x] using the following ideal:

PS(A) =
⋂
{P ⊆ A | P is a prime ideal and A/P has a large centre} .

Theorem 3.3 (Puczyłowski-Smoktunowicz, 1998). BMc(A[x]) = PS(A)[x].

Their result relies on the following (surprising) Lemma from [23]:

Lemma 3.4. Let M be a maximal ideal of A[x]. If A ∩M = 0, then A has a large centre.

In the case of the Lemma, if such maximal ideal M of A[x] exist with M ∩ A = 0, then A
will also be a prime ring. Recall that a module M over some ring A is called compressible if
M embeds into any non-zero submodule of it, i.e. for any 0 6= N ⊆ M there exists an injective
A-linear map f : M → N . Prime algebras with large centre are precisely the algebras that are
compressible as bimodule.

Lemma 3.5 (see [30, 35.10]). An algebraA is a compressibleAe-module if and only if it is prime
and has a large centre.

Hence, in module theoretic terms, PS(A) is the intersection of all those Ae-submodules P
of A such that A/P is a compressible Ae-module.
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3.2 Derivations

A (R-linear) derivation of an R-algebra A is an R-linear map ∂ : A → A such that ∂(ab) =
∂(a)b+ a∂(b) for all a, b ∈ A. Examples are ordinary partial derivations ∂xi on the polynomial
ring R[x1, . . . , xn] over R. For any a ∈ A of an R-algebra A, its commutator ∂(a) = [a,−], with
[a, b] = ab− ba for b ∈ A, is a derivation, called an inner derivation of A.

Given a derivation ∂ one constructs the differential operator ring B = A[x; ∂] as the R-
algebra generated by A and x subject to

xa = ax+ ∂(a) ∀a ∈ A.

The algebra A[x; ∂] can be constructed as a subalgebra of EndA(A[x]) such that A[x; ∂] is a free
left A-module with basis {xi | i ∈ N}. Hence the elements of B can be uniquely written as (left)
polynomials

∑n
i=0 aix

i with ai ∈ A. Moreover A becomes a left A[x; ∂]-module with respect to
the action x · a = ∂(a) or more generally(

n∑
i=0

aix
i

)
· b =

n∑
i=0

aiδ
i(b) ∀b ∈ A, ∀

n∑
i=0

aix
i ∈ B.

The left A[x; ∂]-submodules of A are precisely those left ideals I of A that are stable under the
derivation, i.e. ∂(I) ⊆ I . For any left A[x; ∂]-module M one defines its submodule of constants
as

M∂ = {m ∈M | x ·m = 0} = AnnM (x).

For M = A one has A∂ = Ker(∂) which is easily seen to be a subalgebra of A. Analogously to
the bimodule situation we have the following R-linear isomorphisms for any left A[x; ∂]-module
M :

ψM : HomA[x;∂](A,M) −→M∂ given by f 7→ (1)f ∀f ∈ HomA[x;∂](A,M).
(3.3)

Its inverse map is

ψ−1
M : M∂ −→ HomA[x;∂](A,M) given by m 7→ [a 7→ a ·m] ∀m ∈M∂ . (3.4)

In particular ψA : EndA[x;∂](A) ' A∂ is an isomorphism of R-algebras and the bijections ψM
are left A∂-linear maps. Using these isomorphisms the following Lemma is obvious:

Lemma 3.6. A is a retractable A[x; ∂]-module if and only if A∂ is large in A, i.e. A∂ intersects
all non-trivial ∂-stable left ideals of A non-trivially.

A sufficient condition for this to happen is the local nilpotency of ∂, i.e. if for every a ∈ A,
there exists n ∈ N such that ∂n(a) = 0.

Proposition 3.7. If ∂ is locally nilpotent, then A is a retractable A[x; ∂]-module.

Proof. The proof of this fact is obvious, because if 0 6= a ∈ I is a non-zero element of an ∂-
stable left ideal I of A, then by hypothesis there exists n ∈ N such that ∂n(a) = 0. Take the least
n ∈ N such that ∂n(a) = 0, then ∂n−1(a) is a non-zero element of I ∩A∂ , which proves that A∂
is large in A and hence A is a retractable A[x; ∂]-module.

For example the partial derivatives ∂
∂xi

of A = R[x1, . . . , xn] for any i = 1, . . . , n are lo-
cally nilpotent. However it is unknown when A is a retractable A[x; ∂]-module for an arbitrary
derivation ∂.

Question 3.8. What are necessary and sufficient conditions for A to be a retractable A[x; ∂]-
module? in other words, find conditions on A and ∂ such that any non-zero ∂-stable left ideal
contains a non-zero constant.

Zelmanowitz called a left R-module fully retractable if for any non-zero submodule N and
non-zero g : N → M there exists h : M → N such that hg 6= 0. It is not clear when A is fully
retractable as A[x; ∂]-module. The next Proposition can be found in [6].

Proposition 3.9 (Borges-Lomp, 2011). Let ∂ be a locally nilpotent derivation of A.

(i) A is a compressible left A[x; ∂]-module, provided A∂ is a domain.

(ii) A∂ is a left Ore domain if and only ifA is a uniform leftA[x; ∂]-module andA∂ is a domain.
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(iii) A is critically compressible as left A[x; ∂]-module if and only if A∂ is a left Ore domain
and A is fully retractable as left A[x; ∂]-module.

Let R = k be a field of characteristic zero and ∂ a locally nilpotent derivation on A such that
there exists an element a ∈ A with ∂(a) = 1. Then by [6, Proposition 3.10] A is a self-projective
A[x; ∂]-module and module theory yields the following result (see [6, Proposition 3.12])

Proposition 3.10 (Borges-Lomp, 2011). Let A be an algebra over a field k of characteristic zero
and ∂ a locally nilpotent derivation of A such that ∂(a) = 1, for some a ∈ A. Then the following
statements are equivalent:

(a) A∂ is a left Ore domain;

(b) A is a left Ore domain;

(c) A is a critically compressible A[x; ∂]-module.

Example 3.11 (Goodearl, 1980). Let A = k[[t]] be the power series ring over a field k of char-
acteristic 0 and let ∂ be the derivation with ∂(tn) = ntn for all n ≥ 0. Certainly ∂ is not locally
nilpotent. Any ideal of A is ∂-stable, because the proper ideals are of the form I = Atn for
n ≥ 0. Since for any a =

∑∞
n=0 ant

n ∈ A one has ∂(a) =
∑∞
n=0 nant

n 6= 1 we have that there
does not exist any a ∈ A with ∂(a) = 1. Nevertheless A is a self-projective left A[x; ∂]-module.
To see this note that by the correspondence (3.3) it is enough to show that (A/I)∂ = (A∂ + I)/I
for any ∂-stable left ideal I of A. Let I = Atm be any ideal of A and a =

∑∞
n=0 ant

n with
∂(a) ∈ I . Then there exists b ∈ A such that ∂(a) =

∑∞
n=0 nant

n = btm ∈ I , which implies that
ai = 0 for all 1 ≤ i < m. Thus a = a0 + b′tm for some b′ ∈ A and a + I = a0 + I in A/I .
Since a0 ∈ A∂ this shows (A/I)∂ ⊆ (A∂ + I)/I while the reversed inclusion is obvious. Since
A is a Noetherian integral domain, A[x; ∂] is a left Noetherian Ore domain. However as A∂ = k
is the base field and A is not simple as left A[x; ∂]-module, A is not retractable and hence not
compressible as A[x; ∂]-module.

Note that the set DerR(A) of derivations on the R-algebra A forms a Lie algebra with the
ordinary Lie product induced by the product(=composition) of EndR(A), i.e. if ∂, ∂ ∈ DerR(A),
then their commutator

[∂, δ] = ∂ ◦ δ − δ ◦ ∂ ∈ DerR(A)

is again a derivation of A. An action of an arbitrary abstract Lie algebra g over R by derivations
is given by a map of Lie algebras d : g → DerR(A). We shall write the image of x ∈ g under d
as dx. An analogous construction to the construction of the differential operator ring is given by
a new product on the tensor product of A and the universal enveloping algebra U(g) of g. The
new algebra is called the smash product of A and U(g) and is denoted by A#U(g). The product
is determined by

(1#x)(a#1) = a#x+ dx(a)#1 ∀x ∈ g, a ∈ A.

Later we will shortly mention Hopf algebras and their action on rings and U(g) is one of the
examples. Again A becomes a left A#U(g)-module where the module action is given by (a#x) ·
b = a dx(b) for all a, b ∈ A and x ∈ g. Again one can consider the subset of all those elements
a ∈ A such that dx(a) = 0 for all x ∈ g, i.e.

Ag =
⋂
x∈g

Ker(dx).

For an arbitrary left A#U(g)-module M one sets Mg =
⋂
x∈g AnnM (1#x). As before there are

functorialR linear isomorphismsMg ' HomA#U(g)(A,M) and in particularAg ' EndA#U(g)(A).
Retractability for A as a left A#U(g)-module also means here that Ag is large in A with respect
to all those left ideals of A that are stable under alll derivations dx with x ∈ g.

In the case of a single derivation ∂ ∈ DerR(A) one considers the trivial Lie algebra g = R
with zero bracket. The map d : R → DerR(A) is then given by r 7→ r∂ for all r ∈ R. Note
that the enveloping algebra of the trivial Lie algebra is the polynomial ring R[x] in one variable.
Moreover

A#U(g) = A⊗RR[x] = A[x]

is determined by the product:

(1#x)(a#1) = a#x+ ∂(a)#1 or better xa = ax+ ∂(a) ∀a ∈ A,

showing that A#R[x] ' A[x; ∂].
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3.3 Group Actions

A group G act on an R-algebra A by automorphism, which means that there is a homomorphism
of groups ρ : G→ AutR(A) fromG to the group ofR-linear automorphisms ofA. We denote the
image of g ∈ G under ρ by ρg, although we sometimes write ga instead of ρg(a) for a ∈ A and
g ∈ G. As in the last section, a new algebra can be attached to G and A, which is the skew-group
ring A ∗ G defined on A⊗RR[G], where R[G] is the group ring of G over R. Alternatively one
might considerA∗G as the free leftA-module with basis {g | g ∈ G} such that the multiplication
is defined as

ag · bh = aρg(b)gh = a(gb)gh ∀a, b ∈ A,∀g, h ∈ G.

If G is cyclic infinite, i.e. G = 〈σ〉, then A ∗ G is equal to the Laurent skew-polynomial ring
A[x, x−1;σ] whose underlying space are the Laurent polynomials with coefficients in A and
whose multiplication is determined by

xna = σn(a)xn ∀a ∈ A,n ∈ Z.

If G = 〈σ〉 is cyclic of order n, then A ∗ G is equal to the factor A[x;σ]/〈xn − 1〉 of the skew-
polynomial ring A[x;σ].

Let G be any group acting on A as automorphism. Then A has a left A ∗G-module structure
defined by

ag · b = aρg(b) ∀a, b ∈ A, g ∈ G.

The left A ∗ G-submodules of A are precisely the G-stable left ideals of A. Let M be any left
A ∗G-module. Then the submodule of fixed elements of M is

MG = {m ∈M | ∀g ∈ G : g ·m = m.}

Moreover one has again R-linear isomorphisms for any left A ∗G-module M :

ψM : HomA∗G(A,M) −→MG given by f 7→ (1)f ∀f ∈ HomA∗G(A,M).
(3.5)

with inverse map

ψ−1
M : MG −→ HomA∗G(A,M) given by m 7→ [a 7→ a ·m] ∀m ∈MG. (3.6)

In particular ψA : EndA∗G(A) ' AG is an isomorphism of R-algebras and the bijections ψM are
left AG-linear maps.

Lemma 3.12. A is a retractable A ∗G-module if and only if AG is large in A, i.e. AG intersects
all non-trivial G-stable left ideals of A non-trivially.

The existence of non-trivial fixed elements in G-stable left ideals reduces the study of the
structure of G-stable left ideals of A to the study of left ideals of AG. The following result is a
classical theorem in the study of group action:

Theorem 3.13 (Bergman-Isaacs, 1973; Kharchenko, 1974). Let G be a finite group of order n
acting on an R-algebra A. Assume that one of the following conditions is verified:

(i) A is n-torsionfree and does not contain any non-zero nilpotent G-stable ideal or

(ii) A is reduced, i.e. does not contain any nilpotent element.

Then A is retractable as left A ∗G-module.

For the proof of (i) see [3, 22] for the proof of (ii) see [11].

3.4 Involutions

Let A be an R-algebra. An involution of A is an R-linear map ∗ : A → A with a 7→ a∗ that
is an anti-algebra homomorphism and has order 2, i.e. (ab)∗ = b∗a∗ and (a∗)∗ = a for all
a, b ∈ A. An element a ∈ A is called symmetric (respectively anti-symmetric) with respect to
∗ if a∗ = a (respectively. a∗ = −a). Ideals that are stable under the involution ∗ are called
∗-ideals. Consider the subalgebra B of EndR(A) generated by ∗ and all left multiplications la
for a ∈ A, i.e.

B = 〈{∗} ∪ {la | a ∈ A}〉 ⊆ EndR(A).
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Note that for any a, b ∈ A one has

ra(b) = ba = (a∗b∗)∗ = (∗ ◦ la∗ ◦ ∗)(b).

Hence ra = ∗ ◦ la∗ ◦ ∗ ∈ B. It is clear that A becomes a left B-module by simply applying
f ∈ B ⊆ EndR(A), i.e. for any f ∈ B and a ∈ A set f · a := f(a). The left B-submodules
of A are stable under left and right multiplications la and ra for any a ∈ A and hence are two-
sided ideals of A. Moreover they are stable under ∗. On the other hand any ∗-ideal is also a left
B-submodule.

The algebra B can be seen as a factor of a skew group algebra. Let Ae = A⊗RAop be the
enveloping algebra of A and consider the map α : Ae → Ae defined by α(a ⊗ b) = b∗ ⊗ a∗ for
all a, b ∈ A. The map α is an automorphism of Ae, because for any a, b, c, d ∈ A:

α ((a⊗ b)(c⊗ d)) = α (ac⊗ db) = (db)∗⊗(ac)∗ = b∗d∗⊗c∗a∗ = (b∗ ⊗ a∗) (d∗ ⊗ c∗) = α(a⊗b)α(c⊗d).

As α is its own inverse it is an automorphism of order 2. Let G = 〈α〉 = {id, α} and consider
the (surjective) map ψ : Ae ∗G→ B given by (a⊗ b)⊗ id+ (c⊗ d)⊗ α 7→ la ◦ rb + lc ◦ rd ◦ ∗
for all a, b, c, d ∈ A. Then ψ is an algebra homomorphism. The calculations are easy but tedious
and will be illustrated on the example of the product of (1⊗ 1)⊗ α and (a⊗ b)⊗ id. Note first
that for any x ∈ A:

lb∗ ◦ ra∗ ◦ ∗(x) = b∗x∗a∗ = (axb)∗ = ∗ ◦ la ◦ rb(x).

Hence

ψ ((1⊗ 1⊗ α)(a⊗ b⊗ id)) = ψ (b∗ ⊗ a∗ ⊗ α) = lb∗◦ra∗◦∗ = ∗◦la◦rb = ψ (1⊗ 1⊗ α)(a⊗ b⊗ id)) .

Thus B is a factor algebra of Ae ∗G. For any left Ae ∗G-module M one defines the submodule
of central symmetric elements as

Z(M ; ∗) = Z(M) ∩MG = {m ∈ Z(M) | α ·m = m}.

For M = A one obtains the central symmetric elements of A, i.e. Z(A; ∗) = {a ∈ Z(A) | a∗ =
a}. Again one has R-isomorphisms for any left Ae ∗G-module M :

ψM : HomAe∗G(A,M) −→ Z(M ; ∗) given by f 7→ (1)f ∀f ∈ HomAe∗G(A,M).
(3.7)

with inverse map

ψ−1
M : Z(M ; ∗) −→ HomAe∗G(A,M) given by m 7→ [a 7→ a ·m] ∀m ∈ Z(M ; ∗).

(3.8)
In particular ψA : EndAe∗G(A) ' Z(A; ∗) is an isomorphism of R-algebras and the bijections
ψM are left Z(A; ∗)-linear maps.

Lemma 3.14. A is a retractable Ae ∗G-module if and only if every non-zero ∗-ideal contains a
non-zero central symmetric element.

Using Rowen’s theorem we have the following:

Corollary 3.15. Let ∗ be an involution of an R-algebra A. If A is a semiprime PI-algebra, then
A is a retractable Ae ∗G-module.

Proof. Let I be a non-zero ∗-ideal. By Rowen’s Theorem 3.2, I contains a non-zero central
element, say a ∈ I . Since I is ∗-stable, a∗ ∈ I . Thus a+ a∗ is a central symmetric element of I .
If a+ a∗ = 0, then a∗ = −a and a2 is a central symmetric element as (a2)∗ = (−a)2 = a2. Note
that a2 6= 0 as a is non-zero and central and A is semiprime.

4 Open Problems

If a group G acts on an algebra A by automorphisms, then A becomes a module over the skew
group ring A ∗ G as well as over the group algebra R[G]. If a Lie algebra g acts on A by
derivations, then A becomes a module over A#U(g) as well as over the universal enveloping
algebra U(g). Both algebrasR[G] and U(g) are examples of Hopf algebras and the constructions
A ∗G respectively A#U(g) are so-called smash products. A Hopf algebra H is an algebra such
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that there exist algebra maps ∆ : H → H ⊗H (called the comultiplication of H) and ε : H → R
(called the count of H) such that the following diagrams commute:

H
∆ //

∆

��

H ⊗H

∆⊗1
��

H ⊗H
1⊗∆

// H ⊗H ⊗H

R⊗H H ⊗H
ε⊗1
oo

1⊗ε
// H ⊗R

H

'

ee

'

99

∆

OO

For an element h ∈ H its comultiplication ∆(h) is an element of H ⊗ H . It is common to
use the so-called Sweedler’s notation enumerating symbolically the first and second tensorand
by writing ∆(h) =

∑
(h) h1 ⊗ h2 ∈ H ⊗H .

The ring of R-linear endomorphisms of EndR(H) of a Hopf algebra H has another ring
structure as the usual given by the convolution product which associates to two endomorphisms
f, g of H the endomorphisms f ∗ g = µ ◦ (f ⊗ g) ◦ ∆ where µ denotes the multiplication of H .
To obtain a Hopf algebra one also requires that the identity map has an inverse in EndR(H) with
respect to the convolution product. This inverse is usually denoted by S and called the antipode
of H . Equivalently there should exist an endomorphism S satisfying

µ ◦ (id⊗ S) ◦ ∆ = η ◦ ε = µ ◦ (S ⊗ id) ◦ ∆

where η : R → H denotes the map r 7→ r1H for all r ∈ R. A Hopf algebra H acts on an
R-algebra A if A is a left H-module and an algebra in the category of left H-modules. The later
means that the multiplication m : A⊗RA → A and the unit map R → A with r 7→ r1A are
maps of left H-modules. Note that due to the comultiplication the category of left H-modules
is closed under tensor products, i.e. it is a tensor category. For left H-modules N and M ,
elements x ∈ N and y ∈ M and h ∈ H with ∆(h) =

∑
(h) h1 ⊗ h2 ∈ H ⊗ H one sets

h · (x⊗ y) =
∑

(h)(h1 · x)⊗ (h2 · y). The base ring R becomes a left H-module by h · r = ε(h)r
for all h ∈ H, r ∈ R. Hence for H to act on A, A has to be a left H-module and the following
conditions have to be fulfilled for all a, b ∈ A and h ∈ H .

h · (ab) =
∑
(h)

(h1 · a)(h2 · b) and h · 1A = ε(h)1A.

The smash product of A and H is denoted by A#H and defined on the tensor product A⊗RH
with multiplication given by

(a⊗ h) · (b⊗ g) =
∑
(h)

a(h1 · b)⊗ h2g ∀a, b ∈ A, h, g ∈ H.

Then A becomes a cyclic left A#H-module by the action (a⊗ h) • b = a(h · b) for all a, b ∈ A,
h ∈ H . For any left A#H-module M one defines the submodule of H-invariants of M as

MH = {m ∈M | h ·m = ε(h)m ∀h ∈ H}.

As in the previous sections one has a for any left A#H-module M canonical maps:

ψM : HomA#H(A,M) −→MH given by f 7→ (1)f ∀f ∈ HomA#H(A,M).
(4.1)

with inverse map

ψ−1
M : MH −→ HomA#H(A,M) given by m 7→ [a 7→ a ·m] ∀m ∈MH . (4.2)

In particular ψA : EndA#H(A) ' AH is an isomorphism of R-algebras and the bijections ψM are
left AH-linear maps.

For a group G and its group algebra H = R[G], the Hopf algebra structure of H is given
by the comultiplication ∆(g) = g ⊗ g, the counit ε(g) = 1 and the antipode S(g) = g−1, for
all g ∈ G. The group algebra H acts on A if there is a module action H ⊗ A → A, say by
h⊗ a 7→ h · a, for all h ∈ H, a ∈ A and the two conditions from above are satisfied, i.e.

g · (ab) = (g · a)(g · b) and g · 1A = ε(g)1A = 1A ∀g ∈ G.

Hence if one denotes by αg the map a 7→ αg(a) = g · a, then one sees from this two conditions
that αg is an endomorphism of rings. SinceG is a group andA is supposed to be a leftH-module,
αg−1 = α−1

g for all g ∈ G. It is easy to see that A ∗G equals the smash product A#R[G].
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For a Lie algebra g and its universal enveloping algebra H = U(g) , the Hopf algebra struc-
ture of H is given by the comultiplication ∆(x) = 1 ⊗ x + x ⊗ 1, the counit ε(x) = 0 and the
antipode S(x) = 0, for all x ∈ g. The Hopf algebra H acts on A if there is a module action
H ⊗ A→ A, say by h⊗ a 7→ h · a, for all h ∈ H, a ∈ A and the two conditions from above are
satisfied, i.e.

x · (ab) = (1 · a)(x · b) + (x · a)(1 · b) = a(x · b) + (x · a)b and x · 1A = 0 ∀x ∈ g.

Hence if one denotes by ∂x the map a 7→ ∂x(a) = x · a, for x ∈ g, then one sees from this two
conditions that ∂x is a derivation of A. Hence the Hopf algebra U(g) acts on A if each element
acts as a derivation on A. The converse also holds. In particular if ∂ is a single derivation on A,
g = R is the trivial Lie algebra and U(g) = R[x] is its universal enveloping algebra, one obtains
an action ofH = R[x] onA by setting for any polynomial f(x) =

∑n
i=0 rix

i and element a ∈ A:
f(x) · a =

∑n
i=0 ri∂

i(a). Looking at the smash product A#R[x] one sees that the multiplication
coincides with that of the differential operator ring A[x; ∂], because

(1A ⊗ x)(b⊗ 1H) = 1H(1H · b)⊗ x1H + 1H(x · b)⊗ 1H1H = b⊗ x+ ∂(b)⊗ 1H .

Identifying A⊗RR[x] with A[x] as R-modules, we obtain our usual multiplication rule.

4.1 Cohen’s problem

Miriam Cohen asked in 1985 whether the smash product A#H is a semiprime ring provided A
is semiprime and H is a semisimple Hopf algebra acting on A (see [7]). The questions is still
open up to my knowledge. The semisimple condition on H implies that A is a projective A#H-
module. Hence the map ϕ : A#H → A with a#h 7→ aε(h) splits by the map ψ : A → A#H
such that e = (1A)ψ is an idempotent in (A#H)H . Moreover for any H-stable left ideal I of A
one has that (I)ψ = (I#1)e is a left ideal of A#H isomorphic to I . If A#H is semiprime and
A projective as A#H-module then (I#1)e(I#1)e would be non-zero for any non-zero H-stable
left ideal I of A. Hence 0 6= e(I#1)e = e(I)ψ = (e • I)ψ shows that e • I is non-zero. As
e ∈ (A#H)H one also has 0 6= e • I ∈ AH ∩ I ' HomA#H(A, I).

Corollary 4.1. If A#H is semiprime and A is projective as left A#H-module, then A is a re-
tractable left A#H-module.

Of course this is true much more generally, namely for torsionless modules over semiprime
rings, due to Amitsur (see [1, Theorem 27, Corollary 21]):

Lemma 4.2 (Amitsur). Any left A-module over a semiprime ring A that can be embedded into a
direct product of copies of A is retractable.

Hence if Cohen’s question would have a positive answer, then A semiprime and H being
semisimple acting on A would imply that A is a retractable A#H-module.

Question 4.3. Let H be a semisimple Hopf algebra acting on a semiprime algebra A. Is A a
retractable left A#H-module, or in other words, does every non-zero H-stable left ideal intersect
AH non-trivially ?

Recalling Bergman and Isaacs Theorem 3.13 we see that an answer to the question above
would generalise their Theorem and would be "half way" towards a positive answer to Cohen’s
question. For more on Cohen’s question I would like to refer to my recent survey [21].

4.2 Primness of endomorphism rings

There are many ways to carry the idea of a prime ring to modules. Bican et al. in [4] defined a
product on the lattice of submodules L of a left A-module M , by defining for any N,K ∈ L:

N ∗K := NHomA(M,K) =
∑

f :M→K

(N)f.

Together with this product, L becomes a partially ordered groupoid, i.e. L is a partially ordered
set by inclusion and the binary operation ∗ satisfiesN ∗K ⊆ L∗K andK ∗N ⊆ K ∗L, whenever
K,L,N ∈ L and N ⊆ L. Note that in general the ∗-product is not associative. The notion of
a prime element is naturally carried over to any partially ordered groupoid (see [5]), i.e. P ∈ L
is prime if N ∗ K ⊆ P implies N ⊆ P or K ⊆ P , and the module M is called ∗-prime if 0



RETRACTABLE MODULES 353

is a prime element in the partially ordered groupoid (L, ∗) (see [4, 19]). By definition, if M is
∗-prime, then 0 6= M ∗N = MHomA(M,N) for all 0 6= N ⊆ M . Hence M is retractable. On
the other hand if M is retractable and EndA(M) is a prime ring, then it is not difficult to see that
M is ∗-prime (see [19, 4.1]). However it had been left open whether in general a ∗-prime module
must have a prime endomorphism ring.

Question 4.4. Does a ∗-prime module have a prime endomorphism ring ?

Several positive results were obtained in [2]. In particular if the endomorphism ring of M is
commutative, then the answer is yes (see [2, 2.3]). This applies in particular to the case where
M = A is an algebra considered as a left Ae-module. As EndAe(A) ' Z(A) is the centre of
A, we have that A is ∗-prime as left Ae-module if and only if A has a large centre which is an
integral domain. An analogous statement hold for algebras with involution. Furthermore it has
been shown in [2] that if a module M is semi-projective or not singular, then the answer is also
yes. Thus if a semisimple Hopf algebra H acts on A, then A is projective as left A#H-module
and A is a ∗-prime left A#H-module if and only if AH is large in A and also a prime ring. This
applies also to the case where H = R[G] with G a finite group acting on A such that n = |G|
is invertible in R. Another instance where the general module theoretic result can be applied is
in case of a locally nilpotent derivation ∂ on A over a field R of characteristic 0 such that there
exists x ∈ A with ∂(x) = 1. Then A is a self-projective A[x; ∂]-module and thus A is ∗-prime
as left A[x; ∂]-module if and only if A∂ is a prime ring (since the locally nilpotency of ∂ implies
the retractability of A). However in general it is unknown whether A∂ is always prime if A is a
∗-prime left A[x; ∂]-module.

Question 4.5. Let ∂ be any derivation on A. Is it true that A∂ is a prime ring provided A is a
∗-prime A[x; ∂]-module?

Zelmanowitz’ weakly compressible modules M are precisely those with 0 being a semiprime
element in the partially ordered groupoid (L, ∗), i.e. if N ∗N ⊆ 0, then N = 0. This means that
for any non-zero submodule N of M there exists a homomorphism f : M → N with (N)f 6= 0.
Clearly the notion of weakly compressible modules generalise the notion of ∗-prime modules as
well as the notion of compressible modules. Furthermore weakly compressible modules are ob-
viously retractable. Alternatively a module M is called semiprime if any essential submodule of
M cogeneratesM . Having in mind that ∗-prime modulesM can be characterised by the property
that any non-zero submodule N of M cogenerates M , one sees that also semiprime modules are
a generalisation of ∗-prime modules. It is not difficult to see that weakly compressible modules
are semiprime (see [19, 5.5]) and it is an open question whether the converse holds:

Question 4.6. Is a semiprime module weakly compressible?

This question has been considered in [29] and remotely also in [27] and it seems that it is
important to know whether semiprime modules are retractable. Hence we might ask:

Question 4.7. Are semiprime modules retractable?

What can be said about the cases mentioned above, e.g. if M = A and H is a Hopf algebra
acting on A ?

4.3 Zelmanowitz’ problem

A critically compressible module is a compressible module that cannot be embedded into any of
its proper factor modules. The following question arose in Zelmanowitz’ papers [31, 32]:

Question 4.8. Is a compressible uniform module whose nonzero endomorphisms are monomor-
phisms a critically compressible module?

Attempts to answer this question have been made in [24] where it has been shown that the
hypothesis of the question are equivalent to M being a uniform retractable module whose endo-
morphism ring is a domain. Furthermore the following result has been shown in [6, Proposition
3.1].

Proposition 4.9 (Borges-Lomp, 2011). Let M be a left A-module with endomorphism ring S
and self-injective hull M̂ . Then M is critically compressible if and only if M is retractable,
S = End(M) is a left Ore domain and End(M̂) = Frac(S) is the left division ring of fractions
of S.
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Thus a negative answer to question 4.8 could be obtained through an example of a uniform
retractable module whose endomorphism ring is a domain, but not a left Ore domain. We finish
by asking this question for our algebra situations above. All mentioned examples were of the
following form (see also [20]): Let A be an algebra over R. Let B be a subalgebra of EndR(A)
that contains all left multiplications la for a ∈ A. ThenA becomes a leftB-module by evaluating
endomorphisms, i.e. b ∈ B, a ∈ A : b•a := b(a) and moreoverA can be considered a subalgebra
of B by a 7→ la for all a ∈ A. The map α : B → A given by b 7→ (b)α = b • 1 for all b ∈ B is a
surjective map of left B-modules, i.e. A is a cyclic left B-module, and furthermore the inclusion
a 7→ la lets α split as left A-modules, because (la)α = la(1) = a for all a ∈ A. Any left
B-module M can be naturally considered a left A-module and there exists a map

ψM : HomB(A,M) −→M given by f 7→ (1)f ∀f ∈ HomB(A,M). (4.3)

The image of ψM can be identified with the subset

Im(ψM ) = {m ∈M | b •m = (b)αm = (b • 1)m} =: MB

which we call the submodule of B-invariants of M . In particular AB ' EndB(A) is naturally
isomorphic to the endomorphism ring of A as left B-module. As in the cases above one also has
an inverse of ψM which is:

ψ−1
M : MB −→ HomB(A,M) given by m 7→ [a 7→ a •m] ∀m ∈MB . (4.4)

As before one has that A is a retractable left B-module if and only if AB is large in A, i.e. AB
intersects all B-stable left ideals of A.

Question 4.10. Suppose that AB is a domain and large in A. If A is a left uniform B-module,
does it follow that AB is a left Ore domain.

In case B =M(A) as in subsection 3.1 respectively in case B is the subalgebra of EndR(A)
generated by the left multiplication and an involution ∗ as in subsection 3.4, one obtains that
AB = Z(A) respectively AB = Z(A; ∗) is commutative. Since a commutative domain is an
Ore domain, the question above is obviously answered. However in case of a group action or an
action by a derivation, AB might be non-commutative and raises the following questions:

Question 4.11. Let ∂ be a derivation on A such that A∂ is a domain which is large in A. Is A∂
left Ore if A is a uniform left A[x; ∂]-module?

Let σ be an automorphism of A. Then AG = {a ∈ A | σ(a) = a} =: Aσ, where G = 〈σ〉.

Question 4.12. Let σ be an automorphism such that Aσ is a domain which is a large in A. Is Aσ
left Ore if A is a uniform left A[x;σ]-module (respectively left A[x±1;σ]-module)?
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