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Abstract. In this paper we give a new formulation of an abstract control problem in terms of
a Grushin problem, so that we will reformulate all notions of controllability, observability and
stability in a new form that gives readers an easy interpretation of these notions.

1 Introduction

Grushin problem is a simple linear algebraic tool which has proved itself very useful in the
mathematical study of spectral problems arising in electromagnetism and quantum mechanics.
This approach appears constantly under different names and guises in many works of pure and
applied mathematics.

The key observation goes back to Schur and his complement formula:

If we have for matrices

P R_
R. 0

E E.
E. E_.

)

then P is invertible if and only if £_ is invertible and
P'=E-E,E"\E_E-l =-R,P'R_.

This tools was developed by J. Sjostrand and M. Zworski [16], Hager and Sjostrand [8], Hellfer
and Sjostrand [10].

The aim of this paper is to reformulate abstract control problems studied in control theory by
Weiss [22] and Ammari and Tucsnak [1] in a form of Grushin problems and give some regularity
results arising in the two theory.

More concisely, let U, X be two Hilbert spaces and consider the abstract control problem

2(t) = Az(t) + Bu(t), =2(0) = z (L.1)
y(t) = B*z(t) '
where A : D(A) C X — X generates a Cy-semigroups of contractions 7'(t):>0, B € L(U, X)
is an admissible control operator, u € L2 (0, 4o00; U). The transfer function of (1.1) is given by
H(\) € L(U) such that
90 = HN)a(N),

where “denotes the Laplace transformation . For these concepts, see [19].
Suppose that H()) is invertible in £(U), therefore system (1.1) can be written as a well-posed
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Grushin problem as:
for A € p(A)

(1.2)

Thus, (1.2) is well-posed if

A—A B
B* 0

E E+
E. E_,

)

we refer to E_ as the effective Hamiltonien of A — A. We prove that the inverse of the transfer
function of system (1.1) is the effective Hamiltonien of A — A in (1.2).

The paper is organized as follows. In the second section we give some preliminary results
dealing to system theory, and we investigate some spectral properties of transfer function, more-
over we show how regularity property (in the Weiss sense) of system (1.1) is stable under iter-
ations of Grushin problems. Our main results and statements are given in section 3. The last
section is devoted to some applications.

2 Some background

In this section we gather, for easy reference, some basic facts about admissible control and
observation operators, about well-posed and regular linear systems, their transfer functions, well-
posed triples of operators and closed-loop systems. For proofs and for more details we refer to
the literature.

We assume that X is a Hilbert space and A : D(A) — X is the generator of a strongly
continuous semigroup T on X. We define the Hilbert space X; as D(A) with the norm ||z||; =
|(BI — A)z||, where 3 € p(A) is fixed (this norm is equivalent to the graph norm). The Hilbert
space X _ is the completion of X with respect to the norm ||z||_ = ||(8] — A)~'z||. This space
is isomorphic to D(A*)*, and we have

XicXcXoy,

densely and with continuous embeddings. T extends to a semigroup on X_;, denoted by the
same symbol. The generator of this extended semigroup is an extension of A, whose domain
is X, sothat A: X — X_;. We assume that U is a Hilbert space and B € £(U, X_,) is an
admissible control operator for T, defined as in Weiss [24]. This means that if z is the solution
of 2(t) = Az(t) + Bu(t), which is an equation in X_;, with 2(0) = 20 € X and u € L*>(R,U),
then z(¢t) € X for all ¢ > 0. In this case, z is a continuous X —valued function of ¢. We have

z(t) = Ty + c(t)u, 2.1

where c(t) € L(L*(R,,U); X) is defined by

t
c(t)u:/0 T;_sBu(s)ds. (2.2)

The above integration is done in X _j, but the result is in X. The Laplace transform of z is

2(s) = (sI — A)~'[zo + Ba(s)].
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B is called bounded if B € L(U, X) (and unbounded otherwise). If B is an admissible control
operator for T, then (sI — A)~!'B € L£(U, X) for all s with fRe(s) sufficiently large. Moreover,
there exist positive constants J, w such that

1)
vV Res ’

and if T is normal then the last inequality implies admissibility, see [22].

We assume that Y is another Hilbert space and C' € £(X;,Y) is an admissible observation
operator for T, defined as in Weiss [25]. This means that for every 7' > O there exists a K > 0
such that

I(sT = A)~'Bllzw.x) < VRes > w,

T
/ |CTyz0l2dt < K22l V20 € D(A). 23)
0

C is called bounded if it can be extended such that C' € L(X,Y).

We regard L7, (R;;Y) as a Fréchet space with the seminorms being the L? norms on the in-
tervals [0,n], n € N. Then the admissibility of C means that there is a continuous operator
¥: X — L2 ([0,00),Y) such that

loc
(Pz)(t) = CTyz0 V2o € D(A). 2.4)

The operator W is completely determined by (2.4), because D(A) is dense in X. Now we intro-
duce two extensions of C' as following:

Definition 2.1. Let X and Y be Hilbert spaces with T a C,-semigroup on X and suppose that
C € L(X,,Y). Then the Lebesgue extension of C' (with respect to T), Cr : D(Cr) — Y
defined by

t

1
Crr=1limC- T,xds (2.5)
t—0 t 0
with D(Cp) = {z € X|the limit in (2.5) exists}.
Weiss showed in [25] that C', is an extension of C, in particular,
Xl — D(CL) — X.

The significance of the Lebesgue extension, C, is that it makes it possible to give a simple
pointwise interpretation of the output map (2.4) for every z in the original state space X. For
every xo € X, there holds T;z¢ € D(Cy) for almost every ¢ > 0 and

(‘Pxo)(t) = C1Txp.
A similar A-extension of C' was introduced by Weiss [22]

Caro = lim CAM — A) "z, (2.6)
A—+00

for A € C with fRe()) sufficiently large and for all
xo € D(Cp) = {zp € X|the limit in(2.6) exists}.

Definition 2.2. Let U, X, Y, V and W be Hilbert spaces such that W C X C V and let B €
LU, V)and C € L(W,Y) and let T = (T})¢>¢ be a Cp-semigroup on X. Suppose that B is
an admissible control operator for T with respect to V' and that C' is an admissible observation
operator for T with respect to W. Then we define the transfer functions of the triple (A4, B, C)
to be the solutions, H : p(A) — L(U,Y) of

H(s) — H(P)
s—p
for s, 8 € p(A), s # 3, where p(A) is the resolvent set of A.

=-C(sI-A)~ Y (BI-A)~'B 2.7)
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We remark that, since B is an admissible control operator for T, (3] — A)~'Bis an L(U, X)-
valued analytic function and since C is an admissible observation operator for T, C(sI — A)~!
is a £(X,Y)-valued analytic function. Both (3] — A)~! B and C(sI — A)~! are analytic on some
right half-plane C, = {s € C : Re(s) > a}. Consequently the transfer functions always exist
as L£(U,Y)-valued functions which are analytic in some C,. They differ only by an additive
constant, D € L(U,Y") (often called feedthrought operator). The point is that they don’t need
necessarily be bounded on any C,,. We impose this as an extra assumption on the triple (A4, B, C)
and call this well-posedness.

Definition 2.3. Under the same assumptions as in Definition (2.2), we say that the triple (A4, B, C)
is well-posed if B is an admissible control operator for T with respect to the Hilbert space V, C
is an admissible observation operator for T with respect to the Hilbert space W and its transfer
function is bounded on some half-plane C,,.

Next, we give some notions of controllability and observability. For more details, see [19].
Let A: D(A) — X generates a Cyp-semigroup T; on X, B € L(U, X), and 29 € X.
Definition 2.4. (Controllability) The system (A, B) is said to be exactly controllable in time

T > 0if for every 29,2 € X there exists u € L*(0,T;U) such that the solution of the system
(A,B) given by the Duhammel formula verify z(T') = z;.

The fact that (A,B) is exactly controllable in 7" > 0 is equivalent to the fact that the operator
c(t) defined by (2.2) is surjective, that’s

Ime(t) = X.

Definition 2.5. (Observability) Let A be a generator of Cy-semigroup T; on X, and C € L(X,U).
The system (A, C) is said to be exactly observable in time 7" > 0 if there exists 6 > 0 such that

T
/ |CTy2||3dt > 6||2]%, VzeX. (2.8)
0

Remark 2.6. For every 7' > 0, we denote by

CTtZ te [O, T]

2.9
0 t>1T. 2.9)

(Wr2)(t) = {

Since C is bounded, then W1 € L£(X, L*((0,00),U)) for every T > 0, and we remark that (A,
C) is exactly observable in time 7" > 0 if and only if there exists 6 > O such that

W72l 20,000y = 02l x V2 € X.

The following theorem gives the links between these concepts.

Theorem 2.7. Let A be a generator of a semigroup on X and B € L(U, X). Then, the following
assertions are equivalent :

(i) (A, B) is exactly controllable on [0, T].

(ii) (A*, B*) is exactly observable in time T > 0.
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Proof. We set c(t)u := fot T:_sBu(s)ds. Then, (A, B) is exactly controllable if and only if
Im¢(T) = X, which is equivalent to saying that ¢(7")* is bounded below, i.e., there exists § > 0
such that

le(T)* 2] > 6|z, VzeX. (2.10)

Compute ¢(T)*. Forall u € L?((0,¢),U) and z € X:
T
(c(T)u, z) = </ Tr_sBu(s)ds,z)x
0

T

:/ (u(s), B*T%_.2)uyds
0

= (u, ATW$2) 12((0,00).0)

uw(T—t) tel0,T]

for all u € L2((0, 00), U).
0 t>T or all u ((0,00),U)

where Apu(t) := {

Thus, ¢(T)* = A2, and inequality (2.10) becomes
W72l > [[Ar¥T2] > 6|z Vze X

since Ar is un unitary. And therefore, (A*, B*) is exactly observable by Remark 2.6. O

Now, we introduce the notion of Grushin problem and Schur Complement.

Definition 2.8. Let P : H, — H; be a linear operator where H,, H, are two Hilbert spaces.
Then, a Grushin problem for P is a system

{ Pu+R_u_=v .11

Riu=vy

where R_ : H. — H,, R, : HL — H., (u,u_) € H; x H_ are unknown and (v,v,) €
H, x H, are given. In matrix form we can write

P R
R. 0

P = cHHeH. — Hy®H.,.

We say that the Grushin problem is well posed if we have the inverse

E E,
E.  E_,

&= T, oHy — Hi @ H_.

In this case we will refer to E_, as the effective Hamiltonian of P.

For the concepts of Grushin problems and Schur complements we refer readers to [7], [8],[10].
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3 Reformulation of abstract control problem

We will connect the theory of well-posed linear system with well-posed Grushin problems.
Let A: D(A) € X — X skew-adjoint and then generates Cp-group of isometries on X and
B e L(U, X) where U is another Hilbert space identified with its dual. Thus, we prove that

Proposition 3.1. If the following abstract control problem with observation (or equivalently the
triple of operators (A, B, B*))

4(t) = Az(t) + Bu(t),
y(t) = B*(t), 3.1)

is well-posed with A as above and B € L(U, X ) with invertible transfer function H(\) then, the
following Grushin problem is well-posed:
For all (v,v.) € X x U, there exists (u,u_) € X x U solution of

{ (M —Au+Bu_ = v (32)
B*u = U4
and the effective Hamiltonien is given by
E (AN '=-B*M-A)"'B=—-H()\). (3.3)

Note that the transfer function is define as §(\) = H(N\)4(\), where”denotes the Laplace trans-
form with zy = 0.

Proof. Suppose that (3.1) is well-posed and the associated transfer function H(\) € L(U) is
invertible. Since (A — A)~!B takes its values in X = D(B*) for all A € p(A), then H()\) is
given explicitly by the desired formula

H(\) =B*(A—A)"'B, V\cpA). (3.4)
For given (v,v;) € X x U;and X € p(A), is there (u,u_) € X x U such that

(M—-Au+Bu_. = v
B*u = vy

from the first equation, we can write
u=MA-A)"v-AN-A)""Bu_,
and the second equation becomes
HMNu_ = B* (A= A) v — vy,
and therefore, since H()) is invertible we get that (3.2) is well-posed. O
Now, we consider abstract control problems with feedthrought operators D # 0, in the form

2(t) = Az(t) + Bu(t),
y(t) = B*z(t) + Du(t), (3.5)
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where A : D(A) C X — X, skew-adjointand B € L(U, X ) and D € L(U). It was showed in
Weiss [22], that with zg = 0 and PRe(\) sufficiently large, the transfer function of (3.5) is given
by

H(\) =D+ B*(\ - A)~'B. (3.6)
and it satisfies the equation
H(Si:gl(ﬁ) = —C(sI — A)~Y(BI — A)~'B, (3.7)

for any s,8 € p(A) with s # 3. Thus, the connection between the transfer function and the
effectif Hamiltonien is given by the following lemma.

Lemma 3.2. for A € p(A), suppose that the following Grushin problem is well-posed:
for given (v,vy) € X_| x U, there exists unique (u,u_) € D(A) x U such that

I—A Bu_ =
{ (A Ju+ Bu v, (3.8)
B*u+ Du_ =wv;
therefore, the effectif Hamiltonien of (A\I — A) is given by
E (N '=D-B*(\[-A)'B. (3.9)

in the sense that its invertibility controls the existence of the resolvent.

In fact, feedthrought operator play an important role in the study of regularity of such abstract
control problems with observation in the Weiss sense as we will see in section 3, thus we have
the characterization of regularity obtained in Weiss [22]:

Theorem 3.3 ( Weiss [22]). An abstract linear system is regular if and only if its transfer function
has a strong limit at +oo (along the real axis), and we have

lim H(MNv=Dv, Vvel.
AERAN—+00

Let us now consider abstract problems (3.1) with unbounded control and observation oper-
ators, that’s with the same assumption on A and A is an extension of A with domain D(A) on
X _; denoted also by A exception that B € L(U, X_;) assumed to be admissible and U is an
Hilbert space identified with its dual. We assume that its transfer function is invertible as an
element of £(U)(here we have not explicitly its desired expression (3.4) but the only thing we
know that it checks relation (3.7)).

Under a suitable construction of a well-posed Grushin problem, we prove some properties of
transfer function of (3.1).

Proposition 3.4. Let O, be a connected open of p(A) and X € O..
Then, (H(X\))aco, is a family of Fredholm operators depends holomorphically on . Moreover,
if H(Xo)~! exists at some points \g € O, then O, 3 A\ — H(X\)~! is meromorphic.

Proof. From the reformulation of abstract control problem with observation on a well-posed
Grushin problem, with B} the Lebesgue extension of B in the place of this later, we proved that
the link is the invertibility of the family of transfer functions (H (\)xco, Where O, is a connected
open of p(A), and consequently is Fredholm of index 0.

For Ay € O. C p(A) (and therefore Ay — A is Fredholm), we can always take U with finite
dimensional.
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let n, = dimker(\o — A) = dimcoker(A\g — A), ny =n_ =nand choose B: C" — X. In
this case

EX, =H()\)':C" —C"

is finite matrix with index n, —n_ = 0.
The invertibility of H(\y), Ao € Oc is equivalent to the well-posedness of A()\) where

A—-A B

an=|"."

This shows that there exists a locally finite covering of O, {O;}, such that for A € O;, H(\) is
invertible, more precisely when f;(\) # 0, where f; is holomorphic in O;(indeed, we can define
fi(Xo) := det H(Xo)~! where H(\g)~! exists for Ay € O;). Since O, is connected and since
H(\;) is invertible for at least one A\; € O, shows that all f;’s are not identically zero. That
means that det H (\)~! is non-vanishing holomorphic in some neighbourhood of g, V'()\g), and
consequently H(\) is a family of meromorphic operators in V' ()\g), where Ay was arbitrary in

Cce

O

Proposition 3.5. Let g be holomorphic function on O, connected open of p(A). Then for any
curve ~ homologous to 0 in O, and on which (A — A)~! exists, the operator 5~ fv()‘ —

A)~g(N)dX (that’s the spectral projection of A onto O.. ) is of trace class and we have

tr/()\ — A7 lg(N)dx = tr/ HH(N)TH(N)g(N)dA. (3.10)

Proof. Basic idea: writing 9y A(\) = A()\), we have

where £()\) as in the previous proposition and £()\) is given by

EQ) B
E-(N) B ()

which gives
E_(NE+(\) = —£_+()

we recall that
(A= 4)7" = B(\) — BL(NE_ (N E- ().

Since E_, (\)~! is a finite matrix, then
[O=a gar=— [ BB () E-(Ng)ix
vy vy

is an operator of trace class
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3.1 Some regularity results

In this section we show how the property of regularity in the Weiss sense [22] is conserved along
the iterations of Grushin problems.
Consider the system of evolution equations

{ 2(t) = Az(t) + Bu(t), 2(0)= 2, (.11

y(t) =DB"z(t)
where

(i) A: D(A)(Cc X_1) — X_ is an unbounded positive self-adjoint operator in the Hilbert
space X,

(i) Be L(U X_),

(iii) B* € L(X,U) is defined as

(B*I,U)U = <'T;BU>X1><X,1 Vx € X;.

Assume that (3.11) is well-posed and its transfer function H(s) € £(U) is uniquely determined

by the pair (A, B) and assumed to be invertible and checks the following relation
H(\)—-H
m = —B"(M = A)"(ul = A)7'B, WA, € p(A).

Suppose that system (3.11) is regular; that’s:

lim HMNu=Du Vuel,
AER, AN —+o00

where D € L(U) called feedthrought operator. For more details we refer to [2],[22]....Thus, for
A € p(A), the associated Grushin problem is

{ ()\I—A)ul + Buy, =1 (3.12)

B* Ui =12.
In matrix form, (3.12) is written as

Al —A B

AN =1 g 0

XU — X_10U.

Hence, (3.12) is well-posed if and only if .A()) is invertible with

EQ) B

ANVT= oy By

In the Grushin problem context, E_ (1)) is called the effective Hamiltonien of (Al — A), and is
also the Schur complement of (Al — A) and we have

E (AN '=-B*(M—-A)"'B, VYAep(A)
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which is invertible. System (3.12) can be iterated in the following way:
Assume that there exists two operators

N_:V_—U, N;:U-—V,,

with V_, V, are two Hilbert space such that the following Grushin problem is well-posed

E_+(/\)U3 +N_uys =w3 (3.13)
N+’LL3 = V4 '
that’s
E_ (A N_
£= +() Ve V. —UsV,
Ny
is invertible with the inverse
PR I JOVRR Y
P PV |
then the new Grushin problem
(M —A)u+ BN_@ =1 (3.14)
N,.B*u =7_ '
with the inverse given by
G- E—-E,FE_ EL\Fy
F_E_ —F_.(\)
Thus, the corresponding evolution problem to (3.14) is
2(t) = (M — A)z(t) + BN_v(t), 2(0) =z (3.15)
ya(t) = Ny B 2(t)

which still regular with transfer function given

Hi(\) = N H(\N_.

4 Application of Grushin problem in control theory

Let us starting by recalling some definitions and properties mentioned in [3].

Definition 4.1. Suppose that ¥ = (T, ®, 1L, F) is an abstract linear system. If A is the generator
of T, B is the control operator of £ and C is the observation operator of X, then we say that
(A, B, C) is the triple associated with X. A triple of operators (A, B, C') will be called well-
posed if there is an abstract linear system X such that (A4, B, C) is the triple associated with
r.

In the following two remarks we try to clarify what well-posedness of triple of operators
means in terms of differential equations. See [3].
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Remark 4.2. Suppose that U, X and Y are Hilbert spaces, A is the generator of a semigroup
on X, B e L(U,X_)and C € L(X,,Y). If Cp, is the Lebesgue extension of C, and if the
operator Cr,(B8I — A)~! B is well defined for some (and hence any) 3 € p(A), then (A, B,C) is
well-posed if and only if the system of equations

4.1)

is well-posed in a certain natural sense. If the triple is well-posed, but Cr (81 — A)~! B does not
exist,then (4.1) is no longer well-posed.

Remark 4.3. Let U, X, Y, A, B,C and Cf, be as in the previous remark, but we do not assume
that Cp, (81 — A)~! B makes sense. Then (A, B,C) is well-posed if and only if the following
(more complicated) system of equations is well-posed:

{ 4(t) = Az(t) + Bu(t), 2(0)=0
y(t) = Cr[2(t) — (B — A)~' Bu(t)]

in the same sense as (4.1).

In this section, we show how a well-posed Grushin problem of type (3.2) gives a Hautus test
Criteria and then exact observability and exponential stability of system of type (4.1).
Before starting, we recall some properties and definitions, for more details see Miller [13] and
Hautus [9]. The exact observability property is dual to the exact controllability property, as it
has been shown in Dolecki and Russell [8].
few papers in the area of controllability and observability of systems governed by partial differ-
ential equations have considered a frequency domain approach, related to the classical Hautus
test in the theory of finite dimensional systems (see Hautus [9]). Roughly speaking, a frequency
domain test for the observability of (4.1) is formulated only in terms of the operators A, B* and
of a parameter (the frequency). This means that the time ¢ does not appear in such a test and that
we do not have to solve an evolution equation. In the case of a bounded observation operator B*,
such frequency domain methods have been proposed in Liu [11]. In the case of an unbounded
observation operator B*, a Hautus type test has been recently obtained in Miller [13]. Thus we
have

Proposition 4.4. The system (3.11) is exactly observable in time T > 0 if and only if there exists
a constant § > 0 such that

IO = Az + B2l > 82l , ¥z € D(A),A€R. 4.2)

We shall refer to (4.2) as the (infinite-dimensional) Hautus test.

A new result in this paper reads as follows.

Theorem 4.5. Let A : D(A) — X, B € L(U,X) such that X, U, D(A) C X be complex
Hilbert spaces and assume that

ImB C D(A), 4.3)

A—A B

AN =1 g

D(A)x U — X x U,
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and that B* has a uniformly bounded right inverse.
IffOrQ:A_Aa ||QImBHL(X):O(1), then

u— V4
gives that
[k + ol = Clullk + llu—|7)- 4.4)

Remark 4.6. (i) In Theorem 4.5, we remark that we don’t need to have a well-posed Grushin
problem in order to get inequality (4.4).

(ii) Since B* has a uniformly bounded right inverse, then B* is surjective and according to N.
K. Nikolski [14], the system (A, B*) is exactly controllable in any time 7 > 0 with A is
skew-adjoint operator.

(iii) From the point of view of applications it is often sufficient to have an explicit description
of the space accessible states

Imc(7) = e(r)L*(0,7;U)
instead of strong demand restrictive exact controllability Imc¢(7) = X.

(iv) If A is skew-adjoint on X and B € L(U, X) as in the previous theorem and for A = iw, w €
R, therefore we have the following Hautus type estimation

I(iw — Ayull + B ullty > Cllullk, YueX. (4.5)

and if we consider the following abstract control problem with observation with A and B
as above in the previous theorem

{ 2(t) = Az(t) + Bu(t), 2(0)=0

y(t) = B=(1) o

then, (4.6) is exactly observable and the C-groups of isometries 7'(¢):cr generated by A
is exponentially stable via estimation (4.5). Hence, the setup of a Grushin problem (not
necessary well-posed) give us exactly observable system.

Proof. of Theorem 4.5.
LetIT: H — (kernel B*)1 = Im B be the orthogonal projection. Then

I( = M)ul3 < (P = Mu, (I - Mu)|
= (I —Mv — (I —II)Pu, (I — IT)u)|
< [ollx I — Mul|x + [ PTul|x [[(1 — u| x,

with P = (Al — A). By assumption, there exists a uniformly bounded operator
P, :U — (ker B*)* Cc X
such that B* P, v, = v,, and consequently I[Tu = P,v,. Thus

1A = Aullx = [[(A = Al Pro || = O)lvy v,
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and hence
I =Tullx < vl + OW)[lvi -

With P_ = P, also we have P_B*u_ = u_, so that

u. =P (v—(A—A)u) =P_v—P_II(A—A)(I —IMu— P_(A\— A)IIP, v,
and

lullx < Cllvll + 1A = Dlm Blleooll( = Mulx + 1A = Al sllex) v+l

< C(lvllx + 1 =ullx + [lvillo-

It ’s easy to prove that ||TTu||x = || Pyv4 || < C|lvs || and therefore

[ollx + llvillo = Cllullx + lu-llv)-

|
Example 4.7. We consider the following initial and boundary value problem:
OPu — Au+ Gou =0, Q x (0,400), (4.7)
u =0, 0Q x (0, +00), 4.8)
u(.,0) = u’ € H*(Q) N HY(Q), du(.,0) =u' € HJ(Q), Q 4.9)
where G = (—A)~!. If we introduce the following notations:
H = [}(Q), D(4) = H*(Q) N Hy(Q)
App = —Ayp, Vo € D(Ay).
The system (4.7)-(4.9) can be written in the following abstract form:
{ 5(t) = Aga(t) 4.10)
2(0) = 20,

where

U 0 I u?
o2 a8 ) ()

A, can be written in the form A; = Ay + BB* with
0o I 0 « 1
AO_(—AO)’ B_<G%>, B_(o Gz).

B:U =L*Q) — (H*(Q) N H(Q)) x H}(Q)
thus, it’s easy to check that B is onto and that the range of B is contained in D(Ag) = (H?*(Q)N
H}(Q)) x H}(Q). Then according to the above proposition, we have
z
+

(iw—A0)<Z> B*<z>
A y

YweR, <Z > € D(Ap).
Yy

which is equivalent to (with y = iwz)

Then, let

2 2

> ¢

U

2
35 > 0;

?

X

[ (w?* - Ao)zHiI + HwG%z ‘[2] > §|lwz|>, Vw eR, z € D(A). (4.11)
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Now, we introduce other types of controllability of system (4.6). Before that we recall the
notion of Riesz basis and for more details, we refer readers to [19].

Definition 4.8. A sequence (¢, ),>1 in a Hilbert space X forms a Riesz basis if

(i) span{y,} = X and

(i) There exist positive constants m and M such that for an arbitrary integer n and scalar
(an)n>1 one has

mz |an|2H90n||2 < Zan%llz < MZ |a71|2||50n”2-

n>1 n>1 n>1

From the definition, one can easily see that an orthonormal complete sequence in a Hilbert
space is a Riesz basis. Hence, Riesz basis is such a basis that is equivalent to orthonormal basis
under bounded invertible transform, that’s, for any given Riesz basis (¢, ),>1 in X, there exist a
bounded invertible operator 7" such that

To, =¢e,, N2 1

where (ey,),>1 is an orthonormal basis. Also once we have a Riesz basis (¢, ),>1 for X, then
we can identify X with ¢2 via

x:Zan@n€X<—> Z|an|2<oo.

n>1 n>1
As we said in Remark 4.6 about the characterization of Im ¢(t), the following theorem of Nikolski
[14] gives an explicit description of Im ¢(¢) in the case where the generator A has a Riesz basis

of eigenvectors.

Theorem 4.9. Let (¢,,)n>1 be a Riesz basis in X consisting of eigenvectors of A and () n>1
its biorthogonal and assume that

A@n = —An, n=>1
then, if the family (£),,> defined by
5n(t) = e_A_ntB*¢7z

is also a Riesz basis in L*(0,t;U) then

Ime(t) = {Z bnon ,Z |b,|? ! < oo}

2
n>1 n>1 Hgn”Lz

In the case where A is as in the previous theorem then, each state z € X is defined formally
by its Fourier series

z~Z<z,wn>gﬁn

n>1

where (¢,,),,>1 is the biorthogonal sequence. It’s natural to search an explicit description of the
control space Im ¢(¢) in the form of "Fourier multipliers".
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Definition 4.10. Let (w,,),>1 be a positive sequence of reel number. We put
1
X(wn) ={r € X/Iy € Xst <a,gn >= — <y.thp > n =1}

The system (A, B) is said to be exactly controllable in time 7' > 0 up to a renomalization if there
exist w, > 0, n > 1 such that

St X (wn) C X(wn); >0

BU =ImB C X (w,) 4.12)

and (Al x(,,), B) is exactly controllable.

The following proposition link the Hautus test criteria obtained in Theorem 4.5 with condition
(4.12) introduced in the above definition of controllability up to a renormalization.

Proposition 4.11. Let A : D(A) — X as in Theorem 4.9 and B € L(U, X).
With the renormalization

n>1 n>1

we assume that we have
Im B C X (wy), 4.14)

A—-A B

an =" 0

t X (wn) XU — X x U,

and that B* has a uniformly bounded right inverse.
IffOVQ:)\—A, ||QImBH£(X):O(1), then

u— V4
gives that
ol + llos 118 > C(lull% + llu-llz)- (4.15)
Proof. The proof is the same as Theorem 4.5. O
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