On new general integral inequalities for quasi-convex functions and their applications

Imdat İşcan
Communicated by Ayman Badawi

MSC 2010 Classifications: 26A51, 26D15.
Keywords and phrases: quasi-convex function, Simpson's inequality, Hermite-Hadamard's inequality, midpoint inequality, trapezoid inequality.

Abstract

In this paper, we give a unified approach to establish midpoint, trapezoid, and Simpson's inequalities for functions whose derivatives in absolute value at certain power are quasi-convex. Some applications to special means of real numbers are also given.

1 Introduction

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a, b \in I$ with $a<b$. The following inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions. See $[1,3,4,6,7,9,10,11]$, the results of the generalization, improvement and extention of the famous integral inequality (1.1).

The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function $f:[a, b] \rightarrow \mathbb{R}$ is said quasi-convex on $[a, b]$ if

$$
f(t x+(1-t) y) \leq \sup \{f(x), f(y)\}
$$

for any $x, y \in[a, b]$ and $t \in[0,1]$. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [7]).

The following inequality is well known in the literature as Simpson's inequality .
Let $f:[a, b] \rightarrow \mathbb{R}$ be a four times continuously differentiable mapping on (a, b) and $\left\|f^{(4)}\right\|_{\infty}=$ $\sup _{x \in(a, b)}\left|f^{(4)}(x)\right|<\infty$. Then the following inequality holds:

$$
\left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(\frac{a+b}{2}\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{1}{2880}\left\|f^{(4)}\right\|_{\infty}(b-a)^{4} .
$$

In recent years many authors have studied error estimations for Simpson's inequality; for refinements, counterparts, generalizations and new Simpson's type inequalities, see [2, 5, 12, 13, 14]

In [7], Ion introduced two inequalities of the right hand side of Hadamard's type for quasiconvex functions, as follow:

Theorem 1.1. Assume $a, b \in \mathbb{R}$ with $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable function on (a, b). If $\left|f^{\prime}\right|$ is quasi-convex on $[a, b]$, then the following inequality holds true

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4} \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} \tag{1.2}
\end{equation*}
$$

Theorem 1.2. Assume $a, b \in \mathbb{R}$ with $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable function on (a, b). Assume $p \in \mathbb{R}$ with $p>1$. If $\left|f^{\prime}\right|^{p /(p-1)}$ is quasi-convex on $[a, b]$, then the following inequality
holds true

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{2(p+1)^{p /(p-1)}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}} \tag{1.3}
\end{equation*}
$$

In [3], Alomari et al. established some new upper bound for the right -hand side of Hadamard's inequality for quasi-convex mappings, which is the better than the inequality had done in [7]. The authors obtained the following results:

Theorem 1.3. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{p /(p-1)}$ is an quasi-convex on $[a, b]$, for $p>1$, then the following inequality holds:

$$
\begin{align*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq & \frac{b-a}{4(p+1)^{1 / p}}\left[\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{\frac{p}{p-1}},\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right. \\
& \left.+\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{\frac{p}{p-1}},\left|f^{\prime}(a)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right] \tag{1.4}
\end{align*}
$$

Theorem 1.4. Let $f: I^{\circ} \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{\prime}\right|^{q}$ is an quasi-convex on $[a, b]$, for $q \geq 1$, then the following inequality holds:

$$
\begin{align*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq & \frac{b-a}{8}\left[\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(a)\right|^{q}\right\}\right)^{\frac{1}{q}}\right] \tag{1.5}
\end{align*}
$$

In this paper, in order to provide a unified approach to establish midpoint inequality, trapezoid inequality and Simpson's inequality for functions whose derivatives in absolute value at certain power are quasi-convex, we need the following lemma:
Lemma 1.5. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I$ with $a<b$ and $\alpha, \lambda \in[0,1]$. Then the following equality holds:

$$
\begin{aligned}
& \lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
= & (b-a)\left[\int_{0}^{1-\alpha}(t-\alpha \lambda) f^{\prime}(t b+(1-t) a) d t\right. \\
& \left.+\int_{1-\alpha}^{1}(t-1+\lambda(1-\alpha)) f^{\prime}(t b+(1-t) a) d t\right] .
\end{aligned}
$$

A simple proof of equality can be given by performing an integration by parts in the integrals from the right side and changing the variable (see [8]).

2 Main results

Theorem 2.1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$ and $\alpha, \lambda \in[0,1]$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b], q \geq 1$, then the following inequality holds:

$$
\begin{align*}
& \left|\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
\leq & \begin{cases}(b-a)\left(\gamma_{2}+v_{2}\right) A^{\frac{1}{q}} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
(b-a)\left(\gamma_{2}+v_{1}\right) A^{\frac{1}{q}} & \alpha \lambda \leq 1-\lambda(1-\alpha) \leq 1-\alpha \\
(b-a)\left(\gamma_{1}+v_{2}\right) A^{\frac{1}{q}} & 1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)\end{cases} \tag{2.1}
\end{align*}
$$

where

$$
\begin{gathered}
\gamma_{1}=(1-\alpha)\left[\alpha \lambda-\frac{(1-\alpha)}{2}\right], \gamma_{2}=(\alpha \lambda)^{2}-\gamma_{1}, \\
v_{1}=\frac{1-(1-\alpha)^{2}}{2}-\alpha[1-\lambda(1-\alpha)], \\
v_{2}=\frac{1+(1-\alpha)^{2}}{2}-(\lambda+1)(1-\alpha)[1-\lambda(1-\alpha)],
\end{gathered}
$$

and

$$
A=\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
$$

Proof. Suppose that $q \geq 1$. From Lemma 1.5 and using the well known power mean inequality, we have

$$
\begin{align*}
& \left|\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
\leq & (b-a)\left[\int_{0}^{1-\alpha}|t-\alpha \lambda|\left|f^{\prime}(t b+(1-t) a)\right| d t+\int_{1-\alpha}^{1}|t-1+\lambda(1-\alpha)|\left|f^{\prime}(t b+(1-t) a)\right| d t\right] \\
\leq & (b-a)\left\{\left(\int_{0}^{1-\alpha}|t-\alpha \lambda| d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1-\alpha}|t-\alpha \lambda|\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
+ & \left.\left(\int_{-\alpha}^{1}|t-1+\lambda(1-\alpha)| d t\right)^{1-\frac{1}{q}}\left(\int_{-\alpha}^{1}|t-1+\lambda(1-\alpha)|\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}\right\} \tag{2.2}
\end{align*}
$$

Since $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, we know that for $t \in[0,1]$

$$
\left|f^{\prime}(t b+(1-t) a)\right|^{q} \leq \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\},
$$

hence, by simple computation

$$
\begin{align*}
& \int_{0}^{1-\alpha}|t-\alpha \lambda| d t=\left\{\begin{array}{ll}
\gamma_{2}, & \alpha \lambda \leq 1-\alpha \\
\gamma_{1}, & \alpha \lambda \geq 1-\alpha
\end{array},\right. \tag{2.3}\\
& \int_{1-\alpha}^{1}|t-1+\lambda(1-\alpha)| d t=\left\{\begin{array}{ll}
v_{1}, & 1-\lambda(1-\alpha) \leq 1-\alpha \\
v_{2}, & 1-\lambda(1-\alpha) \geq 1-\alpha
\end{array},\right. \tag{2.4}
\end{align*}
$$

Thus, using (2.3) and (2.4) in (2.2), we obtain the inequality (2.1). This completes the proof.
Corollary 2.2. Under the assumptions of Theorem 2.1 with $q=1$, the inequality (2.1) reduced to the following inequality

$$
\begin{gathered}
\left|\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \\
\left\{\begin{array}{cl}
(b-a)\left(\gamma_{2}+v_{2}\right) \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
(b-a)\left(\gamma_{2}+v_{1}\right) \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} & \alpha \lambda \leq 1-\lambda(1-\alpha) \leq 1-\alpha \\
(b-a)\left(\gamma_{1}+v_{2}\right) \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} & 1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)
\end{array}\right.
\end{gathered}
$$

where where $\gamma_{1}, \gamma_{2}, v_{1}$ and v_{2} are defined as in Theorem 2.1.

Corollary 2.3. Under the assumptions of Theorem 2.1 with $\alpha=\frac{1}{2}$ and $\lambda=\frac{1}{3}$, from the inequality (2.1) we get the following Simpson type inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
\leq & (b-a)\left(\frac{5}{36}\right) \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
\end{aligned}
$$

Corollary 2.4. Under the assumptions of Theorem 2.1 with $\alpha=\frac{1}{2}$ and $\lambda=0$ from the inequality (2.1) we get the following midpoint inequality

$$
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4} \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
$$

Corollary 2.5. Under the assumptions of Theorem 2.1 with $\alpha=\frac{1}{2}$ and $\lambda=1$,from the inequality (2.1) we get the following trapezoid inequality

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4} \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
$$

which is the same of the inequality (1.2) for $q=1$.
Using Lemma 1.5 we shall give another result for convex functions as follows.
Theorem 2.6. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$ and $\alpha, \lambda \in[0,1]$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b], q>1$, then the following inequality holds:

$$
\begin{align*}
& \left.\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \leq(b-a) \tag{2.5}\\
& \quad \times\left(\frac{1}{p+1}\right)^{\frac{1}{p}} A^{\frac{1}{q}} \begin{cases}{\left[\begin{array}{ll}
(1-\alpha)^{\frac{1}{q}} & \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}} \\
(1-\alpha)^{\frac{1}{q}} & \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} \varepsilon_{4}^{\frac{1}{p}} \\
(1-\alpha)^{\frac{1}{q}} & \varepsilon_{2}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}
\end{array}\right],} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
{[1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)}\end{cases}
\end{align*}
$$

where

$$
A=\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
$$

$$
\begin{aligned}
& \varepsilon_{1}=(\alpha \lambda)^{p+1}+(1-\alpha-\alpha \lambda)^{p+1}, \varepsilon_{2}=(\alpha \lambda)^{p+1}-(\alpha \lambda-1+\alpha)^{p+1} \\
& \varepsilon_{3}=[\lambda(1-\alpha)]^{p+1}+[\alpha-\lambda(1-\alpha)]^{p+1}, \varepsilon_{4}=[\lambda(1-\alpha)]^{p+1}-[\lambda(1-\alpha)-\alpha]^{p+1}
\end{aligned}
$$

and $\frac{1}{p}+\frac{1}{q}=1$.
Proof. From Lemma 2.1 and by Hölder's integral inequality, we have

$$
\begin{aligned}
& \left|\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
\leq & (b-a)\left[\int_{0}^{1-\alpha}|t-\alpha \lambda|\left|f^{\prime}(t b+(1-t) a)\right| d t+\int_{1-\alpha}^{1}|t-1+\lambda(1-\alpha)|\left|f^{\prime}(t b+(1-t) a)\right| d t\right] \\
\leq & (b-a)\left\{\left(\int_{0}^{1-\alpha}|t-\alpha \lambda|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1-\alpha}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\left(\int_{-\alpha}^{1}|t-1+\lambda(1-\alpha)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{-\alpha}^{1}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}\right\} \tag{2.6}
\end{equation*}
$$

Since $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, for $\alpha \in[0,1]$, we get

$$
\begin{equation*}
\int_{0}^{1-\alpha}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t=(1-\alpha) \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\} \tag{2.7}
\end{equation*}
$$

Similarly, for $\alpha \in[0,1]$, we have

$$
\begin{equation*}
\int_{1-\alpha}^{1}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t=\alpha \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\} \tag{2.8}
\end{equation*}
$$

By simple computation

$$
\int_{0}^{1-\alpha}|t-\alpha \lambda|^{p} d t= \begin{cases}\frac{(\alpha \lambda)^{p+1}+(1-\alpha-\alpha \lambda)^{p+1}}{p+1}, & \alpha \lambda \leq 1-\alpha \tag{2.9}\\ \frac{(\alpha \lambda)^{p+1}-(\alpha \lambda-1+\alpha)^{p+1}}{p+1}, & \alpha \lambda \geq 1-\alpha\end{cases}
$$

and

$$
\int_{1-\alpha}^{1}|t-1+\lambda(1-\alpha)|^{p} d t= \begin{cases}\frac{[\lambda(1-\alpha)]^{p+1}+[\alpha-\lambda(1-\alpha)]^{p+1}}{p+1}, & 1-\alpha \leq 1-\lambda(1-\alpha) \tag{2.10}\\ \frac{[\lambda(1-\alpha)]^{p+1}-[\lambda(1-\alpha)-\alpha]^{p+1}}{p+1}, & 1-\alpha \geq 1-\lambda(1-\alpha)\end{cases}
$$

thus, using (2.7)-(2.10) in (2.6), we obtain the inequality (2.5). This completes the proof.
Corollary 2.7. Under the assumptions of Theorem 2.6 with $\alpha=\frac{1}{2}$ and $\lambda=\frac{1}{3}$, from the inequality (2.5) we get the following Simpson type inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \leq \frac{b-a}{6}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

Corollary 2.8. Under the assumptions of Theorem 2.6 with $\alpha=\frac{1}{2}$ and $\lambda=0$, from the inequality (2.5) we get the following midpoint inequality

$$
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
$$

Corollary 2.9. Let the assumptions of Theorem 2.6 hold. Then for $\alpha=\frac{1}{2}$ and $\lambda=1$, from the inequality (2.5) we get the following trapezoid inequality

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
$$

Theorem 2.10. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$ and $\alpha, \lambda \in[0,1]$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b], q>1$, then the following inequality holds:

$$
\begin{align*}
& \left.\lambda(\alpha f(a)+(1-\alpha) f(b))+(1-\lambda) f(\alpha a+(1-\alpha) b)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \leq(b-a) \tag{2.11}\\
& \quad \times\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \begin{cases}{\left[(1-\alpha)^{\frac{1}{q}} B^{\frac{1}{q}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} C^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}\right],} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
\left.(1-\alpha)^{\frac{1}{q} B^{\frac{1}{q}}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} C^{\frac{1}{q}} \varepsilon_{4}^{\frac{1}{p}}\right], & \alpha \lambda \leq 1-\lambda(1-\alpha) \leq 1-\alpha \\
\left.(1-\alpha)^{\frac{1}{q}} B^{\frac{1}{q}} \varepsilon_{2}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} C^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}\right], & 1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)\end{cases}
\end{align*}
$$

where

$$
\begin{aligned}
& B=\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(\alpha a+(1-\alpha) b)\right|^{q}\right\}, \\
& C=\sup \left\{\left|f^{\prime}(b)\right|^{q},\left|f^{\prime}(\alpha a+(1-\alpha) b)\right|^{q}\right\},
\end{aligned}
$$

, $\frac{1}{p}+\frac{1}{q}=1$, and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ numbers are defined as in Theorem 2.6.
Proof. From Lemma 1.5 and by Hölder's integral inequality, we have the inequality (2.6). Since $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, for all $t \in[0,1]$ and $\alpha \in[0,1)$ we get

$$
\left|f^{\prime}(t a+(1-t)[\alpha a+(1-\alpha) b])\right|^{q} \leq B=\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(\alpha a+(1-\alpha) b)\right|^{q}\right\}
$$

then

$$
\begin{equation*}
\int_{0}^{1}\left|f^{\prime}(t a+(1-t)[\alpha a+(1-\alpha) b])\right|^{q} d t=\frac{1}{(1-\alpha)(b-a)} \int_{a}^{(1-\alpha) b+\alpha a}\left|f^{\prime}(x)\right|^{q} d x \leq B \tag{2.12}
\end{equation*}
$$

By the inequality (2.12), we get

$$
\begin{align*}
\int_{0}^{1-\alpha}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t & =(1-\alpha)\left[\frac{1}{(1-\alpha)(b-a)} \int_{a}^{(1-\alpha) b+\alpha a}\left|f^{\prime}(x)\right|^{q} d x\right] \\
& \leq(1-\alpha) B \tag{2.13}
\end{align*}
$$

The inequality (2.13) also holds for $\alpha=1$. Since $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, for all $t \in[0,1]$ and $\alpha \in(0,1]$ we have

$$
\left|f^{\prime}(t b+(1-t)[\alpha a+(1-\alpha) b])\right|^{q} \leq C=\sup \left\{\left|f^{\prime}(b)\right|^{q},\left|f^{\prime}(\alpha a+(1-\alpha) b)\right|^{q}\right\}
$$

then

$$
\begin{equation*}
\int_{0}^{1}\left|f^{\prime}(t b+(1-t)[\alpha a+(1-\alpha) b])\right|^{q} d t=\frac{1}{\alpha(b-a)} \int_{(1-\alpha) b+\alpha a}^{b}\left|f^{\prime}(x)\right|^{q} d x \leq C . \tag{2.14}
\end{equation*}
$$

By the inequality (2.14), we get

$$
\begin{align*}
\int_{1-\alpha}^{1}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t & =\alpha\left[\frac{1}{\alpha(b-a)} \int_{(1-\alpha) b+\alpha a}^{b}\left|f^{\prime}(x)\right|^{q} d x\right] \\
& \leq \alpha C \tag{2.15}
\end{align*}
$$

The inequality (2.15) also holds for $\alpha=0$. Thus, using (2.9), (2.10), (2.13) and (2.15) in (2.6), we obtain the inequality (2.11). This completes the proof.

Corollary 2.11. Under the assumptions of Theorem 2.10 with $\alpha=\frac{1}{2}$ and $\lambda=\frac{1}{3}$, from the inequality (2.11) we get the following Simpson type inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
\leq & \frac{b-a}{12}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left\{\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(a)\right|^{q}\right\}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

Corollary 2.12. Under the assumptions of Theorem 2.10 with $\alpha=\frac{1}{2}$ and $\lambda=1$, from the inequality (2.11) we get the following trapezoid inequality

$$
\begin{aligned}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq & \frac{b-a}{4(p+1)^{1 / p}}\left[\left\{\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(a)\right|^{q}\right\}\right)^{\frac{1}{q}}\right.\right. \\
& +\left\{\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

which is the same of the inequality (1.4).
Corollary 2.13. Under the assumptions of Theorem 2.10 with $\alpha=\frac{1}{2}$ and $\lambda=0$, from the inequality (2.11) we get the following midpoint inequality

$$
\begin{aligned}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq & \frac{b-a}{4(p+1)^{1 / p}}\left[\left\{\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(a)\right|^{q}\right\}\right)^{\frac{1}{q}}\right.\right. \\
& +\left\{\left(\sup \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

which is the better than the inequality in [1, Corollary 8].

3 Some applications for special means

Let us recall the following special means of arbitrary real numbers a, b with $a \neq b$ and $\alpha \in[0,1]$:
(i) The weighted arithmetic mean

$$
A_{\alpha}(a, b):=\alpha a+(1-\alpha) b, a, b \in \mathbb{R}
$$

(ii) The unweighted arithmetic mean

$$
A(a, b):=\frac{a+b}{2}, a, b \in \mathbb{R}
$$

(iii) The weighted harmonic mean

$$
H_{\alpha}(a, b):=\left(\frac{\alpha}{a}+\frac{1-\alpha}{b}\right)^{-1}, a, b \in \mathbb{R} \backslash\{0\}
$$

(iv) The unweighted harmonic mean

$$
H(a, b):=\frac{2 a b}{a+b}, \quad a, b \in \mathbb{R} \backslash\{0\}
$$

(v) The Logarithmic mean

$$
L(a, b):=\frac{b-a}{\ln b-\ln a}, \quad a, b>0, a \neq b
$$

(vi) Then n-Logarithmic mean

$$
L_{n}(a, b):=\left(\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}\right)^{\frac{1}{n}}, n \in \mathbb{N}, a, b \in \mathbb{R}, a \neq b
$$

Proposition 3.1. Let $a, b \in \mathbb{R}$ with $a<b$, and $n \in \mathbb{N}, n \geq 2$. Then, for $\alpha, \lambda \in[0,1]$ and $q \geq 1$, we have the following inequality:

$$
\begin{aligned}
& \quad\left|\lambda A_{\alpha}\left(a^{n}, b^{n}\right)+(1-\lambda) A_{\alpha}^{n}(a, b)-L_{n}^{n}(a, b)\right| \\
& \leq \begin{cases}n(b-a)\left(\gamma_{2}+v_{2}\right) E^{\frac{1}{q}} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
n(b-a)\left(\gamma_{2}+v_{1}\right) E^{\frac{1}{q}} & \alpha \lambda \leq 1-\lambda(1-\alpha) \leq 1-\alpha \\
n(b-a)\left(\gamma_{1}+v_{2}\right) E^{\frac{1}{q}} & 1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)\end{cases}
\end{aligned}
$$

where

$$
E=\sup \left\{|a|^{(n-1) q},|b|^{(n-1) q}\right\}
$$

$\gamma_{1}, \gamma_{2}, v_{1}$ and v_{2} are defined as in Theorem 2.1.

Proof. The assertion follows from Theorem 2.1, for $f(x)=x^{n}, x \in \mathbb{R}$.
Proposition 3.2. Let $a, b \in \mathbb{R}$ with $a<b$, and $n \in \mathbb{N}$, $n \geq 2$. Then, for $\alpha, \lambda \in[0,1]$ and $q>1$, we have the following inequality:

$$
\begin{aligned}
& \left|\lambda A_{\alpha}\left(a^{n}, b^{n}\right)+(1-\lambda) A_{\alpha}^{n}(a, b)-L_{n}^{n}(a, b)\right| \leq(b-a)\left(\frac{1}{p+1}\right)^{\frac{1}{p}} n \\
& \times \begin{cases}{\left[\begin{array}{ll}
(1-\alpha)^{\frac{1}{q}} F^{\frac{1}{q}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} G^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}} \\
(1-\alpha)^{\frac{1}{q}} F^{\frac{1}{q}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} G^{\frac{1}{q}} \varepsilon_{4}^{\frac{1}{p}} \\
(1-\alpha)^{\frac{1}{q}} F^{\frac{1}{q}} \varepsilon_{2}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} G^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}
\end{array}\right],} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
{[1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)}\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
& F=\sup \left\{|a|^{(n-1) q},\left|A_{\alpha}(a, b)\right|^{(n-1) q}\right\} \\
& G=\sup \left\{|b|^{(n-1) q},\left|A_{\alpha}(a, b)\right|^{(n-1) q}\right\}
\end{aligned}
$$

$\frac{1}{p}+\frac{1}{q}=1$, and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ numbers are defined as in Theorem 2.6.
Proof. The assertion follows from Theorem 2.10, for $f(x)=x^{n}, x \in \mathbb{R}$.
Proposition 3.3. Let $a, b \in \mathbb{R}$ with $a<b, 0 \notin[a, b]$. Then, for $\alpha, \lambda \in[0,1]$ and $q \geq 1$, we have the following inequality:

$$
\begin{aligned}
& \left|\lambda H_{\alpha}^{-1}(a, b)+(1-\lambda) A_{\alpha}^{-1}(a, b)-L^{-1}(a, b)\right| \\
\leq & \begin{cases}(b-a)\left(\gamma_{2}+v_{2}\right) K^{\frac{1}{q}} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
(b-a)\left(\gamma_{2}+v_{1}\right) K^{\frac{1}{q}} & \alpha \lambda \leq 1-\lambda(1-\alpha) \leq 1-\alpha \\
(b-a)\left(\gamma_{1}+v_{2}\right) K^{\frac{1}{q}} & 1-\alpha \leq \alpha \lambda \leq 1-\lambda(1-\alpha)\end{cases}
\end{aligned}
$$

where

$$
K=\sup \left\{a^{-2 q}, b^{-2 q}\right\},
$$

$\gamma_{1}, \gamma_{2}, v_{1}$, and v_{2} are defined as in Theorem 2.1..
Proof. The assertion follows from Theorem 2.1., for $f(x)=\frac{1}{x}, x \in(0, \infty)$.
Proposition 3.4. Let $a, b \in \mathbb{R}$ with $0<a<b$. Then, for $\alpha, \lambda \in[0,1]$ and $q>1$, we have the following inequality:

$$
\begin{aligned}
& \left|\lambda H_{\alpha}^{-1}(a, b)+(1-\lambda) A_{\alpha}^{-1}(a, b)-L^{-1}(a, b)\right| \leq(b-a)\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \\
& \times\left\{\begin{array}{ll}
{\left[(1-\alpha)^{\frac{1}{q}} M^{\frac{1}{q}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} N^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}\right.} \\
(1-\alpha)^{\frac{1}{q}} M^{\frac{1}{q}} \varepsilon_{1}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} N^{\frac{1}{q}} \varepsilon_{4}^{\frac{1}{p}} & \alpha \lambda \leq 1-\alpha \leq 1-\lambda(1-\alpha) \\
(1-\alpha)^{\frac{1}{q}} M^{\frac{1}{q}} \varepsilon_{2}^{\frac{1}{p}}+\alpha^{\frac{1}{q}} N^{\frac{1}{q}} \varepsilon_{3}^{\frac{1}{p}}
\end{array}\right], \quad 1-\alpha \leq 1-\lambda(1-\alpha) \leq 1-\alpha, \\
& {\left[\begin{array}{ll}
(1-\alpha)
\end{array}\right.}
\end{aligned}
$$

where

$$
\begin{aligned}
M & =\sup \left\{a^{-2 q}, A_{\alpha}(a, b)^{-2 q}\right\} \\
N & =\sup \left\{b^{-2 q}, A_{\alpha}(a, b)^{-2 q}\right\}
\end{aligned}
$$

$\frac{1}{p}+\frac{1}{q}=1$, and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, and ε_{4} are defined as in Theorem 2.10.
Proof. The assertion follows from Theorem 2.10, for $f(x)=\frac{1}{x}, x \in(0, \infty)$.

References

[1] M. Alomari and M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Preprint, 13(2) (2010) article No. 3. [http://rgmia.org/papers/v13n2/quasiconvex.pdf].
[2] M. Alomari, M. Darus, S.S. Dragomir, New inequalities of Simpson's Type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009) Article 9. [Online http://ajmaa.org/RGMIA/v12n4.php].
[3] M.W. Alomari, M.Darus, U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232.
[4] M.W. Alomari, M.Darus, U.S. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci., 31(4) (2011), 1643-1652.
[5] M. Alomari, S. Hussain, Two inequalities of Simpson type for quasi-convex functions and applications, Appl. Math. E-Notes, 11 (2011), 110-117.
[6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[7] D.A. Ion, Some estimates onthe Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007), 82-87.
[8] İ. İşcan, A new generalization of some integral inequalities and their applications, International Journal of Engineering and Applied sciences, 3(3) (2013), 17-27.
[9] İ. İşcan, Hermite-Hadamard type inequalities for functions whose derivatives are (α, m)-convex, International Journal of Engineering and Applied Sciences, 2(3) (2013), 69-78.
[10] İ. İşcan, Generalization of different type integral inequalities via fractional integrals for functions whose second derivatives absolute values are quasi-convex, Konuralp j. Math., 1(2) (2013), 67-79.
[11] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146.
[12] M.Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modelling, 54 (2011), 2175-2182.
[13] M.Z. Sarikaya, E. Set, M.E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191-2199.
[14] M.Z. Sarikaya, E. Set, M.E. Özdemir, On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Coll., 13(2) (2010), Article 2.

Author information

Imdat İşcan, Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey.
E-mail: imdat.iscan@giresun.edu.tr; imdati@yahoo.com
Received: July 13, 2014.
Accepted: October 20, 2013.

