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Communicated by Ayman Badawi

MSC 2010 Classifications: 26A51, 26D15.

Keywords and phrases: quasi-convex function, Simpson’s inequality, Hermite-Hadamard’s inequality, midpoint inequal-
ity, trapezoid inequality.

Abstract. In this paper, we give a unified approach to establish midpoint, trapezoid, and
Simpson’s inequalities for functions whose derivatives in absolute value at certain power are
quasi-convex. Some applications to special means of real numbers are also given.

1 Introduction

Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and a, b ∈ I
with a < b. The following inequality

f

(
a+ b

2

)
≤ 1
b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral in-
equality for convex functions. See [1, 3, 4, 6, 7, 9, 10, 11], the results of the generalization,
improvement and extention of the famous integral inequality (1.1).

The notion of quasi-convex functions generalizes the notion of convex functions. More pre-
cisely, a function f : [a, b]→ R is said quasi-convex on [a, b] if

f (tx+ (1− t)y) ≤ sup {f(x), f(y)} ,

for any x, y ∈ [a, b] and t ∈ [0, 1] . Clearly, any convex function is a quasi-convex function.
Furthermore, there exist quasi-convex functions which are not convex (see [7]).

The following inequality is well known in the literature as Simpson’s inequality .
Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b) and

∥∥f (4)∥∥∞ =

sup
x∈(a,b)

∣∣f (4)(x)∣∣ <∞. Then the following inequality holds:

∣∣∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ 1
2880

∥∥∥f (4)∥∥∥
∞
(b− a)4

.

In recent years many authors have studied error estimations for Simpson’s inequality; for
refinements, counterparts, generalizations and new Simpson’s type inequalities, see [2, 5, 12, 13,
14]

In [7], Ion introduced two inequalities of the right hand side of Hadamard’s type for quasi-
convex functions, as follow:

Theorem 1.1. Assume a, b ∈ R with a < b and f : [a, b]→ R is a differentiable function on (a, b).
If |f ′| is quasi-convex on [a, b], then the following inequality holds true∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

sup {|f ′(a)| , |f ′(b)|} . (1.2)

Theorem 1.2. Assume a, b ∈ R with a < b and f : [a, b]→ R is a differentiable function on (a, b).
Assume p ∈ R with p > 1. If |f ′|p/(p−1) is quasi-convex on [a, b], then the following inequality
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holds true∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
2 (p+ 1)p/(p−1)

(
sup

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1

}) p−1
p

.

(1.3)

In [3], Alomari et al. established some new upper bound for the right -hand side of Hadamard’s
inequality for quasi-convex mappings, which is the better than the inequality had done in [7]. The
authors obtained the following results:

Theorem 1.3. Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b],
where a, b ∈ I with a < b. If |f ′|p/(p−1) is an quasi-convex on [a, b], for p > 1, then the following
inequality holds:∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4 (p+ 1)1/p

(sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣
p

p−1

, |f ′(b)|
p

p−1

}) p−1
p

+

(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣
p

p−1

, |f ′(a)|
p

p−1

}) p−1
p

 . (1.4)

Theorem 1.4. Let f : I◦ ⊂ R→ R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′|q is an quasi-convex on [a, b], for q ≥ 1, then the following inequality holds:∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
8

[(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(b)|q})
1
q

+

(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(a)|q})
1
q

]
. (1.5)

In this paper, in order to provide a unified approach to establish midpoint inequality, trapezoid
inequality and Simpson’s inequality for functions whose derivatives in absolute value at certain
power are quasi-convex, we need the following lemma:

Lemma 1.5. Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where
a, b ∈ I with a < b and α, λ ∈ [0, 1]. Then the following equality holds:

λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−
1

b− a

b∫
a

f(x)dx (1.6)

= (b− a)

 1−α∫
0

(t− αλ) f ′ (tb+ (1− t)a) dt

+

1∫
1−α

(t− 1 + λ (1− α)) f ′ (tb+ (1− t)a) dt

 .
A simple proof of equality can be given by performing an integration by parts in the integrals

from the right side and changing the variable (see [8]).

2 Main results

Theorem 2.1. Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b],
where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b], q ≥ 1, then the
following inequality holds:∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−

1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤


(b− a) (γ2 + υ2)A

1
q αλ ≤ 1− α ≤ 1− λ (1− α)

(b− a) (γ2 + υ1)A
1
q αλ ≤ 1− λ (1− α) ≤ 1− α

(b− a) (γ1 + υ2)A
1
q 1− α ≤ αλ ≤ 1− λ (1− α)

(2.1)
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where

γ1 = (1− α)
[
αλ− (1− α)

2

]
, γ2 = (αλ)

2 − γ1 ,

υ1 =
1− (1− α)2

2
− α [1− λ (1− α)] ,

υ2 =
1 + (1− α)2

2
− (λ+ 1) (1− α) [1− λ (1− α)] ,

and
A = sup

{
|f ′(a)|q , |f ′(b)|q

}
.

Proof. Suppose that q ≥ 1. From Lemma 1.5 and using the well known power mean inequality,
we have∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−

1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)

 1−α∫
0

|t− αλ| |f ′ (tb+ (1− t)a)| dt+
1∫

1−α

|t− 1 + λ (1− α)| |f ′ (tb+ (1− t)a)| dt



≤ (b− a)


 1−α∫

0

|t− αλ| dt

1− 1
q
 1−α∫

0

|t− αλ| |f ′ (tb+ (1− t)a)|q dt


1
q

+

 1∫
1−α

|t− 1 + λ (1− α)| dt

1− 1
q
 1∫

1−α

|t− 1 + λ (1− α)| |f ′ (tb+ (1− t)a)|q dt


1
q

 .

(2.2)
Since |f ′|q is quasi-convex on [a, b], we know that for t ∈ [0, 1]

|f ′ (tb+ (1− t)a)|q ≤ sup
{
|f ′(a)|q , |f ′(b)|q

}
,

hence, by simple computation

1−α∫
0

|t− αλ| dt =

{
γ2, αλ ≤ 1− α
γ1, αλ ≥ 1− α

, (2.3)

1∫
1−α

|t− 1 + λ (1− α)| dt =

{
υ1, 1− λ (1− α) ≤ 1− α
υ2, 1− λ (1− α) ≥ 1− α

, (2.4)

Thus, using (2.3) and (2.4) in (2.2), we obtain the inequality (2.1). This completes the proof.

Corollary 2.2. Under the assumptions of Theorem 2.1 with q = 1, the inequality (2.1) reduced
to the following inequality∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−

1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤


(b− a) (γ2 + υ2) sup {|f ′(a)| , |f ′(b)|} αλ ≤ 1− α ≤ 1− λ (1− α)
(b− a) (γ2 + υ1) sup {|f ′(a)| , |f ′(b)|} αλ ≤ 1− λ (1− α) ≤ 1− α
(b− a) (γ1 + υ2) sup {|f ′(a)| , |f ′(b)|} 1− α ≤ αλ ≤ 1− λ (1− α)

,

where where γ1, γ2, υ1 and υ2 are defined as in Theorem 2.1.
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Corollary 2.3. Under the assumptions of Theorem 2.1 with α = 1
2 and λ = 1

3 , from the inequality
(2.1) we get the following Simpson type inequality∣∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)

(
5
36

)
sup

{
|f ′(a)|q , |f ′(b)|q

}
.

Corollary 2.4. Under the assumptions of Theorem 2.1 with α = 1
2 and λ = 0,from the inequality

(2.1) we get the following midpoint inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

sup
{
|f ′(a)|q , |f ′(b)|q

}
.

Corollary 2.5. Under the assumptions of Theorem 2.1 with α = 1
2 and λ = 1,from the inequality

(2.1) we get the following trapezoid inequality∣∣∣∣∣∣f (a) + f (b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

sup
{
|f ′(a)|q , |f ′(b)|q

}
.

which is the same of the inequality (1.2) for q = 1.

Using Lemma 1.5 we shall give another result for convex functions as follows.

Theorem 2.6. Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b],
where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b], q > 1, then the
following inequality holds:∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−

1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a) (2.5)

×
(

1
p+ 1

) 1
p

A
1
q



[
(1− α)

1
q ε

1
p

1 + α
1
q ε

1
p

3

]
, αλ ≤ 1− α ≤ 1− λ (1− α)[

(1− α)
1
q ε

1
p

1 + α
1
q ε

1
p

4

]
, αλ ≤ 1− λ (1− α) ≤ 1− α[

(1− α)
1
q ε

1
p

2 + α
1
q ε

1
p

3

]
, 1− α ≤ αλ ≤ 1− λ (1− α)

where
A = sup

{
|f ′(a)|q , |f ′(b)|q

}
,

ε1 = (αλ)
p+1

+ (1− α− αλ)p+1
, ε2 = (αλ)

p+1 − (αλ− 1 + α)
p+1

,

ε3 = [λ (1− α)]p+1
+ [α− λ (1− α)]p+1

, ε4 = [λ (1− α)]p+1 − [λ (1− α)− α]p+1
,

and 1
p +

1
q = 1.

Proof. From Lemma 2.1 and by Hölder’s integral inequality, we have∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−
1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)

 1−α∫
0

|t− αλ| |f ′ (tb+ (1− t)a)| dt+
1∫

1−α

|t− 1 + λ (1− α)| |f ′ (tb+ (1− t)a)| dt



≤ (b− a)


 1−α∫

0

|t− αλ|p dt


1
p
 1−α∫

0

|f ′ (tb+ (1− t)a)|q dt


1
q
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+

 1∫
1−α

|t− 1 + λ (1− α)|p dt


1
p
 1∫

1−α

|f ′ (tb+ (1− t)a)|q dt


1
q

 . (2.6)

Since |f ′|q is quasi-convex on [a, b], for α ∈ [0, 1], we get

1−α∫
0

|f ′ (tb+ (1− t)a)|q dt = (1− α) sup
{
|f ′(a)|q , |f ′(b)|q

}
(2.7)

Similarly, for α ∈ [0, 1], we have

1∫
1−α

|f ′ (tb+ (1− t)a)|q dt = α sup
{
|f ′(a)|q , |f ′(b)|q

}
. (2.8)

By simple computation

1−α∫
0

|t− αλ|p dt =

{
(αλ)p+1+(1−α−αλ)p+1

p+1 , αλ ≤ 1− α
(αλ)p+1−(αλ−1+α)p+1

p+1 , αλ ≥ 1− α
, (2.9)

and
1∫

1−α

|t− 1 + λ (1− α)|p dt =

{
[λ(1−α)]p+1+[α−λ(1−α)]p+1

p+1 , 1− α ≤ 1− λ (1− α)
[λ(1−α)]p+1−[λ(1−α)−α]p+1

p+1 , 1− α ≥ 1− λ (1− α)
, (2.10)

thus, using (2.7)-(2.10) in (2.6), we obtain the inequality (2.5). This completes the proof.

Corollary 2.7. Under the assumptions of Theorem 2.6 with α = 1
2 and λ = 1

3 , from the inequality
(2.5) we get the following Simpson type inequality∣∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ b− a

6

(
1 + 2p+1

3 (p+ 1)

) 1
p (

sup
{
|f ′(a)|q , |f ′(b)|q

}) 1
q .

Corollary 2.8. Under the assumptions of Theorem 2.6 with α = 1
2 and λ = 0, from the inequality

(2.5) we get the following midpoint inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
1

p+ 1

) 1
p (

sup
{
|f ′(a)|q , |f ′(b)|q

}) 1
q .

Corollary 2.9. Let the assumptions of Theorem 2.6 hold. Then for α = 1
2 and λ = 1, from the

inequality (2.5) we get the following trapezoid inequality∣∣∣∣∣∣f (a) + f (b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
1

p+ 1

) 1
p (

sup
{
|f ′(a)|q , |f ′(b)|q

}) 1
q .

Theorem 2.10. Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b],
where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b], q > 1, then the
following inequality holds:∣∣∣∣∣∣λ (αf(a) + (1− α) f(b)) + (1− λ) f(αa+ (1− α) b)−

1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a) (2.11)

×
(

1
p+ 1

) 1
p



[
(1− α)

1
q B

1
q ε

1
p

1 + α
1
qC

1
q ε

1
p

3

]
, αλ ≤ 1− α ≤ 1− λ (1− α)[

(1− α)
1
qB

1
q

ε
1
p

1 + α
1
qC

1
q ε

1
p

4

]
, αλ ≤ 1− λ (1− α) ≤ 1− α[

(1− α)
1
q B

1
q ε

1
p

2 + α
1
qC

1
q ε

1
p

3

]
, 1− α ≤ αλ ≤ 1− λ (1− α)
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where

B = sup
{
|f ′(a)|q , |f ′(αa+ (1− α) b)|q

}
,

C = sup
{
|f ′(b)|q , |f ′(αa+ (1− α) b)|q

}
,

, 1
p +

1
q = 1, and ε1, ε2, ε3, ε4 numbers are defined as in Theorem 2.6.

Proof. From Lemma 1.5 and by Hölder’s integral inequality, we have the inequality (2.6). Since
|f ′|q is quasi-convex on [a, b], for all t ∈ [0, 1] and α ∈ [0, 1) we get

|f ′ (ta+ (1− t) [αa+ (1− α) b])|q ≤ B = sup
{
|f ′(a)|q , |f ′(αa+ (1− α) b)|q

}
then

1∫
0

|f ′ (ta+ (1− t) [αa+ (1− α) b])|q dt =
1

(1− α) (b− a)

(1−α)b+αa∫
a

|f ′ (x)|q dx ≤ B.

(2.12)
By the inequality (2.12), we get

1−α∫
0

|f ′ (tb+ (1− t)a)|q dt = (1− α)

 1
(1− α) (b− a)

(1−α)b+αa∫
a

|f ′ (x)|q dx


≤ (1− α)B. (2.13)

The inequality (2.13) also holds for α = 1. Since |f ′|q is quasi-convex on [a, b], for all t ∈ [0, 1]
and α ∈ (0, 1] we have

|f ′ (tb+ (1− t) [αa+ (1− α) b])|q ≤ C = sup
{
|f ′(b)|q , |f ′(αa+ (1− α) b)|q

}
then

1∫
0

|f ′ (tb+ (1− t) [αa+ (1− α) b])|q dt =
1

α (b− a)

b∫
(1−α)b+αa

|f ′ (x)|q dx ≤ C. (2.14)

By the inequality (2.14), we get

1∫
1−α

|f ′ (tb+ (1− t)a)|q dt = α

 1
α (b− a)

b∫
(1−α)b+αa

|f ′ (x)|q dx


≤ αC. (2.15)

The inequality (2.15) also holds for α = 0. Thus, using (2.9), (2.10), (2.13) and (2.15) in (2.6),
we obtain the inequality (2.11). This completes the proof.

Corollary 2.11. Under the assumptions of Theorem 2.10 with α = 1
2 and λ = 1

3 , from the
inequality (2.11) we get the following Simpson type inequality∣∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣

≤ b− a
12

(
1 + 2p+1

3 (p+ 1)

) 1
p

{(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(a)|q})
1
q

+

(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(b)|q})
1
q

}
.



Integral inequalities and their applications 27

Corollary 2.12. Under the assumptions of Theorem 2.10 with α = 1
2 and λ = 1, from the

inequality (2.11) we get the following trapezoid inequality∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4 (p+ 1)1/p

[{(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(a)|q})
1
q

+

{(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(b)|q})
1
q

]
.

which is the same of the inequality (1.4).

Corollary 2.13. Under the assumptions of Theorem 2.10 with α = 1
2 and λ = 0, from the

inequality (2.11) we get the following midpoint inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4 (p+ 1)1/p

[{(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(a)|q})
1
q

+

{(
sup

{∣∣∣∣f ′(a+ b

2
)

∣∣∣∣q , |f ′(b)|q})
1
q

]
,

which is the better than the inequality in [1, Corollary 8].

3 Some applications for special means

Let us recall the following special means of arbitrary real numbers a, bwith a 6= b and α ∈ [0, 1] :

(i) The weighted arithmetic mean

Aα (a, b) := αa+ (1− α)b, a, b ∈ R.

(ii) The unweighted arithmetic mean

A (a, b) :=
a+ b

2
, a, b ∈ R.

(iii) The weighted harmonic mean

Hα (a, b) :=
(
α

a
+

1− α
b

)−1

, a, b ∈ R\ {0} .

(iv) The unweighted harmonic mean

H (a, b) :=
2ab
a+ b

, a, b ∈ R\ {0} .

(v) The Logarithmic mean

L (a, b) :=
b− a

ln b− ln a
, a, b > 0, a 6= b .

(vi) Then n-Logarithmic mean

Ln (a, b) :=
(

bn+1 − an+1

(n+ 1)(b− a)

) 1
n

, n ∈ N, a, b ∈ R, a 6= b.

Proposition 3.1. Let a, b ∈ R with a < b, and n ∈ N, n ≥ 2. Then, for α, λ ∈ [0, 1] and q ≥ 1,we
have the following inequality:

|λAα (an, bn) + (1− λ)Anα (a, b)− Lnn (a, b)|

≤


n (b− a) (γ2 + υ2)E

1
q αλ ≤ 1− α ≤ 1− λ (1− α)

n (b− a) (γ2 + υ1)E
1
q αλ ≤ 1− λ (1− α) ≤ 1− α

n (b− a) (γ1 + υ2)E
1
q 1− α ≤ αλ ≤ 1− λ (1− α)

,

where
E = sup

{
|a|(n−1)q

, |b|(n−1)q
}
,

γ1, γ2, υ1 and υ2 are defined as in Theorem 2.1.
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Proof. The assertion follows from Theorem 2.1, for f(x) = xn, x ∈ R.

Proposition 3.2. Let a, b ∈ R with a < b, and n ∈ N, n ≥ 2. Then, for α, λ ∈ [0, 1] and q > 1,we
have the following inequality:

|λAα (an, bn) + (1− λ)Anα (a, b)− Lnn (a, b)| ≤ (b− a)
(

1
p+ 1

) 1
p

n

×



[
(1− α)

1
q F

1
q ε

1
p

1 + α
1
qG

1
q ε

1
p

3

]
, αλ ≤ 1− α ≤ 1− λ (1− α)[

(1− α)
1
q F

1
q ε

1
p

1 + α
1
qG

1
q ε

1
p

4

]
, αλ ≤ 1− λ (1− α) ≤ 1− α[

(1− α)
1
q F

1
q ε

1
p

2 + α
1
qG

1
q ε

1
p

3

]
, 1− α ≤ αλ ≤ 1− λ (1− α)

,

where

F = sup
{
|a|(n−1)q

, |Aα (a, b)|(n−1)q
}
,

G = sup
{
|b|(n−1)q

, |Aα (a, b)|(n−1)q
}
,

1
p +

1
q = 1, and ε1, ε2, ε3, ε4 numbers are defined as in Theorem 2.6.

Proof. The assertion follows from Theorem 2.10, for f(x) = xn, x ∈ R.

Proposition 3.3. Let a, b ∈ R with a < b, 0 /∈ [a, b] . Then, for α, λ ∈ [0, 1] and q ≥ 1, we have
the following inequality:∣∣λH−1

α (a, b) + (1− λ)A−1
α (a, b)− L−1 (a, b)

∣∣
≤


(b− a) (γ2 + υ2)K

1
q αλ ≤ 1− α ≤ 1− λ (1− α)

(b− a) (γ2 + υ1)K
1
q αλ ≤ 1− λ (1− α) ≤ 1− α

(b− a) (γ1 + υ2)K
1
q 1− α ≤ αλ ≤ 1− λ (1− α)

,

where
K = sup

{
a−2q, b−2q} ,

γ1, γ2, υ1, and υ2 are defined as in Theorem 2.1..

Proof. The assertion follows from Theorem 2.1., for f(x) = 1
x , x ∈ (0,∞) .

Proposition 3.4. Let a, b ∈ R with 0 < a < b. Then, for α, λ ∈ [0, 1] and q > 1, we have the
following inequality:

∣∣λH−1
α (a, b) + (1− λ)A−1

α (a, b)− L−1 (a, b)
∣∣ ≤ (b− a)

(
1

p+ 1

) 1
p

×



[
(1− α)

1
q M

1
q ε

1
p

1 + α
1
qN

1
q ε

1
p

3

]
, αλ ≤ 1− α ≤ 1− λ (1− α)[

(1− α)
1
q M

1
q ε

1
p

1 + α
1
qN

1
q ε

1
p

4

]
, αλ ≤ 1− λ (1− α) ≤ 1− α[

(1− α)
1
q M

1
q ε

1
p

2 + α
1
qN

1
q ε

1
p

3

]
, 1− α ≤ αλ ≤ 1− λ (1− α)

,

where

M = sup
{
a−2q, Aα (a, b)

−2q
}
,

N = sup
{
b−2q, Aα (a, b)

−2q
}
,

1
p +

1
q = 1, and ε1, ε2, ε3, and ε4 are defined as in Theorem 2.10.

Proof. The assertion follows from Theorem 2.10, for f(x) = 1
x , x ∈ (0,∞) .
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