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Abstract. We show that the length of a ring extensi&nC S is preserved under the for-
mation of the Nagata extensiaR(X) C S(X). A companion result holds for the Dobbs-
Mullins invariant. D. Dobbs and the authors proved elsewhere that tinehnumber of the
set[R, S] of subextensions ak C S is preserved under the formation of Nagata extension when
[[R(X),S(X)]|is finite. We show that in the only pathological case, nanielg S is subinte-
gral, then|[R, S]| is preserved if and only if it is either infinite or finite addC S is arithmetic;
that is,[R, S] is locally a chain. The last section gives properties of arithmetic extenaiwhs
their links with Priufer extensions.

1 Introduction and Notation

We consider the category of commutative and unital rings and firstsgiree notation and defi-
nitions, needed for explaining the subject of the paper.ALet S be a (ring) extension. The set
of all R-subalgebras of is denoted byR, S| and the integral closure @t in S by R. As usual,
Spec¢R), Max(R) and Min(R) are the sets of prime ideals, maximal ideals and minimal prime
ideals of a ringRk. Moreover, TotR) denotes the total quotient ring of a rirty

The support of al®-moduleE is Supp,(E) := {P € Spe¢R) | Ep # 0}, and MSupp,(E) :=
Supp; (E) N Max(R) is also the set of all maximal elements of Sypp). If £ is anR-module,
Lr(E) isits length. IfR C S is a ring extension ané € Speq¢R), thenSp is both the local-
ization Sp\ p as a ring and the localization &t of the R-moduleS. We denote by R : S) the
conductor ofR C S. Finally, C denotes proper inclusion and | the cardinality of a seX .

The extensiork C S is said to have FIP (for the “finitely many intermediate algebras prop-
erty") if [R,S] is finite. A chainof R-subalgebras of is a set of elements di, S] that are
pairwise comparable with respect to inclusion. An extengi@ S is called achainedex-
tension if[R, S] is a chain. We say that the extensi@nC S has FCP (for the “finite chain
property") if each chain iR, S] is finite. It is clear that each extension that satisfies FIP must
also satisfy FCP. Dobbs and the authors characterized FCP and FiBiertep]. Minimal
(ring) extensions, introduced by Ferrand-Oliviéf, [are an important tool of the paper. Recall
that an extensio? c S is calledminimalif [R,S] = {R,S}. The key connection between
the above ideas is that B C S has FCP, then any maximal (necessarily finite) chaiof
subalgebras of, R= Ry Cc Ry C --- C R,_1 C R, = S, with lengthn < oo, results from
juxtaposingn minimal extensions?; € R;.1, 0 < i < n — 1. For any extensio® C S, the
lengthof [R, S], denoted by/[R, S], is the supremum of the lengths of chainsfabubalgebras
of S. It should be noted that ik C S has FCP, then the@oesexist some maximal chain of
R-subalgebras of with length/[R, S] [6, Theorem 4.11].

In passing we also consider a condition weaker than FCP on an extdRsiols, recently
explored by Ayache and Dobbs ig]{ there is a finite maximal chain ifr, S| from R to S
(condition FMC for some authors). Thef, [Theorem 4.12] combined witt8] Proposition
4.2] and b, Theorem 4.2] yields the following result, which may be useful to detadt@pP
extension.

Proposition 1.1.Let R C S be an FMC extension of rings. Théh C S satisfies FCP if and
only if the length of thek-moduleR/ R is finite, or equivalently? C R has FCP.

We note here thak C S has FIP whem? C S has FCP%, Theorem 6.3].
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Let R be a ring and?[X] the polynomial ring in the indeterminate over R. (Throughout,
we useX to denote an element that is indeterminate over all relevant coefficigyg. yirIso,
let C'(p) denote the content of any polynomiglX) € R[X]. ThenXy = {p(X) € R[X] |
C(p) = R} is a saturated multiplicatively closed subset/fX|, each of whose elements is a
non-zero-divisor ofR[ X |. TheNagata ring ofR is defined to b&?(X) := R[X]s ..

Let R C S be an extension. It was shown i& [Theorem 3.9] thak(X) C S(X) has FCP
if and only if R C S has FCP. One aim of this paper is to show that, wRen S has FCP, then
/[R,S] =([R(X), S(X)], a question addressed i, Remark 4.18(b)].

We begin to show that this property holds for FCP field extensions in Sectidgim@ main
result is gotten in Section 3 where, after several steps involving the ihtelgeure and the
t-closure of an FCP extension, we prove in Theor@®that, whenR C S has FCP, then
([R,S] =([R(X), S(X)]. We also introduce the Dobbs-Mullins invariant of an extengiton S
as being the supremurm(S/R) of the lengths of residual extensions ®fC S, considered as
ring extensions4]. We show in Theoren3.7 thatA\(S/R) = A(S(X)/R(X)).

We will have to consider the following material.

Definition 1.2.Let R C S be an integral extension. Théh C S is calledinfra-integral [17]
(resp subintegral [19]) if all its residual extension®p/PRp — Sq/QSq, (With Q € Spegs)
andP := QN R) are isomorphisms (resand the spectral map Sget — SpedR) is bijective).
An extensionR C S is calledt-closed (cf. [17]) if the relationsb € S, r € R, b®> —rb €
R, b® —rb? € Rimply b € R. Thet-closure4, R of R in S is the smallesi-subalgebra3 of S
such thatB C S is t-closed and the greateBt € [R, S] such that? C B’ is infra-integral.

The canonical decomposition of an arbitrary ring extengton SisRC tRC4XRC R C
S, where{ R is the seminormalization at in S (see [L9)).

The other aim is achieved in Section 4. It consists to improve a charatimipthe transfer
of the FIP property for subintegral extensions of Nagata rings @e&Heorem 3.30]). We
consider only this (pathological) case because in the canonical desiiopof a ring extension,
the subintegral pat® C £ R is the only obstruction foR(X) C S(X) having FIP B, Theorem
3.21]. This leads us to introduce extensidhs: S such thai?,, C Sy, is a chained extension for
eachM € Supp,(S/R). Such extensions are calladthmetig the definition being reminiscent
of arithmetic rings. Note that Supf/R) can be replaced with one of the following subsets
SpecR), Max(R), MSupf(S/R)), since the natural mafR, S] — [Rp, Sp] is surjective for
eachP € Spe¢R). We show in Theorerd.2that if R C S is a subintegral extension, then
R(X) c S(X) has FIP if and only ifR ¢ S has FIP and is arithmetic.

For an FCP extensioR C S, it will be convenient to consider MSupf/ R). Observe that
an FCP extensio® C S is arithmetic if and only ifRy; — Sy, can be factored into a unique
finite sequence of minimal morphisms, for eadgdhe MSupp(S/R).

Moreover, if R C T C S is an arithmetic extension, then so &eC 7 andT C S. Let
R C S be an extension with conductor := (R : S). Itis clear that? C S is arithmetic if and
only if R/C C S/C'is arithmetic.

The paper ends with Section 5, that contains results on arithmetic extensions

The following notions and results are also deeply involved in our study.

Theorem 1.3.[8, Théoréme 2.2 and Lemme 3.2] Let- B be a minimal extension. Then, there
is someM € Max(A), called thecrucial (maximal) ideal of A C B, such thatAp = Bp for
eachP € SpecA) \ {M}. We denote this idedll byC(A, B).

Moreover,A C B is either an integral (finite) extension, or a flat epimorphism, these two
conditions being mutually exclusive.

There are three types of minimal integral extensions, given by the foltptheorem.

Theorem 1.4.[5, Theorem 2.2] LeR C T be an extension and s&f := (R : S). ThenR C T
is minimal and finite if and only i/ € Max(R) and one of the following three conditions holds:
(a) inert case M € Max(T') andR/M — T'/M is a minimal field extension;
(b) decomposed caseThere existM;, M, € Max(T) such thatM = M; N M, and the
natural mapsk/M — T'/My and R/M — T /M, are both isomorphisms;
(c) ramified case There exists\/’ € Max(T) such that\/’> C M c M’, [T/M : R/M] =
2, and the natural ma@® /M — T'/M’ is an isomorphism.
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Decomposed and ramified minimal extensions are infra-integral whil¢ marimal exten-
sions are not. Ramified minimal extensions are subintegral.

The next lemma will be used later. LBtbe a property holding for a claéf ring extensions,
stable under subextensions (ireC S'inC and[U, V] C [R, S]imply U C V inC). We say that
P admits a closure i@ if the following conditions (i), (ii), (i) and (iv) hold for any extension
Rc SincC:

(i) For any tower of extension® C U C S, thenk C S hasP if and only if R C U and
U C S haveP.

(i) There exists a largest subextensibre [R, S] such that? C 7" hasP.

(iii) No subextensior/ C V of T' C S hasP.

(v) T = RwhenR C S is a composite of finitely many minimal extensions which do not
satisfyP .

Such ar’ is unique, is called th@-closure ofR in S and is denoted bjz”. Some instances
are the separable closure in the class of algebraic field extensions arddbkare in the class
of integral ring extensions.

Lemma 1.5.Let P be a property of ring extensions admittingPaclosure in a clas€ of ring
extensions. If an FCP extensigh C S belongs taC and R” is its P-closure, then/[R, S| =
([R,R7] +([R”,S].

Proof. Obviously,/[R, S] > ¢[R, R”] + ¢[R7, S]. We prove by induction on := ¢[R,S] > 1
that there exists a maximal chain fromto S with lengthn containingR”. If n = 1, then
R c S is a minimal extension, so that eith@” = R, or R = S. Assume now that > 1
and that the induction hypothesis holds for arly< n. We may assume that # R”. Let
R=RyCRiC--CR,_1C R, =S beamaximal chain of subextensions with length
The induction hypothesis applied to the extensiinC S (with lengthn — 1) gives that there
exists a maximal chai®, = R} C --- C R/, ; C R, = S with lengthn — 1 containingR!’, so
that Ry C R] satisfiesP.

If R C R; satisfiesP, then,R C Ry C R} satisfiesP by (i), so thatkR] = R”. It follows
that we get a maximal chain frof to S with lengthn containingR”.

Assume thal? ¢ R; does not satisfp. If Ry # Rf, thenR, C R, satisfiesP becauser), C
RT. Let R’ be theP-closure of the extensioR C Rj. We haveR’ # R, becausek C R), does
not satisfyP by (i). Assume thaRk # R'. Because ofthe lengthéf, C--- C R/, ; C R, =S,
we get thatkR C R’ is minimal and satisfie®. For the same reasoR; C R, is minimal. LetR”
be theP-closure of the extensioR’ c S (with lengthn — 1). We haveR” = R”. The induction
hypothesis gives that there exists a maximal chain f/3io S with lengthn — 1 containingR”,
so that there exists a maximal chain fréhto S with lengthn containingR”. Now, assume that
R = R'. By (iii), no subextension o C R, satisfiesP, a contradiction, sinc&; C R, satisfies
P.

At last, assume that; = R, then,R = R” by (iv). Indeed,R C S is composed of minimal
subextensions, each of them not satisfying

Toend/([R,S] = ¢|R, R"] + (|R", S]. m

We recover in particular tha#fR, S| = ¢[R, R| + ¢[R, S] [6, Theorem 4.11].

Remark 1.6.For the reverse order, there is some companion result that can benwréteer all
it reveals useful.

We end by recalling some useful characterizations of the supportle€C&extension.

Lemma 1.7.[5, Remark 6.14 (b), Theorem 6.3] LBtC S be an integrally closed FMC exten-
sion. ThenSupS/R) = {P € Spe¢R) | PS = S}.

Lemma 1.8.[5, Corollary 3.2] Suppose that there is a maximal chéin= Ry C --- C R; C

- C R, = S of extensions, wher&; c R;,1 is minimal with crucial ideal); for each
i=0,....,n—1(i.e. R C S has FMC). TherSupfS/R) is a finite set; in factSupgS/R) =
{MiﬂR|i:O,...,n—l}.
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2 Preliminary results about FCP field extensions

We first observe that an FCP field extensi®nc L is finite, whence algebraic. It follows that
L(X) ~ L ®xg K(X) by [6, Lemma 3.1], so thatL : K] = [L(X) : K(X)]. Moreover, a
minimal field extension is clearly either separable, or purely inseparabtef6r instancel])
and the degree of a minimal purely inseparable extension of aiétdequal to the characteristic
of K.

Proposition 2.1.Let K C L be an FCP field extension and I&t, be the separable closure &f
in L. Then/[K, L] = {[K, K | + ([ K, L].

Proof. We use Lemmad..5, whereP is the property to be a separable extension Afd= K
is the separable closure3([Ch. V, Proposition 13, p. 42]). O

So, itis enough to consider the situation for FCP separable extensior&hpurely insep-
arable extensions.

Proposition 2.2.Let K C L be an FCP separable field extension. Th8K,, L] = ([K (X)), L(X)].

Proof. SinceK C L has FCP, its degree is finite. As a finite separable extension has a primitive
element, it has FIP. We infer fronT[Propositions 9 and 11] that there is an order-isomorphism
[K,L] = [K(X),L(X)], given byT — T(X). It follows that any maximal chain ok C L

leads to a maximal chain df (X) c L(X). Conversely, any maximal chain &f(X) C L(X)
comes from a maximal chain @f C L, giving /[K, L] = ([K(X), L(X)]. o

Proposition 2.3.Let K c L be an FCP purely inseparable field extension. The@k,, L] =
(K (X), L(X)].

Proof. SinceK cC L is an FCP purely inseparable field extensi@inis a field of characteristic
a prime numbep and|[L : K| is a power ofp, sayp”. It follows that there is only one maximal
chain composinds C L, and it has length, and leads to a maximal chain composiK§X ) c
L(X) with lengthn, which is also purely inseparable, with(X') of characteristip and[L(X) :
K(X)|=p". Thenn =([K,L] = ([K(X), L(X)]. |

Proposition 2.4.Let K C L be an FCP field extension and I&t, be the separable closure &f
in L. Then,K,(X) is the separable closure @& (X) in L(X).

Proof. We got in the proof of PropositioB.2 that K C K, has FIP, and so has a primitive
elementq, which is separable ovek. Then,« is also a primitive element of the extension
K(X) C K (X), and is separable ovéf (X). It follows that K (X) C K,(X) is a separable
extension.

Moreover,K, C L is purely inseparable. Then, any elemenfaé purely inseparable over
K, so that any element df(X) is purely inseparable ovet(X). Hence, K (X) C L(X) is
purely inseparable, giving th&f,(X) is the separable closure &f(X) in L(X). m|

We can now state the result for FCP fields extensions.
Theorem 2.5.Let K C L be an FCP field extension. Thetik, L] = ¢([K(X), L(X)].

Proof. Let K, be the separable closurefin L. Then,K,(X) is the separable closure &f( X)
in L(X) by Propositior2.4. Applying Propositior2.1twice, Propositior2.2and Propositior2.3,
we get that/[K (X)), L(X)] = ([K(X), Ks(X)] + ([K(X),L(X)] = ([K,K,] + ([K,,L] =
(K, L]. O

This gives the result needed for the next section.

Corollary 2.6. Let R C S be an FCP t-closed extension. ThéfR, S] = ([R(X), S(X)].

Proof. From [6, Lemmata 3.3 and 3.15], we get tiatX ) c S(X) is an FCP t-closed extension,
with {MR(X) | M € MSuppS/R)} = MSupp(S(X)/R(X)). Then, B, Proposition 4.6 and
Lemma 3.16 proof] give thaf R(X), S(X)] = D [l[Ra(X), Sy (X)]|M € MSupp(S/R)] and

S [[Run, Sm)|M € MSupp(S/R)] = ([R, S]. Hence we can reduce the proof to the case of a
quasi-local ring R, M). SinceM = (R : S) € Max(S) by [6, Lemma 3.17], we get/ R(X) =
(R(X) : S(X)) = MS(X). Now ¢([R(X),S(X)] = ¢/[R(X)/MR(X),S(X)/MR(X)] =
([(R/M)(X), (S/M)(X)]are consequences &, [Proposition 3.7]. We then observe tiigk, S| =
([R/M,S/M]|=([(R/M)(X),(S/M)(X)]in view of TheorenR.5and [5, Proposition 3.7]. o
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3 Onthe lengths of FCP extensions of Nagata rings
To introduce this section, we give the following lemma.

Lemma3.1.LetR C S be an integral extension and consider a maximal clfaif R-subextensions
of S defined byR = Ry Cc --- C R; C --- C R, = S, whereR; C R;,1 is minimal for each
i€{0,...,n—1}. Then,

(1) R c S is infra-integral if and only if, for each € {0,...,n — 1}, R; C R;.1 is either
ramified or decomposed.

(2) R c Sist-closed if and only i?; C R;,1 is inert for eachi € {0,...,n — 1}.

(3) Ifin addition (R, M) is a quasi-local ring and the conditions of (2) hold, theh= (R : S)
and(S, M) is a quasi-local ring.

Proof. (1) is obvious, because all the residual field extensions are isomorphis

(2) Assume thak C S is t-closed. TherR; C R;.; is inert for each € {0,...,n — 1} in
view of [5, Lemma 5.6]. Conversely, i; C R;;1 is inert for each € {0,...,n — 1}, and so
t-closed, ther C S is obviously t-closed.

(3) Moreover, if(R, M) is quasi-local, §, Lemma 3.17] shows that/ is the only maximal
ideal of S. |

We can now see how the t-closure is involved in the length of an integral k€Rsgon.
Proposition 3.2.Let R C S be an integral FCP extension, théfR, S] = ¢[R, L R] + ([4 R, S].

Proof. Use Lemmadl.5and LemmaB.1, whereP is the property to be an infra-integral extension,
andR” = L Ris the t-closure o in S. O

We are now in position to give a positive answer@Remark 4.18(b)].
Theorem 3.3.Let R C S be an FCP extension. ThefiR, S| = ([R(X), S(X)].

Proof. Let R C S be an FCP extension. We begin to notice that the t-closurd &f) in S(X) is
g(X)R(X) = (4R)(X) by [6, Lemma 3.15]. Moreover, ir] Remark 4.18 (b)], we proved that

{[R,S] = ([R(X),S(X)]ifand only if /[ R, R] = ¢[R(X), R(X)]. It follows that we can assume
that R c S is an integral FCP extension. But, PropositRa gives that/[R, S| = ([R, L R] +
(%R, S], and, in the same wayjR(X), S(X)] = ([R(X), (5R)(X)]+¢[(5R)(X), S(X)]. Now,
(5R,S) = ((5R)(X),S(X)] by Corollary2.6. To end,/[R,4R] = ([R(X), (4R)(X)] [6,
Proposition 4.7]. ]

Corollary 3.4.Let R C S be an FCP extension and a positive integer. Therj[R, S] =
([R(X1,...,Xn),S(X1,...,X5)].

We end this section by some considerations about the length of FCP erteRsi0 S with
respect to their residual extensions. Following Dobbs and Mullihsife define/\(S/R) to be
the supremum of the lengths of residual extensiong af S, considered as ring extensions.

Proposition 3.5.Let R C S be an FCP extension. Theéx(S/R) = A(R/4R).

Proof. We first observe that an FCP extensiBrC S is strongly affine, that is each of tie-
algebrasT” € [R, S] is of finite type. SinceR C S is a composite of minimal morphisms that
are either flat epimorphisms or integral morphistRsc 7" is an INC extension fof” € [R, S|

and hence a quasi-finite extension. Moreover, the residual extergieash minimal morphism

T CcU,withT,U € [R, S] are either isomorphisms or minimal field extensions, induced by inert
minimal morphisms. Then in the canonical decompositior 4R C R C S, the extension

R C Sis a flat epimorphism by the Zariski Main Theorem. Therefore the rasighttensions of

R C S identify with the residual extensions 6f2 C R and the components of maximal chains
in 4R, R] need to be minimal inert extensions by Lem&&2). The above discussion shows
that for an FCP extensioR C S, thenA(S/R) = A(R/4R)]. m
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So, itis enough to consider an FCP integral t-closed exterigians.

Proposition 3.6.Let R S be an FCP integral t-closed extension. Thefb/R) =
SUPL emsupp(s/ r) C[Rar, Sar] @nd([R, S| < nA\(S/R), wheren := [MSupp(S/R)|.

Proof. We get} [¢[Rar, Sm]|M € MSupp(S/R)| = (|R, S] (x) by [6, Proposition 4.6]. Assume
first that (R, M) is a quasi-local ring, and s@? : S) = M by Lemma3.1 Then,/[R,S] =
([R/M,S/M] = N\(S/R) by [5, Proposition 3.7]. Now, in the general case, set MJSpR) :=
{Ma,..., M,}. Consider a maximal chain @t-subextensions of defined byR = Ry C --- C
R; C --- C R, = S, whereR; C R, is minimal inert for eachi € {0,...,p — 1}. In view
of Lemmal.8 we have{M,...,M,} = {C(Ri,Rix1) "R |i € {0,....p —1}} = {(R; :
Rii1)NR|i€{0,...,p—1}}. An easy induction usingd] Lemma 3.3], shows that we can
exhibit R-subextensions of such thatk = Ry C --- C R, C --- C R, = 5, R, C R}, is
t-closed for eachj € {0,...,n — 1} and satisfie$; : R’ ;) N R = M;,. This is obvious for
j = 0. But, sinceR C R ist-closed and integral, for eaghe {2,...,n}, thereis auniqué/; €
Max(Rj7) lying above)/;, and we have MSug/R}) = {M},...,M,}. Then, for eacly ¢
{17 e ,n}, we have[RM_wSMj} = [(R;'—l)ij (R;')Mj} SinceRMj = (R;‘—l)Mj and(Ré)Mj =
SMJ- It follows thatE[R]uj,S]uj] = /\(SMJ/RMJ)y SO thaté[R, S} = E;‘l:j_g[RMﬂSMJ} =
> N(Sag; /Rary) = Y5 AR agy /(R 1)) = 325 N/ R;_,) because(R))n =
(R;_)m forany M # M;. Toend, lelQ € Spe¢S) and set” := QN R. If P ¢ MSupp(S/R),
we get thatRp = Sp = Sp, so thatk(P) = k(Q). If P € MSupp(S/R), then@ is the only
prime ideal ofS lying over P, so thatSp = Sg and[k(P), k(Q)] = [R/P, S/Q)]. It follows that
.......... n} E[RM_f7SM_f}'

For eachM € MSupp(S/R), we havel[Rys, Sar] = A(Sw/Rar) < A(S/R), so that(x)

gives/[R, S] < n\(S/R). O

Coming back to the Nagata ring extension, we get the following theorem.

Theorem 3.7.Let R C S be an FCP extension. Theéx(S/R) = A(S(X)/R(X)).

Proof. We getA(S(X)/R(X)) = A(R(X) /% R(X)) andA(S/R) = A(R/%R) from Propo-

sition3.5and R(X) = R(X) andg(X)R(X) = (4LR)(X) from [6, Proposition 3.8 and Lemma
3.15]. To make easier the reading,we Bét= %, R andS’ := R. Proposition3.6 gives

ANS'/R)=  sup  {[Ry,Sy]
MeMSupp(S’//R’)

and

NS (X)/R(X)) = sup (R(X)nr, S'(X) ]
M’ EMSUpHS’(X)/ R (X))

Now, we have the following result$[ R/, S},] = ¢[R},(X), S, (X)],

MSupp(S"(X)/R'(X)) = {MR'(X) | M € MSuppS’/R')} (see the proof of Corollarg.5)
and, forM’ € MSupp(S’(X)/R' (X)), M € MSuppS’/R’) such thatM’ = MR'(X), we
haveR/(X)]u/ = RII\/I(X) andS/(X)]u/ = Sju(X) Then,E[RM, S;\A = E[R/(X)M/, S/(X)]u/],
giving A(S/R) = A(S(X)/R(X)). o

4 On some new properties of FIP extensions

In [6, Theorem 3.30], we got the following result: LE®, M) be a quasi-local ring an&t C S

a subintegral extension. P& := R + SM* andM; := M + SM’ for eachi > 0. Then,
R(X) c S(X) has FIP if and only ifR, C S is chained and k((SM)/M) = n — 1, where
n:=v(R/(R:S)) is the index of nilpotency oM /(R : S)in R/(R: S). When|R/M| = o,
these conditions are equivalent b ¢ S has FIP. We intend to establish a more agreeable
characterization. Before that, we reprove part®fllemma 5.12] under weaker assumptions
that are enough for our purpose.
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Lemma 4.1.Let(R, M) be a quasi-local Artinian ring which is not a field and tebe the index
of nilpotency of\/ in R. Let R C S be a finite subintegral extension such tfi&t: S) = 0. Set
R;:= R+ SM*andM; .= M + SM*fori € {0,1,...,n}. Thenk C S has FCP. Moreover,
the following conditions are equivalent:

(1) Lr(SM/M) =n — 1.
(2) Lg(M;/M;4q) =1foralli=1,...,n— 1.
(3) R C Ry is chained.

Proof. First, we may remark thak c S has FCP in view of%, Theorem 4.2]. Next,R;, M;) is
quasi-local for alt = 1,...,n, because? C S is subintegral and?; /M; = (R+ SM*)/(M +
SM*%) = R/[RN (M + SM?%)] = R/M =: K, which is a field. Moreover, for X i < n, we
haveM; # M, (for if not, we would haves M C M + SM*** and multiplication byd/»—i—1
would lead toSM™~1 C M™~* ¢ Rand 0# M"1 C (R: S) = 0, an absurdity). It follows
thatR; # R;11. ThenM R; = M; 1 = (R;1 : R;); note also thati? C M, 1 C M;.

(1) < (2). SinceM; = SM andM,, = M, we gety "' L p(M;/M;,1)
=Lr(SM/M). Also, ifi =1,...,n— 1, thenM; # M;.,, and so lg(M;/M;+1) > 1. Thus,
Lr(SM/M) > n — 1, with equality if and only if Lg(M; /M, 1) =1foralli =1,...,n — 1.

(2) = (3). Assume that k(M;/M;,,) = 1foralli =1,...,n—1. SinceM M; C M,;,; and
K = R/M, we have lg(M;/M;11) = Lg/n(M;/M;iy1) = dimg (M;/M;,1). It follows that
dimg (R;/M;11) = dimg(R;/M;) + dimg (M;/M;+1) = 1+ 1 = 2, and so we deduce from
Theoreml.3(c) thatR; 1 C R; is a ramified (minimal) extension. We get a maximal chaia-
R, C R,—1 C -+ C Rp C Ry. We will show that there cannot exist soffie= [R, Rq|\{R;}" ;.
Deny and letc := max{i € {1,...,n—1} | T C R;}. AST ¢ Ry41, We can use FCP to find
someT” € [T, Ry] such thatl” C Ry, is a minimal extension. This minimal extension must be
ramified because it is subintegral. Note tliat~ Ry, andM’ := (17" : Ry) is a maximal ideal
of "with M"NR=M.ASM,1 = MR, € M'R;, = M' C My, we haveM,,,1 C M' C My.
Since 1= LR(Mk/Mk+1) = LR/M(Mk/Mk+1) = LRk/Mk (Mk/Mk+1), the ideaIsMkH and
M, of R, must be adjacent. Hendd’ = M 1. BUutRy,1 = R+ My,1 =R+ M' CT' C Ry,
and so the minimality of2;..; C Ry, yields thatl” = R, 1, the desired contradiction.

(3) = (2). In fact, we are going to show that if there exist& {1,...,n — 1} such that
Lr(My/Myi1) > 1, then[R, Ry] is not linearly ordered. ByH, Proposition 4.7(a)], we have
that LR(JV[k/Mk+1) < LR(M]_/M) = LR(RJ_/R) is finite. But we have h(]\/jk/Mk+l) =
Lr/v (My/Mpiy1) = Lg, ja, (My/My41), which is finite. Thus, there exists dt).-submodule
Q of M, containingM}_. 1 such that dim (Q/M,.1)
= dimg (M /My, 1) — 2. Hence ding (M;,/Q) = 2 andM,,/Q has at least two distinct one-
dimensional K -vector subspaces of the for@'/Q and Q”/Q, where@’, Q" are appropriate
ideals of R, that containg). Moreover, they are incomparable. Sirgeand@” containMy, 1,
wehaveQ "NR=Q"NR =M. SetT" .= R+ Q', T" := R+ Q" C Ry. It follows thatQ’
(resp. Q") is the unique maximal ideal f’ (resp.7"). Assume, for instance, that c 7.
Then,Q" C Q”, a contradiction. It follows thatR, R;] is not linearly ordered. m|

We can now offer a nicer form oB[ Theorem 3.30]

Theorem 4.2.Let R C S be a subintegral extension. The following statements are equivalent:
(1) R(X) c S(X) has FIP.
(2) R c S has FIP and is arithmetic.

Proof. Under each statemenk C S has FCP, so thaMSuppS/R)| < oc [6, Theorem 3.9]
and b, Corollary 3.2]. In view of b, Proposition 3.7]R c S has FIP if and only ifRy; C Sy,
has FIP for eacd/ € MSupp(S/R) andR C S has FCP. In the same wal(X ) C S(X) has
FIP if and only if Ry (X) C Sy (X) has FIP for eactd/ € MSuppS/R) andR(X) C S(X)
has FCP, because d,[Lemma 3.16]. It follows that we may reduce to the case wh&re\/)
is a quasi-local ring, so thdi?(X), M R(X)) is a quasi-local ring. In this situation, we claim
that R(X) c S(X) has FIP if and only if? c S has FIP and is chained.

Assume first thak(X) c S(X) has FIP. ThenR c S has FIP by §, Theorem 3.30]. More-
over,|R(X)/MR(X)| = |(R/M)(X)| = cc. SetC” := (R(X) : S(X)), R := R(X)/C', M' :=
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MR(X)/C"andS" := S(X)/C’. Then,R’ C S’ has FIP,R' is a quasi-local Artinian ring with
(R':S") =0and|R'/M'| = co. Assume first thad/” # 0, so thatR’ is not a field. In view of
[5, Proposition 5.15], we get thaR’, S’] is a chain. Assume now that’ = 0, so thatr’ is an
infinite field. SinceR’ c S’ has FIP, it follows from I, Theorem 3.8 and proof of Lemma 3.6]
that[R’, 5] is a chain. In both casd®’, S’] is a chain, and so af&?(X), S(X)] and[R, S] by
[6, Lemma 3.1(d)].

Conversely, assume th@& c S has FIP and is chained. Sét := (R : S), R’ =
R/C, M" := M/C andS” := S/C. Then,R” c S” has FIP and is chained®” is a quasi-
local Artinian ring and(R” : S”) = 0. Assume thak” is not a field. Using Lemm4.1 and
its notation, we get thgtR}, S”] is a chain, and so iR, S]. Since[R”, R{] is also a chain,
we get that Lg. (S”M"”/M") = n — 1, wheren is the index of nilpotency of/” in R”. But
Lr/ (S"M"/M") = Lr(S"M"/M") = Lr(SM/M), because of]3, Corollary 2 of Proposi-
tion 24, page 66]. Moreover, is the index of nilpotency of\//C in R/C. Then, we can use
[6, Theorem 3.30] to get tha®(X) c S(X) has FIP. Assume now thd@” is a field, so that
(R:S)= M. Then,SM = M givesR; = R, = R, andn = 1 implies that Lg(SM /M) =0 s
satisfied. And§, Theorem 3.30] gives again the result. O

Corollary 4.3. Let R C S be an FIP ring extension. TheR(X) C S(X) has FIP if and only if
R C {Ris arithmetic. In that cas§R(X), S(X)]| = |[R, 5]|.

Proof. Use |6, Theorem 3.21] which states th&{ X ) C S(X) has FIP if and only ifR C S and
R(X) C £R(X) have FIP. Conclude with7[ Theorem 32]. o

Corollary 4.4. Let R C S be an FIP ring extension such thgR/M| = oo for eachM €
MSupp({R/R). ThenR(X) C S(X) has FIP. The result holds in particular whéR /M| = oo
for eachM € MSupp(S/R).

Proof. It is enough to prove that a subintegral FIP extendioa S such thajR/M| = oo for
eachM € MSuppS/R) is arithmetic. We can suppose that the conductoRof S is zero
and thatR is quasi-local, with maximal ideal/ € MSuppS/R). It follows that(R, M) is a
quasi-local Artinian ring by %, Theorem 4.2]. Assume thdt is not a field. Then[R, S] is a
chain by b, Proposition 5.15]. IfR is an infinite field,S is of the formR[«], for somea € S
which satisfiesr® = 0 [1, Theorem 3.8 (3)], sinc& C S is subintegral. Ther{R, S] is linearly
ordered by the proof ofl, Lemma 3.6 (b)]. ]

Corollary 4.5. Let R C S be an extension, theR(X3,...,X,,) C S(Xa,...,X,) has FIP for
each integer > Oif and only if R(X) C S(X) has FIP.

We come back to the example given B Example 3.12], which shows that the arithmetic
condition is necessary in Theoreh?

Example 4.6.Let K be a finite field and™ := K[Y]/(Y*). As T is a finite-dimensional vector
space ovelK, it follows from [1, Theorem 3.8 (b)] that the extensiéh c T has FIP. Consider
the extensiork (X) C 7'(X). We proved in §, Example 3.12] thak'(X) C T'(X) cannot have
FIP becausé (X) is an infinite field and’( X) contains an element whose index of nilpotency
is 4 sinceT — T(X) is injective. Another proof of this result can be given by Theore
Indeed, consider the cosgt=Y + (Y*4) € T = K[Y]/(Y*). PutS; := K[y?] andS; := K[y7].
We get thatk” C T'is a subintegral extension which has FIP, Buand.S; are incomparable and
K C T is not arithmetic. SoK (X) C T'(X) cannot have FIP.

Remark 4.7.1f R C S is not subintegral it may be that the arithmetic condition be superfluous.
We proved that a seminormal extensiBrC S has FIP if and only ifR(X) C S(X) has FIP §,
Corollary 3.20]. It is easy to exhibit seminormal FIP extensiéns S with R quasi-local and

R C S non arithmetic (see Examp135)).

In the next section we examine the first properties of arithmetical extenside study will
be strongly completed in a forthcoming paper.
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5 Elementary properties of arithmetical extensions

Using the language and results of Knebusch and Zhariglinye are able to get a characteriza-
tion of some arithmetic extensions. We note here that chained ring extstigions are called
A-extensions by Gilbert9]. Knebusch and Zhang defined Prifer extensiond iih. [It is now
well known thatk C S'is Prufer if and only if( R, S) is a normal pair. We refer the reader id]
for the properties of Prifer extensions, noting only here that a ringigxte R C S is Prifer if
and only if R C T is a flat epimorphism for each € [R, S]. We recall some properties of a flat
epimorphismf : A — B (see L2, Chapter 1V]):
Scholium

(1) Spe€¢B) — Spec A) is injective

(2) 1 is essential; that is, for any ring morphigm B — C, such thay o f is injective, then
g is injective.

(3) Each ideal7 of B is of the form.J = f~1(.J)B.

(4) If f isinjective andf is factoredA — C — B, thenC' — B is a flat epimorphism, if it is
injective.

(5) The class of flat epimorphisms is stable under base changes.
We refer the reader talfl] for the meaning of a Priifer-Manis extension, called also a PM-
extension. The following proposition will be completed by Theokdy.

Proposition 5.1.Let R C S be an integrally closed extension. ThEnC S is arithmetic if and
only if R C S is locally Prifer-Manis.

Proof. Use [L1, Theorem 3.1, p. 187] O

Proposition 5.2.Let R C S be an FMC extension.

(1) Assume thak C S is arithmetic and integrally closed. The8upp;,(Sp/Rp) is a chain
for eachP € Spe¢R).

(2) Assume thak C S is chained, themMSupp,(S/R)| = 1.

Proof. (1) Assume thak C S is an arithmetic integrally closed FMC extension. We can assume
that R is local with maximal ideal\/ in SupgS/R). If R C S is PM, observe that the set of all
prime ideals of R such thatQ.S = S'is SupfdS/R) by Lemmal.7and is a chain by the proof
of [11, Theorem 3.1, p. 187].

(2) Let R C S be a chained FMC extension. L&f € MSuppS/R). We begin to show
that there existf?] € [R,S] such thatR C Rj is a minimal extension witlt(R, R}) = M.
LetR = Rp C --- C R, C --- C R, = S be a maximal chain of subextensions, where
R, C R;+1 is minimal for eachi € {0,...,n — 1}. If C(R,R1) = M, we setR] := Rj.
Assume that’ (R, R1) # M, and set := inf{i € {1,...,n} | C(R;—1,R;) N R = M}. Then,

k > 1 C(Rk_1,Rx) N R = M, andC(R;_1,R;) N R # M for eachi < k. It follows that
M ¢ MSupp(R;-1/R). By [18, Lemma 1.10], there exist8] € [R, R;] such thatR Cc R}
is @ minimal extension witle (R, R}) = M. We claim thaiMSupp(S/R)| = 1. Deny and let
N € MSuppS/R), N # M. The previous proof shows that there exiBts € [R, S] such that
R C RY is a minimal extension witl¥ (R, RY) = N, so thatR{ # R}, a contradiction since
R C S'is chained. |

_We will say that a ring extensioR C S is quasi-Prufer(respectivelyguasi-Prifer-Manis)
if R C S is Prifer (respectively, Prifer-Manis). We will also say that an esitenk C S is
pinchedat somer” € [R, S] if each element ofR, S] is comparable under inclusion Ta

Proposition 5.3.Let R C S be an extension. TheR C S is chained if and only iR C R is
chained,k C S is quasi-Prifer-Manis anéiz, S] is pinched at?. Moreover, for each invertible

element: € S, we have either: ¢ Rorz—1 e R.

Proof. Use [L1, Theorem 3.1, p. 187] foR C S to prove the first statement. We show the
second. Ifz € S is invertible, thenR|[z] is comparable taR[z~'] and R[z] N R[z~'] = R
because® C R[z] N R[z~Y] is integral P, Lemma 1.2]. O



58 Gabriel Picavet and Martine Picavet-L’Hermitte

Remark 5.4.We can also deduce the first statement from the second by using fieorem
3.13, p.195] in casé C S is a Marot extension; that is, for eashe S\ R, the R-module
R + Rsis generated oveR by a set of units of.

Lemma 5.5.Let R C S be an extension and an ideal ofS with I := J N R.

(1) The mapl’ — T/(T nJ) from[R, S] to [R/I,S/J] is surjective and order-preserving. Its
restriction[R + J, S] — [R/1,S/J] is bijective and order-preserving and order-reflecting.

(2) If R C Sis chained, therR/I C S/J is chained.
(3) If R C S'is arithmetic, thenk/I C S/J is arithmetic.

(4) If R C Sis Prufer, thenR/I C S/J is a Prifer extension. In particular, iV is a maximal
ideal of S and R C S is chained, ther? /(N N R) is a valuation domain with quotient field
S/N.

Proof. To prove that (1) and (2) hold, it is enough to observe tlfat- J)/J is isomorphic to
R/I and replacingr with R + J, we have to work with an extension of rings sharing the ideal
J. Then (3) follows from (2), because the localization at a prime ideat 4f is of the form
Rp/Ip, whereP is a prime ideal o?, andJp N Rp = Ip.

Then (4) is a consequence of the following fadisC S is Priifer entails thak + J C S is
Prifer and then it is enough to uskl] Proposition 5.8, p.52].

For the last statement, use Propositio8 because?/(N N R) C S/N is chained by (2). o

Remark 5.6.It follows from Lemmab.5 that a quasi-Prufer extensiad C S gives a quasi-
Prifer extensio/(J N R) C S/J for each ideal/ of S andR/(JNR) = R/(RNJ).

Let U be an absolutely flat ring. Recall that each elemeot U has a unique quasi-inverse
2’ € U, defined byz?2’ = x andz’?z = 2’. In that case, set = z2’. Thene is an idempotent
and 1— e + xis a unit ofU, such tha{l — e + )t = (1 — e + 2').

Proposition 5.7.Let R C S be a chained ring extension, such ttais zero-dimensional.
(1) S = Tot(R) and thenR is a Prufer ring.

(2) Eachz € S/Nil(S) has a quasi-inverse’ € S/Nil(.S), such that either: or =’ belongs to
R/Nil(R).

(3) R C S is additively regular, whence a Marot extension.

Proof. We observe thak C S is chained and theR C S is Prifer by Propositios.3. It follows
from [21, Corollaire 4], thatS identifies with Tof R) and hencer is a Prifer ring. Sincé& C S

is integrally closed, we have that I#) = Nil(R). SetU := S/Nil(S) andT := R/Nil(R).

We get a Prufer extensidh C U by Lemmab.5, whereU is absolutely flat, whenc& C U is
integrally closed. By the above recall and Proposid@)if z isinU, then either € T orz’ e T
because % e is an idempotent dff, belonging tal'. Moreover, there is some= 1—e € T such
thatx + ¢ is invertible inU. Since Nil.S) = RadS), the Jacobson radical, we get that the same
property holds for the extensidi C S. In other words,R C S is additively regular, whence a
Marot extension (se€l]l, Remark 3.15, p. 196]). |

Gilbert proved that an integral domaihwith quotient fieldK is such thatk C K is chained
(R is a-domain with the Gilbert's terminology) if and only |2, K] is pinched atR, R is a
quasi-locali-domain andR C R is chained 9, Theorem 1.9]. We note that this result implies
that R is a quasi-local unbranched domain, thakiss quasi-local (actually, in this cageis a
valuation domain).

We intend to generalize this result to some extension. Before that we gharacterization
of i-pairs, that are ring extensio® C S such that Spe@’) — SpedR) is injective for each
T € [R, S]. We will say that a quasi-local ring is unbranchedn S if R is quasi-local.

Proposition 5.8.An extension? C S defines an-pair if and only if R C S is quasi-Prufer and
R C Ris spectrally injective.
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Proof. One implication is given byl1, Theorem 5.2(9), p. 47]. For the converse, assume that
Spec¢R) — Spec¢R) is injective and thak C S is quasi-Prifer and It € [R, S]. To conclude,
considerU := RT. ThenR C U is a flat epimorphism, whence spectrally injective ahd: U
is integral. Sincek C U is spectrally injective, we get thdt C T is spectrally injective. O

Remark 5.9. A similar proof shows that an extensiéghC S is quasi-Prufer ifand only iR C S
is an Inc-pair.

Proposition 5.10.Let R C S be an extension, such th&tis quasi-local and unbranched if:.
ThenRk C S is chained if and only if? C R is chained,R C S is quasi-Prufer andR, S] is
pinched atR. In that caser C S defines ani-pair.

Proof. We can suppose thdt # S. Observe thaR is quasi-local. Sa? C S is Prifer if and
only it is Prufer-Manis 11, Theorem 1.8, p. 181] and also, if and onlyiifC S is chained 11,
Theorem 3.1, p. 187]. The first statement is now clear.

Now, sinceR is quasi-local, from%, Theorem 6.8], we deduce that there exits SpecR)
such thatS = Rg, Q@ = SQ andR/Q is a valuation domain. Under these conditigh&) is
the quotient field of?/Q andQ is a divided ideal of?; that is, comparable with any other prime
ideal of R. We observe thaf) is the conductor oR C S. Let M, M’ be two prime ideals of
R lying over some prime idea? of R. If M and M’ both containg, they are comparable and
by incomparability ofR C R, we getthatM = M’. If M C Q C M’, we get alsaM = M'.
Thus there is only one case to examind; M’ c Q. Since the flat extensioR C S has the
Going-Down property( is a minimal prime ideal iR and thenM = M’. To conclude, it is
enough to use Propositidn8, because? C R is spectrally injective. O

The following “birationnal” result is surely well-known.

Lemma 5.11.Let R be a ring whose total quotient rin§ is zero-dimensional and with integral
closure R. Then the maBSped¢sS) — SpecR) is injective and induces bijective maps :
Max(S) = Min(S) — Min(R) and : Min(R) — Min(R). For M € Min(R), we setMg :=
oY (M) and Mz == ¢~ 1(M).

Proof. For each injective extensiod C B, any minimal prime ideal ofA is lain over by a
minimal prime ideal ofB, any minimal prime ideal o3 contracts to a minimal prime ideal of
AwhenA C Bis flat and Spe@) — SpecA) is injective whenA C B is a flat epimorphism
(see Scholium). O

Theorem 5.12Let R C S be an extension, wherg is locally irreducible andsS is zero-
dimensional.

(1) If R C Sis chained, therR is a Priifer ring with total quotient ring and R C S defines an
i-pair. Moreover, the following two conditions (*) and (**) hold:

(*) Ris locally unbranched irt.
(**) R/M is a quasi-local-domain for each\/ € Min(R).
(2) Suppose thak C R is chained|R, S] is pinched atR, S = Tot(R) and R is Prifer.
() If (*) holds, thenR C S is arithmetic.
(b) If (**) holds, thenR/M C S/Mgs is chained, for eacti/ € Min(R).

Proof. We first prove (1) and suppose thRtC S is chained. Therk C S is quasi-Prifer-Manis
by Proposition5.3. HencesS can be identified to ToR) in view of Propositions.7 and R is a
Prifer ring.

Moreover, Spek) — Sped R) induces a bijection MifR) — Min(R) by Lemma5.11

We claim that Spe@?) — Spec¢R) is injective. LetM, N be two prime ideals oR lying
both over a prime ideaP of R and let} be the uniqgue minimal prime ideal @t contained
in P. A minimal prime idealt of R, 9t C M necessarily lies oveR. It follows then that
9N = P is contained inV. SincePBs is maximal, Lemmd.5 shows thatk /P is a valuation
domain and then SpeB/%5) is a chain. The preceding observations yield that S@gc—
SpecR) is injective, becaus® C R is an Inc-extension. Therefor® C S defines an-pair
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by Proposition5.8. From Lemma5.5 and Remarls.6, we deduce thak /33 is a quasi-local
i-domain with integral closur&/B and quotient field5/B s (see L5, Proposition 2.14]).

We now prove (2). (a) is a consequence of ProposBidi) since for each multiplicatively
closed subseX of R, the mapl’ — T is a surjection fromR, S] to [Rs, Sz]. Then (b) follows
also from Propositio.10 |

In caser is an integral domain, we recover in (2)(b) the Gilbert's above-mentioasult.

Example 5.13.Arithmetic extensions appear frequently, as the reader may see below.

(1) An integrally closed FCP (whence FIP) extensi®rc S is arithmetic. IndeedR;; C
Sy is integrally closed and FCP for eadtf € MSupp(S/R), so that[Ras, Si] is a chain b,
Theorem 6.10].

(2) A subintegral FIP extensioR C S such thaiR/M| = oo for eachM € MSupp(S/R) is
arithmetic. We already proved this result in the proof of Corolla#y

(3) For a t-closed FIP integral extensigh C S, Lemma3.1(3) makes sense to say that
Ry /MRy C Sy /MRy, is a purely inseparable field extension for ed¢he MSupp(S/R).
We assume that these hypotheses hold and showrthat is arithmetic.

We can reduce to the case whekeis local with maximal ideald/ := (R : S). Then
[R/M,S/M]is a chain by 8, Proposition 2, Ch. V, page 24] and sd & S].

(4) Let R C S be an FIP extension. Assume thai, C Sy, satisfies one of the above
conditions (1), (2) or (3) for each/ € MSupp(S/R). ThenR C S is arithmetic.

(5) On the contrary, a seminormal and infra-integral FIP extenBiansS is never arithmetic.
To see this, we can suppose tliais quasi-local with maximal ideal/ € MSupp(S/R) and
(R : S) = M by using a suitable localization. Using the proof 6f Proposition 4.16], we get
thatS/M = (R/M )™ for some positive integet and ther[R, S] is not a chain.

(6) It may be asked when is a field extensiGnC F arithmetic (chained)? To the authors
knowledge, the only comprehensive study about the question is givi@@finfrom which we
extract the following. An intermediary extensid@nof K C F is calledreducedif L # F and
forallc,d € F\ L, L(c) = L(d) = K(c¢) = K(d). Then[K, L] is a chain if and only if each
of the elements ofK,, L] \ {F} is reduced. In this cask€ C F is algebraic. IfK C F is finite
and Galois, with Galois grou@, thenK C F is arithmetic if and only if either is cyclic of
orderp™ (p a prime number and an integer> 0) or G is isomorphic to a generalized quaternion
group of order 2,n > 3 and in this casék, F| = {K, L, F'}, with [F' : L] = 2. Other criteria
are given for separable finite extensions. Note also that,if_] is a chain and< C L algebraic,
thenK C F'is either separable or purely inseparable.

Olberding in [L4] says that an extension of rindg® C S is quadraticif each intermediate
R-submodule ofS containingR is a ring. Other authors cafly-extensiorsuch extensions and
we will follow them. An extensiom? C S is calledquadraticif eachs € S satisfiesP(s) = 0
for a monic quadratic polynomidb(X) € R[X] (see for instancelld]). We call an extension
R C S al-extensiorif [R, S] is stable under addition, that1s + 7, = 7175 for T1, 7> € [R, S].
Note that an extensioR C S is aAg-extension if and only if it is a quadratis-extension and
also that these properties localize and globalize. Actually, the proofsOb§[ven for integral
domains are valid for arbitrary extensions.

We first give some examples Af-extensions.

Proposition 5.14.Let R C S be a spectrally injective integral (for example, subintegral) FCP
extension of rings. If th&-moduleS/R is locally uniserial (for example wheR C S is locally
minimal), thenk C S is an arithmeticAq-extension.

Proof. We can assume tha C S is an integral FCP extension of rings C S, which is
spectrally injective, withk quasilocal and assume that tRemoduleS/R is uniserial. Since
Sped¢S) — SpedR) is injective, S is quasilocal. MoreoverS/R is an Artinian R-module
becausd?/(R : S) is Artinian ([5, Theorem 4.2]) and' is anR-module of finite type. It follows
from [14, Lemma 4.1] thai? C S is alg-extension. O

Proposition 5.15.Let R C S be aA-extension. The® C S is a Prifer extension.

Proof. Itis enough to applyIl, Theorem 1.7, p. 88]. O
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Proposition 5.16.An arithmetic extensio® C S is aA-extension and hence is quasi-Prifer.
Proof. In cas€e[R, S] is a chain, we hav® + C = BC' = Max(B, C) for B,C in [R, S]. o

Theorem 5.17.Let R C S be an integrally closed extension, th&C S is arithmetic if and
only if R C S'is Prufer and, if and only if: C S is locally Prufer-Manis.

Proof. Assume thatR C S is integrally closed. IfR C S is arithmetic, therkR C S is Prufer.
Conversely, ifR C S'is Prifer, thenk C S is arithmetic. It is enough to use Propositi®i and
[11, Theorem 5.1, p. 46] which states thatC S is locally Prufer-Manis ifR C S is a Prufer
extension. |

Proposition 5.18.Let R C S be an arithmetic extension. Then fB;C, D € [R, S], we have
BN (C.D)=(BnC).(BNnD)andB.(CND) = (B.C)N(B.D). Hence([R, S].Nn,.)is a
complete modular lattice.

Proof. These equalities are locally trivial. O

These distributivity properties do not imply that the extension is arithmeti@ Famark
5.19

Remark 5.19.Consider the following example. St:= Q, T3 := Q(v/2), T» := Q(v/2) and
S := Q(v/2). Then, setting: := V2, z := v/2 andy := v/2, so that: = 22 andy = =%, we get
S =Q(z), Th = Q(y) andT> = Q(z). The (field) extension® c T; andT; ¢ S, fori = 1,2
are all minimal inert (ring) extensions with crucial ideal 0. Using the pafathe Primitive
Element Theorem (se8,[Ch. V, Théoréme 1, p. 39]), we getthHat S| = { R, T1, 1%, S}, so that
([R, S],-,N), is a complete modular lattice, sin€gl, = S and73NT> = R. Indeed, the minimal
polynomial of z is X® — 2, whose divisors of degree 3in S[X]are X — 2, X + 2, X? — 22 =
X2 -2, X3 — 2P =X3—y X34+ B = X34y X2+ 2X + 22, X2 —2X + 22, X3 - 22X% +
222X — 23, X3 4+ 22X2 + 222X + 23, However,[R, S] is not a chain.
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