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Abstract. Let R ⊂ S and S ⊂ T be minimal ring extensions of (commutative) rings. If (i)
each of these extensions is integral or (ii) each of these extensions is integrally closed or (iii)
R ⊂ S is integral while S ⊂ T is integrally closed, then each chain of rings between R and T is
finite. Examples are given of minimal extensionsR ⊂ S and S ⊂ T such thatR ⊂ S is integrally
closed, S ⊂ T is any of the three possible kinds of integral minimal extensions, and there exists
(resp., does not exist) an infinite chain of intermediate rings between R and T .

1 Introduction

All rings considered below are commutative with identity; all subrings and inclusions of rings
are (unital) ring extensions. Recall (cf. [9]) that a ring extension R ⊂ S is a minimal ring
extension if there does not exist a ring properly contained between R and S. (As usual, ⊂
denotes proper inclusion.) A minimal ring extension R ⊂ S is either integrally closed (in the
sense that R is integrally closed in S) or integral. If R ⊂ S is a minimal ring extension, it
follows from [9, Théorème 2.2 (i) and Lemme 1.3] that there exists a unique maximal ideal
M of R (called the crucial maximal ideal of R ⊂ S) such that the canonical injective ring
homomorphism RM → SM (:= SR\M ) can be viewed as a minimal ring extension while the
canonical ring homomorphism RP → SP is an isomorphism for all prime ideals P of R except
M . If R ⊂ S is an integral minimal ring extension with crucial maximal ideal M , there are
three possibilities: R ⊂ S is said to be respectively inert, ramified, or decomposed if S/MS (
= S/M ) is isomorphic, as an algebra over the field K := R/M , to a minimal field extension of
K, K[X]/(X2), or K ×K.

Let R ⊂ S and S ⊂ T each be minimal ring extensions. It is natural to ask whether R ⊂ T
inherits any interesting properties from the two given extensions. Of course, R ⊂ T is not
a minimal ring extension. However, it follows from [6, Theorems 4.2 (a) and 6.3 (a)] that if
R ⊂ S and S ⊂ T are either both integral or both integrally closed, then R ⊂ T satisfies the
FCP property. (Recall that a ring extension A ⊆ B is said to satisfy FCP if each chain of rings
contained between A and B is finite.) In fact, if both R ⊂ S and S ⊂ T are integrally closed, one
can say more, namely, R ⊂ T satisfies the FIP property. (Recall that a ring extension A ⊆ B is
said to satisfy FIP if there are only finitely many rings contained betweenA andB. It is clear that
FIP⇒ FCP, but the converse is false.) Our main interest here is in the behavior of R ⊂ T when
exactly one of R ⊂ S and S ⊂ T is integral (while the other is necessarily integrally closed).
Proposition 2.2 and Theorem 2.3 determines this behavior relative to the FCP property. It turns
out that if R ⊂ S is integral and S ⊂ T is integrally closed, then R ⊂ T satisfies FIP (and hence
FCP): see Theorem 2.2 (c). However, if R ⊂ S is integrally closed with crucial maximal ideal
M and S ⊂ T is integral with crucial maximal ideal N , then R ⊂ T satisfies FCP ⇔ R ⊂ T
satisfies FIP⇔ N ∩R 6⊆M : see Theorem 2.3.

Sections 3 and 4 are devoted to examples showing that the above results cannot be extended,
in the following sense. Let P be any of the three properties “decomposed," “inert," and “ram-
ified". Then there exists a tower of rings R ⊂ S ⊂ T such that R ⊂ S is an integrally closed
minimal ring extension, S ⊂ T is an integral minimal ring extension that satisfies the property
P , and R ⊂ T either does or does not (as one wishes to prescribe) satisfy FCP.

If D is an integral domain, it will be convenient to let D′ denote the integral closure of D (in
its quotient field). Given rings A ⊆ B, we let [A,B] denote the set of intermediate rings, that is,
the set of rings C such that A ⊆ C ⊆ B. Any unexplained material is standard, as in [10].
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2 Some sufficient conditions for FCP and a criterion

We begin by collecting some (essentially known) results that give sufficient conditions for the
juxtaposition of minimal ring extensions R ⊂ S and S ⊂ T to produce an extension R ⊂ T that
satisfies FCP.

Proposition 2.1. (a) Let R1 ⊂ R2, . . . , Rn ⊂ Rn+1 be n (< ∞) integral minimal ring exten-
sions. Then R1 ⊂ Rn+1 satisfies FCP.

(b) Let R1 ⊂ R2, . . . , Rn ⊂ Rn+1 be n (< ∞) integrally closed minimal ring extensions.
Then R1 ⊂ Rn+1 satisfies FIP (and FCP ).

(c) Let R1 ⊂ R2, . . . , Rm ⊂ Rm+1 be m (with 1 ≤ m < ∞) integral minimal ring exten-
sions and let Rm+1 ⊂ Rm+2, . . . , Rm+n ⊂ Rm+n+1 be n (with 1 ≤ n < ∞) integrally closed
minimal ring extensions. Then R1 ⊂ Rm+n+1 satisfies FCP. Moreover if, in addition, m = 1,
then R1 ⊂ Rm+n+1 satisfies FIP (and FCP ).

Proof. (a) (resp., (b)) Since R1 ⊂ R2 ⊂ . . . ⊂ Rn ⊂ Rn+1 is a finite maximal chain of rings
going from R1 to Rn+1 and the extension R1 ⊂ Rn+1 is integral (resp., integrally closed) the
assertion follows at once from [6, Theorem 4.2(a)] (resp., [6, Theorem 6.3(a)]).

(c) The hypotheses ensure that Rm+1 is the integral closure of R1 in Rm+n+1. By (a), R1 ⊂
Rm+1 satisfies FCP. Moreover, by (b) or [1, Theorem 4.1], Rm+1 ⊂ Rm+n+1 satisfies FIP (and
hence FCP). Therefore, by [6, Theorem 3.13]R1 ⊂ Rm+n+1 satisfies FCP. The stronger assertion
in case m = 1 also follows from [6, Theorem 3.13] since, in this case, the (minimal) ring
extension R1 ⊂ Rm+1 satisfies FIP.

In view of Proposition 2.1, the only remaining context to consider is R ⊂ S ⊂ T where
R ⊂ S is an integrally closed minimal ring extension and S ⊂ T is an integral minimal ring
extension. For this context, Theorem 2.3 gives a necessary and sufficient condition for R ⊂ T
to satisfy FCP. Section 3 (resp., 4) is devoted to examples where this condition is not (resp.,
is) satisfied, regardless of which kind of integral minimal ring extension S ⊂ T is. We leave
to the reader the task of collecting examples that satisfy the hypotheses of the various parts of
Proposition 2.1.

To facilitate the proof of Theorem 2.3 (as well as that of Example 3.1), we isolate the follow-
ing lemma, which is of some independent interest.

Lemma 2.2. Let D be an integral domain which is not a field. View D as a subring of D × D
via the diagonal map D → D ×D, d 7→ (d, d). Then D ⊂ D ×D does not satisfy FCP.

Proof. Pick a nonzero nonunit element d ∈ D. It is straight-forward to verify that {D[(dn, 0)] |
n = 1, 2, 3, . . .} is a strictly descending chain, and so the conclusion follows.

Theorem 2.3. Let R ⊂ S be an integrally closed minimal ring extension with crucial maximal
ideal M and let S ⊂ T be an integral minimal ring extension with crucial maximal ideal N .
Then the following conditions are equivalent:

(1) R ⊂ T satisfies FIP;
(2) R ⊂ T satisfies FCP;
(3) N ∩R 6⊆M .

Proof. (3)⇒ (1): Assume that N ∩R 6⊆ M . Then the Crosswise Exchange Lemma [6, Lemma
2.7] provides a ring S∗ such that R ⊂ S∗ is an integral minimal ring extension and S∗ ⊂ T is
an integrally closed minimal ring extension. As S∗ is necessarily the integral closure of R in T ,
with both R ⊂ S∗ and S∗ ⊂ T satisfying FIP, it follows from [6, Theorem 3.13] that R ⊂ T
satisfies FIP.

It was noted earlier that (1)⇒ (2) trivially. Thus, to complete the proof, it suffices to establish
the contrapositive of the assertion that (2)⇒ (3). Assume that N ∩R ⊆M ; our task is to prove
that R ⊂ T does not satisfy FCP.

Note that R \M ⊆ S \ N . Therefore, as SN ⊂ TN , it cannot be the case that SM = TM
(for otherwise, one could then localize at S \ N to get SN = TN , a contradiction). Thus, we
have the tower of proper ring extensions RM ⊂ SM ⊂ TM . Since RM ⊂ SM is an integrally
closed minimal ring extension (cf. [9, Lemme 1.3]), it is clear that (RM , SM ) is a normal pair.
Since RM is quasi-local, it follows from the characterization of normal pairs with quasi-local
base rings [6, Theorem 6.8] (one may appeal instead to [3, Theorem 1] if SM is an integral
domain) that SM is also quasi-local, say with maximal ideal Q, such that Q is also a prime
ideal of RM , SM = (RM )Q and RM/Q is a valuation domain of Krull dimension 1. (Note also
that Q = QSM = Q(RM )Q and that SM/Q is the quotient field of RM/Q.) As the minimal
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ring extension RM ⊂ SM is integrally closed, with crucial maximal ideal MRM , it follows
from [9, Théorème 2.2] that no prime ideal of SM can lie over MRM . Therefore Q 6= MRM ;
necessarily, Q ⊂ MRM . Note that NSM is the crucial maximal ideal of the integral minimal
ring extension SM ⊂ TM and that this ideal must be both the (unique) maximal ideal of SM

and the conductor (SM : TM ). It follows that Q = NSM is an ideal of TM . In particular, Q
is a common ideal of RM , SM , and TM . Consider the associated factor rings, D := RM/Q,
K := SM/Q, and L := TM/Q. We have the tower D ⊂ K ⊂ L, where D is a valuation domain
of Krull dimension 1, hence an integral domain that is distinct from its quotient field K, and
K ⊂ L is an integral minimal ring extension. We claim that K ⊂ L is the same kind of integral
minimal ring extension (namely, inert, decomposed or ramified) as was S ⊂ T .

It follows from a standard homomorphism theorem (cf. [7, Proposition 4.7]) that K ⊂ L
is the same kind of integral minimal ring extension (namely, inert, decomposed or ramified) as
is SM ⊂ TM . Thus, to prove the above claim, it suffices to show that SM ⊂ TM is the same
kind of integral minimal ring extension as is S ⊂ T . It suffices to prove that TM/Q ∼= T/N as
algebras over the field SM/Q ∼= SM/NSM

∼= (S/N)R\M ∼= S/N . (Actually, the last-mentioned
isomorphism should be explicated, as its details will be germane later as well. Since S/N is
a field, there is a (unital, necessarily injective) ring homomorphism θ : S/N → (S/N)R\M ,
given by u 7→ u/1 for all u ∈ S/N . To show that θ is an isomorphism, it is enough to prove
that if z ∈ R \M , then there exists t ∈ T such that (t + N)/1 = (1 + N)/z in (S/N)R\M .
As z ∈ S \ N and S/N is a field, there exists v ∈ S such that (z + N)−1 = v + N ; that is,
zv − 1 ∈ N . Then t := v has the desired behavior, and so θ is an isomorphism.) It remains to
prove that TM/Q ∼= T/N . We have that TM/Q = TM/NTM ∼= (T/N)R\M . It suffices to show
that the map ϕ : T/N → (T/N)R\M , given by u 7→ u/1 for all u ∈ T/N , is an isomorphism. To
see that ϕ is injective, note that if t ∈ T is such that (t+N)/1 = 0/1 in (T/N)R\M , then there
exists ζ ∈ R \M (⊆ S \N ) such that ζt ∈ N ; as ζ +N is a unit of the field S/N (and hence a
unit of T/N ), the equation (ζ +N)(t+N) = 0 in T/N leads to t ∈ N , so that ker(θ) = 0. To
show that ϕ is surjective, it is straightforward to adapt the above proof that θ is surjective. This
completes the proof of the above claim.

We return to the consideration of the extension D = RM/Q ⊂ L = TM/Q. Note that D ⊂ L
satisfies FCP if and only if RM ⊂ TM satisfies FCP. On the other hand, it is well known (and
easy to see) that if R ⊂ T satisfies FCP, then so does RM ⊂ TM . The rest of the proof (that
R ⊂ T does not satisfy FCP) consists of showing that D ⊂ L does not satisfy FCP. This will be
done in each of the three cases, determined by whether S ⊂ T is inert, decomposed or ramified.

Consider first the case where S ⊂ T is inert. Then K ⊂ L is inert; that is, L is a minimal field
extension of K. As D ⊂ K ⊂ L, with L a field and K the quotient field of D, [4, Theorem 2.1]
yields an infinite chain of intermediate rings between D and L, so that D ⊂ L does not satisfy
FCP.

Next, consider the case where S ⊂ T is decomposed. Then L ∼= K ×K as K-algebras, and
we can identify the inclusion map K ↪→ L with the diagonal map K → K ×K. Similarly, view
D ⊂ D×D via the diagonal mapD → D×D. We then have the towerD ⊂ D×D ⊂ K×K = L.
By Lemma 2.1, D ⊂ D × D fails to satisfy FCP. Then, a fortiori, D ⊂ L also fails to satisfy
FCP.

It remains only to consider the case where S ⊂ T is ramified. Then (up to K-algebra isomor-
phism) we can identify L = K[X]/(X2) = K ⊕Kx, where x := X + (X2). Since D is not a
field, we can pick a nonzero nonunit element m ∈ D. In the spirit of the proof of Lemma 2.1,
we will show that the descending chain {D[mnx] | n = 1, 2, 3, . . .} is strictly descending. If this
assertion fails, then mtx ∈ D[mt+1x] for some positive integer t. Thus, mtx = d0 + d1m

t+1x
for some uniquely determined coefficients d0, d1 ∈ D (as 1 and x are linearly independent over
K). Hence, d0 = 0 and mt = d1m

t+1. As mt 6= 0 and D is an integral domain, we can divide
by mt (in K) to get 1 = d1m (in D), contradicting the fact that m was chosen as a nonunit of D.
Thus, {D[mnx]} is indeed strictly descending, whence D ⊂ L fails to satisfy FCP, to complete
the proof.

The proof of Theorem 2.3 established the following result which is of independent interest.
Examples of towers R ⊂ S ⊂ T that satisfy the hypotheses of Proposition 2.4 will be given in
Section 4.

Proposition 2.4. LetR ⊂ S be an integrally closed minimal ring extension with crucial maximal
ideal M and let S ⊂ T be an integral minimal ring extension with crucial maximal ideal N such
that N ∩ R ⊆ M . Then SM ⊂ TM is the same kind of integral minimal ring extension (that is,
inert, ramified, or decomposed) as S ⊂ T .
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Remark 2.5. (a) Proposition 2.1 (a) is best possible, in the following sense. Its “FCP" conclu-
sion cannot be strengthened to “FIP". For instance, if X and Y are algebraically independent
indeterminates over the finite field Fp for some prime number p, then the p-dimensional field
extensions Fp(Xp, Y p) ⊂ Fp(X,Y p) and Fp(X,Y p) ⊂ Fp(X,Y ) are each necessarily minimal
ring extensions, but it is well known that Fp(Xp, Y p) ⊂ Fp(X,Y ) does not satisfy FIP.

(b) The criterion in Theorem 2.3 cannot be applied to the context where the minimal ring
extension R ⊂ S is integral and the minimal ring extension S ⊂ T is integrally closed. To
see this, take R ⊂ S to be the decomposed (integral minimal ring) extension D ⊂ D′ in [11,
Example 4.3] and take T to be the localization of D′ at one of its (two) maximal ideals. Since D′
is a Prüfer domain of Krull dimension 1, standard facts ensure that S ⊂ T is an integrally closed
minimal ring extension [10, Theorems 17.5 (1), 22.1 and 26.1 (1), (2)]. By Proposition 2.1 (c),
R ⊂ T satisfies FCP. However, the present data do not satisfy the “N ∩ R 6⊆ M" criterion from
Theorem 2.3. Indeed, let Q1 and Q2 denote the maximal ideals of S, with T := DQ1 . Then the
crucial maximal ideal of S ⊂ T is N := Q2 (cf. [9, Théorème 2.2]). It was shown in [11] that D
is quasi-local, with unique maximal ideal M := Q1 ∩Q2; necessarily, M is the crucial maximal
ideal of R ⊂ S; and it is plain that N ∩R ⊆ (in fact, =) M .

3 Examples where R ⊂ T does not satisfy FCP

In this section, we collect examples of towers of integral domains R ⊂ S ⊂ T such that R ⊂ S
is an integrally closed minimal ring extension, S ⊂ T is any of the possible kinds of integral
minimal ring extensions (that is, decomposed, inert or ramified), and (contrary to expectations
that may have been raised by Proposition 2.1) R ⊂ T does not satisfy FCP. Of course, such
R ⊂ T also fails to satisfy FIP.

Example 3.1. There exist minimal ring extensions of integral domains R ⊂ S and S ⊂ T such
that R ⊂ S is integrally closed, S ⊂ T is decomposed, and R ⊂ T does not satisfy FCP.

Proof. Take V to be a valuation domain of Krull dimension 1 with quotient field K. Let X
be an indeterminate over K. With α, β distinct elements of K, consider the maximal ideals
M1 := (X − α)K[X] and M2 := (X − β)K[X] of K[X], and put Q := M1 ∩ M2. Take
R := V + Q, S := K + Q, and T := K[X]. Since V ⊂ K is an integrally closed minimal
ring extension, so is R ⊂ S (cf. [7, Proposition 4.7]). Moreover, S ⊂ T is a decomposed
(hence integral) minimal ring extension since S/Q ∼= K and T/Q is K-algebra isomorphic
to T/M1 × T/M2 ∼= K × K. Finally, it remains to show that R ⊂ T does not satisfy FCP;
equivalently, that R/Q(∼= V ) ⊂ T/Q(∼= K × K) does not satisfy FCP. In view of the tower
V ⊂ V × V ⊂ K × K (where V is viewed as a subring of V × V via the diagonal map), it is
enough to prove that V ⊂ V × V does not satisfy FCP. This, in turn, follows immediately from
Lemma 2.2, to complete the proof. (One can appeal to Theorem 2.3 to give an alternate proof
that R ⊂ T does not satisfy FCP. Indeed, the crucial maximal ideal of R ⊂ S is M := m + Q,
where m denotes the maximal ideal of V ; the crucial maximal ideal of S ⊂ T is N := Q; and
N ∩R = Q ⊆ (in fact, ⊂) M .)

Example 3.2. There exist minimal ring extensions of integral domains R ⊂ S and S ⊂ T such
that R ⊂ S is integrally closed, S ⊂ T is inert, and R ⊂ T does not satisfy FCP.

Proof. Take R to be a valuation domain of Krull dimension 1 such that its quotient field S is
not algebraically closed. Next, take T to be a minimal field extension of S. Then R ⊂ S is an
integrally closed minimal ring extension and S ⊂ T is an inert minimal ring extension. However,
since R ⊂ S ⊂ T , [4, Theorem 2.1] yields an infinite chain of intermediate rings between R and
T , so that R ⊂ T does not satisfy FCP. (One can appeal to Theorem 2.3 to give an alternate proof
that R ⊂ T does not satisfy FCP. Indeed, the crucial maximal ideal of R ⊂ S is M := m, where
m denotes the unique maximal ideal of R; the crucial maximal ideal of S ⊂ T is N := {0}; and
N ∩R = {0} ⊆ (in fact, ⊂) M .)

Example 3.3. There exist minimal ring extensions of integral domains R ⊂ S and S ⊂ T such
that R ⊂ S is integrally closed, S ⊂ T is ramified, and R ⊂ T does not satisfy FCP.

Proof. Data constructed in [2, Example 6.4] can be shown to exhibit the asserted behavior. Re-
call that that construction involved a DVR, V , with quotient field k and an analytic indeterminate
X over k, with R := V +X2k[[X]], S := k +X2k[[X]], and T := k[[X]]. In view of what was
explicitly shown in [2, Example 6.4], it remains only to observe that R ⊂ S is an integrally
closed extension and that S ⊂ T is ramified. (One can appeal to Theorem 2.3 to give an al-
ternate proof that R ⊂ T does not satisfy FCP. Indeed, the crucial maximal ideal of R ⊂ S is
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M := m + X2k[[X]], where m denotes the maximal ideal of V ; the crucial maximal ideal of
S ⊂ T is N := X2k[[X]]; and N ∩R = X2k[[X]] ⊆ (in fact, ⊂) M .)

Remark 3.4. (a) In presenting examples of suitable chains R ⊂ S ⊂ T in Examples 3.1-3.3,
we have taken care to use integral domains. For readers who would be satisfied with towers
of rings that are not necessarily domains but exhibit the asserted behavior, the constructions
can be simplified. For instance, for the zero-divisor analogue of Example 3.1, one could take
R ⊂ S ⊂ T to be V ⊂ K ⊂ K ×K.

(b) The kind of simplification that was noted in (a) cannot be carried much further. In partic-
ular, there does not exist a tower R ⊂ S ⊂ T such that R is a integral domain of Krull dimension
1, R ⊂ S and S ⊂ T are minimal ring extensions, T is contained in the quotient field of R, and
R ⊂ T does not satisfy FCP. To see this, observe that R ⊂ S ⊂ T is a finite maximal chain of
rings going from R to T and apply [1, Corollary 4.4].

(c) Examples 3.1-3.3 each show that the conclusion of Proposition 2.1 (c) may fail if the
hypotheses are changed by placing an integral minimal extension “on top of" an integrally closed
minimal ring extension. Similarly, the conclusion of Proposition 2.1 (c) can fail for n ≥ 3
minimal ring extensions if one of the “higher" minimal ring extensions is integral. For instance,
let R2, R3 and R4 be the rings that were denoted by R, S, and T respectively, in Example 3.3.
Assume further that the valuation domain V in that example is of the form V = F1[[Y ]] for some
field F1 and analytic indeterminate Y , and that F2 is a subfield of F1 such that [F1 : F2] = 2.
Put R1 := F2 + Y V . Then the minimal ring extension R1 ⊂ R2 is integral (in fact, inert). Also,
we have seen that R2 ⊂ R3 is an integrally closed minimal ring extension and that R3 ⊂ R4
is a ramified minimal ring extension. Finally, since R2 ⊂ R4 fails to satisfy FCP, neither does
R1 ⊂ R4.

4 Examples where R ⊂ T satisfies FCP

In contrast to the examples in Section 3, the examples in this section will return to the flavor
exhibited in Proposition 2.1. Specifically, we give examples of towers R ⊂ S ⊂ T such that
R ⊂ S is an integrally closed minimal ring extension, S ⊂ T is any of the possible kinds of
integral minimal ring extensions, and R ⊂ T satisfies FCP. Except for the case where S ⊂ T is
decomposed, all the rings in the examples in this section will be integral domains. The following
result will enable us to handle that decomposed context (with applicability to the other integral
contexts as well).

Proposition 4.1. Let D ⊂ E be integral domains. Let (V, n) be a valuation domain of Krull
dimension 1 with quotient field K. Put R := V ×D, S := V × E and T := K × E. Then:

(a) R ⊂ S is a minimal ring extension if and only if D ⊂ E is a minimal ring extension.
(b) R ⊂ S is an integral extension if and only if D ⊂ E is an integral extension.
(c) Let D ⊂ E be an integral minimal ring extension (equivalently, let R ⊂ S be an integral

minimal ring extension). If m is the crucial maximal ideal of D ⊂ E, then M := V ×m is the
the crucial maximal ideal of R ⊂ S.

(d) D ⊂ E is a decomposed (resp., inert; resp., ramified) extension of and only if R ⊂ S is
decomposed (resp., inert; resp., ramified).

(e) S ⊂ T is an integrally closed minimal ring extension, and its crucial maximal ideal is
N := n× E.

(f) N ∩R = n×D 6⊆M .

Proof. (a) Note that a ring extension A ⊆ B is a minimal ring extension if and only if the
cardinality of [A,B] is 2. Therefore, the assertion follows from that fact that [R,S] = {V } ×
[D,E] and [D,E] have the same cardinality.

(b) Let A denote the integral closure of D in E. The assertion follows from the fact that the
integral closure of R in S is V ×A.

(c) The parenthetical equivalence follows from (a) and (b). Since (D : E) = m, the crucial
maximal ideal of R ⊂ S is (R : S) = V × (D : E) = V ×m =M .

(d) By (a)-(c), we can suppose that D ⊂ E and R ⊂ S are each integral minimal ring
extensions, with crucial maximal ideals m and M = V × m, respectively. Note that k :=
D/m can be identified with V/V × D/m = (V × D)/(V × m) = R/M . Therefore, by the
characterizations of “decomposed," “inert" and “ramified" in the Introduction, it suffices to prove
that S/M ∼= E/m as k-algebras. In fact, S/M = (V ×E)/(V ×m) ∼= V/V ×E/m ∼= E/m, as
required.

(e) Since V is integrally closed in K, S = V × E is integrally closed in K × E = T ; that
is, S ⊂ T is an integrally closed extension. To see that this is a minimal ring extension, observe
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that [S, T ] = [V,K]× {E} and argue as in the proof of (a), noting that V ⊂ K is a minimal ring
extension. Finally, by [9, Théorème 2.2], the crucial maximal ideal of S ⊂ T is the only prime
ideal of S that is not lain over from T , namely, n× E = N .

(f) This is clear from (e) and (c).

We can now produce towers of rings that answer the main questions for this section.

Corollary 4.2. Let P be any of the three properties “decomposed," “inert," and “ramified". Then
there exist minimal ring extensions R ⊂ S and S ⊂ T such that R ⊂ S is integrally closed,
S ⊂ T satisfies property P , and R ⊂ T satisfies FIP (and hence FCP).

Proof. Pick D ⊂ E to be any (integral minimal) ring extension that satisfies property P . Let
(V, n), K, R, S, T , m, M and N be as in Proposition 4.1. By parts (d) and (c) of Proposition
4.1, R ⊂ S inherits the property P from D ⊂ E and the crucial maximal ideal of R ⊂ S is
M = V ×m; by Proposition 4.1 (e), S ⊂ T is an integrally closed minimal ring extension, with
crucial maximal ideal N = n × E. Note that R ⊂ T satisfies FIP, by Proposition 2.1 (c). Also,
since N ∩ R 6⊆ M by Proposition 4.1 (f), we may apply the Crosswise Exchange Lemma [6,
Lemma 2.7]. The upshot is the existence of a ring S∗ ∈ [R, T ] such that R ⊂ S∗ inherits the
property of being an integrally closed minimal ring extension from S ⊂ T and S∗ ⊂ T inherits
the property of being an integral minimal ring extension with the property P from R ⊂ S. Thus,
the tower R ⊂ S∗ ⊂ T exhibits the asserted behavior.

Remark 4.3. One can give an alternate proof of Corollary 4.2 that avoids an explicit use of the
Crosswise Exchange Lemma, as follows. As before, take D ⊂ E to be an integral minimal ring
extension that satisfies P . Then, instead of considering the tower V × D ⊂ V × E ⊂ K × E,
consider the tower V ×D ⊂ K ×D ⊂ K × E. By reasoning as in the proof of Proposition 4.1,
we see that V ×D ⊂ K×D is an integrally closed minimal ring extension with crucial maximal
ideal n×D; K ×D ⊂ K ×E is an integral minimal ring extension that satisfies the property P
and has crucial maximal ideal K ×m, where m = (D : E); and

(K ×m) ∩ (V ×D) = V ×m 6⊆ n×D.

Therefore, by Theorem 2.3, R ⊂ T satisfies FIP, thus completing the alternate proof of Corollary
4.2. We wish to point out that this second proof is not really simpler than the above proof, since
the second proof appealed to Theorem 2.3 and the proof of Theorem 2.3 made explicit use of the
Crosswise Exchange Lemma.

In the spirit of Section 3, we next augment Corollary 4.2, at least in case P is “ramified" or
“inert," by giving domain-theoretic examples of the behavior in Corollary 4.2.

Example 4.4. There exist minimal ring extensions of integral domains R ⊂ S and S ⊂ T such
that R ⊂ S is integrally closed, S ⊂ T is ramified, and R ⊂ T satisfies FIP (and hence FCP).

Proof. Let X,Y be algebraically independent indeterminates over a field K, and let R be the
ring of fractions obtained when one localizes K[X2, X3, Y ] at (the complement of) the union of
the prime ideals (X2, X3) and (Y ). Put S := R(X2,X3) and T := S[X]. We will show that R,S
and T have the asserted behavior.

We begin by verifying the assertion concerning R ⊂ S. As this extension is a flat epimor-
phism, it is not integral, and so one need only prove that it is a minimal ring extension. Therefore,
by [7, Proposition 4.6], it suffices to show that R(Y ) ⊆ S(Y ) is a minimal ring extension and that
R(X2,X3) = S(X2,X3). The latter equality is clear from the definition of S. It now follows by
globalization that R(Y ) ⊂ S(Y ). Hence, it will be enough to prove that R(Y ) is a valuation do-
main of Krull dimension 1. In fact, this ring is a DVR, since it is a local Noetherian domain of
Krull dimension 1 whose unique nonzero prime ideal is principal.

We turn next to the assertions concerning S ⊂ T . This is a proper integral extension (since
X ∈ T \ S). Therefore, by the characterization of ramified extensions in terms of condition
(3) in [8, Proposition 2.12], we need only observe that q := X satisfies q2 ∈ S, q3 ∈ S, and
q(X2, X3) ⊆ S.

It remains to explain why R ⊂ T satisfies FCP. This is an immediate consequence of [1,
Proposition 5.3], since R ⊂ S ⊂ T is a finite maximal chain of rings inside the quotient field
of the Noetherian integral domain R. One can appeal to Theorem 2.3 to give an alternate proof
that R ⊂ T satisfies FIP. Indeed, the crucial maximal ideal of R ⊂ S is M := (Y ); the crucial
maximal ideal of S ⊂ T is N := (X2, X3); and N ∩R = (X2, X3) 6⊆M .

Example 4.5. There exist minimal ring extensions of integral domains R ⊂ S and S ⊂ T such
that R ⊂ S is integrally closed, S ⊂ T is inert, and R ⊂ T satisfies FIP (and hence FCP).
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Proof. We begin by specializing the setting in [5, Theorem 3.4]. Take D to be a Dedekind
(hence Prüfer) domain with exactly two maximal ideals, M1 and M2 (and, necessarily a Y-
shaped spectrum). Arrange also that the field L := D/M1 has a subfield F such that F ⊂ L is a
minimal field extension. Consider the pullback R := D ×L F . Put S := RM1 and T := S′. We
will show that the tower R ⊂ S ⊂ T exhibits the asserted behavior.

Let K denote the quotient field of R. By parts (a) and (c) of [5, Theorem 3.4], R ⊂ R′ = D,
D is a minimal ring extension ofR, and S is the only overring ofR (that is, the onlyR-subalgebra
of K) which is incomparable with R′. Also, by [5, Theorem 3.4 (b)], Spec(R) is canonically
homeomorphic to, hence order-isomorphic to, Spec(D) (in the Zariski topology). Consequently,
R inherits from D the property of having Krull dimension 1. Therefore, by [5, Theorem 3.1], R
has exactly 6 overrings. It follows that the set of overrings ofRmust be {R,D, S,DM1 , DM2 ,K}.
Note that R 6= S since R is not quasi-local and S is quasi-local. In fact, the above list of
overrings reveals that R ⊂ S is a minimal ring extension. Moreover, R ⊂ S is integrally closed
(by [9, Théorème 2.2], since S is an R-flat overring of R that is distinct from R). The crucial
maximal ideal of R ⊂ S cannot be M1 since RM1 = SM1 canonically, and so, by the process of
elimination, the crucial maximal ideal of R ⊂ S must be M :=M2 ∩R.

We claim that S′ = DM1 . Indeed, the above list of overrings reveals that S′ = DMi
for some

i ∈ {1, 2}. However, M ∈ Spec(R) cannot be lain over from RM1 , since R ⊂ S is an integrally
closed minimal ring extension [9, Théorème 2.2]. Thus, M2 ∩ R cannot be lain over from any
overring of RM1 (such as S′). It follows that S′ 6= DM2 and so, by the process of elimination,
(T =) S′ = DM1 , as claimed.

Consider the integral extension S = RM1 ⊆ T = S′ = DM1 . The above list of overrings
reveals that S 6= T and, in fact, that S ⊂ T is a minimal ring extension. We claim that this
extension is inert. To see this, note first, from the definition of R, that the crucial maximal ideal
of R ⊂ D is (R : D) =M1. As M1 is a maximal ideal of (both R and) D, the extension R ⊂ D
is inert. It is well known (cf. [7, Proposition 4.6]) that RM1 ⊂ DM1 inherits the “inert" property
from R ⊂ D, which proves the above claim.

The crucial maximal ideal of S ⊂ T must be the unique maximal ideal of S, namely, N :=
M1RM1 . Observe that N ∩ R = M1 6⊆ M2 ∩ R = M . Therefore, by Theorem 2.3, R ⊂ T
satisfies FIP, to complete the proof.

The work in this section leaves the following open question. Does there exist a tower of
domains R ⊂ S ⊂ T such that R ⊂ S is an integrally closed minimal ring extension, S ⊂ T is a
decomposed (integral minimal ring) extension, and R ⊂ T satisfies FCP?

References
[1] A. Ayache and D. E. Dobbs, Finite maximal chains of commutstive rings, J. Algebra Appl., to appear.

[2] P.-J. Cahen, D. E. Dobbs and T. G. Lucas, Finitely valuative domains, J. Algebra Appl., 11 (2012), DOI:
10.1142/S0219498812501125, 39pp.

[3] E. D. Davis, Overrings of commutative rings III: Normal pairs, Trans. Amer. Math. Soc. 182 (1973),
175–185.

[4] D. E. Dobbs, Extensions of integral domains with infinite chains of intermediate rings, Comm. Algebra
37 (2009), 604–608.

[5] D. E. Dobbs and N. Jarboui, On integral domains with a unique overing that is incomparable with the
integral closure, JP J. Algebra Number Theory Appl. 23 (2011), 1–24.

[6] D. E. Dobbs, G. Picavet, and M. Picavet-L’Hermite, Characterizing the ring extensions that satisfy FIP
or FCP, J. Algebra 371 (2012), 391–429.

[7] D. E. Dobbs, G. Picavet, M. Picavet-L’Hermite, and J. Shapiro, On intersections and composites of
minimal ring extensions, JP J. Algebra, Number Theory and Appl. 26 (2012), 103–158.

[8] D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of certain commutative rings,
J. Algebra 308 (2007), 800–821.

[9] D. Ferrand and J.-P. Olivier, Homomorphismes minimaux d’anneaux, J. Algebra 16 (1970), 461–471.

[10] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

[11] R. Gilmer and W. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ. 7
(1967), 133–150.

Author information
David E. Dobbs, Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1320, U.
S. A..
E-mail: dobbs@math.utk.edu



270 David E. Dobbs and Jay Shapiro

Jay Shapiro, Department of Mathematics, George Mason University, Fairfax, Virginia 22030-4444, U. S. A..
E-mail: jshapiro@gmu.edu

Received: September 5, 2014.

Accepted: November 25, 2014.


