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Abstract. In this paper we introduce and study a subclass of close-to-convex functions de-
fined in the open unit disk. We establish the inclusion relationship, coefficient estimates and
some sufficient conditions for a normalized function to be in our classes of functions. Further-
more, we discuss Fekete-Szegő problem for a more generalized class. The results presented here
would provide extensions of those given in some earlier works.

1 Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, z ∈ U , (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let K and S∗ denote the usual
subclass ofA whose members are close-to-convex and starlike in U respectively. We also denote
by S∗(α) the class of starlike functions of order α (0 ≤ α < 1).

For two functions f and g analytic in U , we say that the function f is subordinate to g, and
write f(z) ≺ g(z), if there exists a Schwarz function w (i.e. w is analytic in U , with w(0) = 0
and |w(z)| < 1, z ∈ U), such that f(z) = g(w(z)) for all z ∈ U .

In particular, if the function g is univalent in U , then we have

f(z) ≺ g(z)⇔ f(0) = 0 and f(U) ⊂ g(U).

More recently, Kowalczyk and Leś-Bomba [4] studied a subclass Ks(α) of analytic function
related to the starlike functions. Thus, let f be an analytic function in U defined by (1.1). We
say that f ∈ Ks(α) (0 ≤ α < 1) if there exists a function g ∈ S∗

( 1
2

)
such that

Re
(
−z2f ′(z)

g(z)g(−z)

)
> α, z ∈ U .

Also, in terms of subordination, an analytic function f ∈ A belongs to the class Ks(α) (0 ≤ α <
1) if and only if there exists a function g ∈ S∗

( 1
2

)
, such that

−z2f ′(z)

g(z)g(−z)
≺ 1 + (1− 2α)z

1− z
.

Motivated by the work by Kowalczyk and Leś-Bomba [4], we introduce and study a new
class Ks(A,B;u, v) of analytic functions related to starlike functions, as follows:
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Definition 1.1. If f ∈ A, we say that f ∈ Ks(A,B;u, v) if there exists a function g ∈ S∗
( 1

2

)
such that

uvz2f ′(z)

g(uz)g(vz)
≺ 1 +Az

1 +Bz
(1.2)

(−1 ≤ B < A ≤ 1; u, v ∈ C∗ := C \ {0}, |u| ≤ 1 and |v| ≤ 1) .

Also, we say that the function f ∈ Ks(A,B;u, v) is generated by the function g.

Remarks 1.1. (i) For the special case A = 1− 2α (0 ≤ α < 1) and B = −1, we find that

uvz2f ′(z)

g(uz)g(vz)
≺ 1 + (1− 2α)z

1− z

implies

Re
(
uvz2f ′(z)

g(uz)g(vz)

)
> α, z ∈ U , (0 ≤ α < 1), (1.3)

and we denote this subclass of functions by Ks(α;u, v).
(ii) Obviously, Ks := Ks(0; 1,−1), where Ks is the class of functions studied by Gao and

Zhou [2]. Also, Ks(γ) := Ks(γ; 1,−1), where Ks(γ) is the class of functions due to Kowalczyk
and Leś-Bomba [4].

(iii) By simple calculations it is easy to see that the inequality (1.2) is equivalent to∣∣∣∣ uvz2f ′(z)

g(uz)g(vz)
− 1
∣∣∣∣ < ∣∣∣∣Buvz2f ′(z)

g(uz)g(vz)
−A

∣∣∣∣ , z ∈ U . (1.4)

In this present paper we investigate coefficient inequalities, inclusion relationship, and the
Fekete-Szegő problem for functions belonging to the class Ks(A,B;u, v).

In our proposed investigation of the class Ks(A,B;u, v) we require the following lemmas.
The next lemma can be easily proved:

Lemma 1.2. Let u, v ∈ C∗, with |u| ≤ 1, |v| ≤ 1 and let

g(z) = z +
∞∑
n=2

bnz
n ∈ S∗

(
1
2

)
. (1.5)

If we put

G(z) =
g(uz)g(vz)

uvz
= z +

∞∑
n=2

Cn(u, v)z
n, z ∈ U , (1.6)

where

Cn(u, v) =
n∑
j=1

bjbn−j+1u
j−1vn−j (n = 2, 3, . . . ), (1.7)

with b1 = 1, then G ∈ S∗.

Remarks 1.2. (i) Since g ∈ S∗
( 1

2

)
, from Lemma 1.2 we obtain that G given by (1.5) belongs to

S∗. Then, by (1.3) we see that the classKs(α;u, v) is a subclass of the classK of close-to-convex
functions.

(ii) If we put u = 1 and v = −1, from (1.7) we find that

Cn(u, v) =

{
0, if n = 2k
B2k−1, if n = 2k − 1,

where
B2k−1 = 2b2k−1 − 2b2b2k−2 + · · ·+ (−1)k2bk−1bk+1 + (−1)k+1b2

k, (1.8)

and we get the earlier given result by Gao and Zhou [2] for their class of functions.
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Lemma 1.3. Let the function

H(z) = 1 + h1z + h2z
2 + . . . , z ∈ U ,

be analytic in the unit disk U . Then, the function H satisfies the condition∣∣∣∣ H(z)− 1
A−BH(z)

∣∣∣∣ < β, z ∈ U , (−1 ≤ B < A ≤ 1)

for some β (0 < β ≤ 1), if and only if there exists an analytic function ϕ in the unit disk U , such
that |ϕ(z)| ≤ β for z ∈ U , and

H(z) =
1−Azϕ(z)
1−Bzϕ(z)

, z ∈ U .

Proof. We will employ the technique similar with those of Padamanabhan [7]. Assume that the
function

H(z) = 1 + h1z + h2z
2 + . . . , z ∈ U ,

satisfies the condition ∣∣∣∣ H(z)− 1
A−BH(z)

∣∣∣∣ < β, z ∈ U (−1 ≤ B < A ≤ 1).

Setting

h(z) =
1−H(z)

A−BH(z)
,

we see that the function h analytic in U , satisfies the inequality |h(z)| < β for z ∈ U and h(0) =
0. Now, by using the Schwarz’s lemma, we get that the function h has the form h(z) = zϕ(z),
where ϕ is analytic in U and satisfies |ϕ(z)| ≤ β for z ∈ U . Thus, we obtain

H(z) =
1−Ah(z)
1−Bh(z)

=
1−Azϕ(z)
1−Bzϕ(z)

.

On the other hand, if

H(z) =
1−Azϕ(z)
1−Bzϕ(z)

and |ϕ(z)| ≤ β for z ∈ U , then H is analytic in the unit disk z ∈ U . Furthermore, since
|zϕ(z)| ≤ β |z| < β for z ∈ U , we get∣∣∣∣ H(z)− 1

A−BH(z)

∣∣∣∣ = |zϕ(z)| < β, z ∈ U ,

which completes the proof of our lemma.

Lemma 1.4. [5] Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then,

1 +A1z

1 +B1z
≺ 1 +A2z

1 +B2z
.

Let P denote the class of functions p of the form

p(z) = 1 +
∞∑
n=1

cnz
n, z ∈ U , (1.9)

which are analytic in the open unit disk U .



36 S. P. Goyal, Onkar Singh and Teodor Bulboacă

Lemma 1.5. [6] If p ∈ P has the form (1.9) and satisfies Re p(z) > 0, z ∈ U , then for any
number µ ∈ C we have ∣∣c2 − µc2

1

∣∣ ≤ 2 max {1; |2µ− 1|} ,
and the result is sharp for the functions given by

p(z) =
1 + z

1− z
and p(z) =

1 + z2

1− z2 .

Lemma 1.6. [3] A function p ∈ P satisfies Re p(z) > 0, z ∈ U , if and only if

p(z) 6= x− 1
x+ 1

, z ∈ U ,

for all |x| = 1.

Lemma 1.7. If f ∈ A has the form (1.1), then f ∈ Ks(α;u, v) if and only if

1 +
∞∑
n=2

Anz
n−1 6= 0, z ∈ U , |x| = 1,

where

An =
nan + (1− 2α)Cn(u, v) + (nan − Cn(u, v))x

2(1− α)
(1.10)

and the coefficients Cn(u, v) are given by (1.7).

Proof. . According to Lemma 1.6, we have that f ∈ Ks(α;u, v) if and only if

uvz2f ′(z)
g(uz)g(vz) − α

1− α
6= x− 1
x+ 1

, z ∈ U , (1.11)

for all |x| = 1.
For z = 0, the above relation holds, since

uvz2f ′(z)
g(uz)g(vz) − α

1− α

∣∣∣∣∣
z=0

= 1 6= x− 1
x+ 1

, |x| = 1.

For z 6= 0, the relation (1.11) is equivalent to

(x+ 1)
(
uvz2f ′(z)− αg(uz)g(vz)

)
6= (x− 1)(1− α)g(uz)g(vz),

for all z ∈ U \ {0} and |x| = 1. Thus, we have

2(1− α)z +
∞∑
n=2

[nan + (1− 2α)Cn(u, v) + x(nan − Cn(u, v)] zn 6= 0,

for z ∈ U \ {0} and |x| = 1, equivalently

2(1− α)z

1 +

∞∑
n=2

[nan + (1− 2α)Cn(u, v) + x(nan − Cn(u, v)]

2(1− α)
zn−1

 6= 0. (1.12)

Dividing both sides of (1.12) by 2(1− α)z, we obtain

1 +

∞∑
n=2

[nan + (1− 2α)Cn(u, v) + x(nan − Cn(u, v)]

2(1− α)
zn−1 6= 0,

for z ∈ U \ {0} and |x| = 1, which completes our proof.
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2 Main Results

We will prove a theorem which provides us a sufficient condition for functions to belong into the
class Ks(A,B;u, v).

Theorem 2.1. Let the functions f and g defined by (1.1) and (1.5) respectively, and for n =
2, 3, 4, . . . let define the coefficients Cn(u, v) by (1.7). If

(1 + |B|)
∞∑
n=2

n |an|+ (1 + |A|)
∞∑
n=2

|Cn(u, v)| < A−B

(−1 ≤ B < A ≤ 1; u, v ∈ C∗, |u| ≤ 1, |v| ≤ 1) ,

then f ∈ Ks(A,B;u, v).

Proof. For the functions f given by (1.1) and g given by (1.5) set

∆ =

∣∣∣∣zf ′(z)− g(uz)g(vz)

uvz

∣∣∣∣− ∣∣∣∣Bzf ′(z)− Ag(uz)g(vz)

uvz

∣∣∣∣ =∣∣∣∣∣
∞∑
n=2

nanz
n −

∞∑
n=2

Cn(u, v)z
n

∣∣∣∣∣−
∣∣∣∣∣(B −A)z +B

∞∑
n=2

nanz
n −A

∞∑
n=2

Cn(u, v)z
n

∣∣∣∣∣ .
From here, we have

∆ ≤ − (A−B) |z|+ (1 + |B|)
∞∑
n=2

n |an| |z|n + (1 + |A|)
∞∑
n=2

|Cn(u, v)| |z|n ,

hence

∆ ≤

(
− (A−B) + (1 + |B|)

∞∑
n=2

n |an|+ (1 + |A|)
∞∑
n=2

|Cn(u, v)|

)
|z| , z ∈ U .

Using the assumption we obtain ∆ < 0, and thus we have∣∣∣∣zf ′(z)− g(uz)g(vz)

uvz

∣∣∣∣ < ∣∣∣∣Bzf ′(z)− Ag(uz)g(vz)

uvz

∣∣∣∣ , z ∈ U ,
hence from (1.4) we conclude that f ∈ Ks(A,B;u, v).

Remark 2.2. Taking u = 1, v = −1, A = 1− 2γ (0 ≤ γ < 1) and B = −1 in Theorem 2.1, we
get the result obtained by Kowalczyk and Leś-Bomba [4].

The next theorem gives the estimate of the coefficients.

Theorem 2.3. Let −1 ≤ B < A ≤ 1. Suppose that an analytic function f given by (1.1) and
g ∈ S∗

( 1
2

)
given by (1.5) are such that the condition (1.2) holds. Then, for n ≥ 2 we have

|nan − Cn(u, v)|2 − |A−B|2 ≤ (2.1)
n−1∑
k=2

(∣∣B2 − 1
∣∣ k2 |ak|2 +

∣∣A2 − 1
∣∣ |Ck(u, v)|2 + 2k |akCk(u, v)| |1−AB|

)
,

where the coefficients Cn(u, v) are defined by (1.7).



38 S. P. Goyal, Onkar Singh and Teodor Bulboacă

Proof. Since f ∈ Ks(A,B;u, v) for some g ∈ S∗
( 1

2

)
, the inequality (1.4) holds. From Lemma

1.3 we have
zf ′(z)

G(z)
=

1−Azϕ(z)
1−Bzϕ(z)

, z ∈ U , (2.2)

where ϕ is an analytic functions in U , |ϕ(z)| ≤ 1 for z ∈ U , and G is given by (1.6).
From (2.2), by using the definitions (1.1) and (1.6) for f and G respectively, we obtain that[

−B

(
z +

∞∑
n=2

nanz
n

)
+A

(
z +

∞∑
n=2

Cn(u, v)z
n

)]
zφ(z) =

∞∑
n=2

Cn(u, v)z
n −

∞∑
n=2

nanz
n, z ∈ U . (2.3)

Since the function zϕ(z) has the expansion

zϕ(z) =
∞∑
n=1

tnz
n, z ∈ U ,

from (2.3) we find that(
(A−B)z −B

∞∑
n=2

nanz
n +A

∞∑
n=2

Cn(u, v)z
n

) ∞∑
n=1

tnz
n =

∞∑
n=2

Cn(u, v)z
n −

∞∑
n=2

nanz
n, z ∈ U . (2.4)

Now, equating the coefficient of zn in (2.4), we get

Cn(u, v)− nan = (A−B)tn−1 + (−2Ba2 +AC2(u, v)) tn−2 +

(−3Ba3 +AC3(u, v)) tn−3 + · · ·+ (−(n− 1)Ban−1 +ACn−1(u, v)) t1.

and thus, the coefficient combination on the R.H.S. of (2.4) depends only upon the coefficients
combinations

(−2Ba2 +AC2(u, v)) , . . . , (−(n− 1)Ban−1 +ACn−1(u, v)) .

Hence, for n ≥ 2 we can write that[
(A−B)z +

n−1∑
k=2

(−Bkak +ACk(u, v)) z
k

]
zϕ(z) =

n∑
k=2

(Ck(u, v)− kak) zk +
∞∑

k=n+1

dkz
k, z ∈ U ,

and using the fact that |zϕ(z)| ≤ |z| < 1 for all z ∈ U , this reduces to the inequality∣∣∣∣∣(A−B) z +
n−1∑
k=2

(−Bkak +ACk(u, v)) z
k

∣∣∣∣∣ >
∣∣∣∣∣
n∑
k=2

(Ck(u, v)− kak) zk +
∞∑

k=n+1

dkz
k

∣∣∣∣∣ .
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Squaring the above inequality and integrating along the circle |z| = r (0 < r < 1), we obtain

∫ 2π

0

∣∣∣∣∣(A−B)reiθ +
n−1∑
k=2

(−Bkak +ACk(u, v)) r
keikθ

∣∣∣∣∣
2

dθ >

∫ 2π

0

∣∣∣∣∣
n∑
k=2

(Ck(u, v)− kak) rkeikθ +
∞∑

k=n+1

dkr
keikθ

∣∣∣∣∣
2

dθ.

Using now the Parseval’s inequality, we obtain

|A−B|2 r2 +
n−1∑
k=2

|−Bkak +ACk(u, v)|2 r2k >

n∑
k=2

|kak − Ck(u, v)|2 r2k +
∞∑

k=n+1

|dk|2 r2k.

Letting r → 1 in this inequality, we get

|A−B|2 +
n−1∑
k=2

|−Bkak +ACk(u, v)|2 ≥
n∑
k=2

|kak − Ck(u, v)|2 +
∞∑

k=n+1

|dk|2 ,

which implies

|A−B|2 +
n−1∑
k=2

|−Bkak +ACk(u, v)|2 ≥
n∑
k=2

|kak − Ck(u, v)|2 .

Hence we deduce that

|nan − Cn(u, v)|2 − |A−B|2 ≤
n−1∑
k=2

(∣∣B2 − 1
∣∣ k2 |ak|2 +

∣∣A2 − 1
∣∣ |Ck(u, v)|2 + 2k |akCk(u, v)| |1−AB|

)
,

and thus we obtain the inequality (2.1), which completes our proof.

Remark 2.4. Taking u = 1, v = −1, A = 1 − 2γ (0 ≤ γ < 1), and B = −1 in above theorem,
we get the result obtained by Kowalczyk and Leś-Bomba [4].

Now we establish a result on inclusion relationship contained in the next theorem.

Theorem 2.5. Let u, v ∈ C∗, with |u| ≤ 1, |v| ≤ 1, and let −1 ≤ B2 ≤ B1 < A1 ≤ A2 < 1.
Then,

Ks (A1, B1;u, v) ⊂ Ks (A2, B2;u, v) .

Proof. Supposing that f ∈ Ks(A1, B1;u, v), we have

uvz2f ′(z)

g(uz)g(vz)
≺ 1 +A1z

1 +B1z
.

Since −1 ≤ B2 ≤ B1 < A1 ≤ A2 < 1, by Lemma 1.4 we get

uvz2f ′(z)

g(uz)g(vz)
≺ 1 +A1z

1 +B1z
≺ 1 +A2z

1 +B2z
,

hence f ∈ Ks(A2, B2;u, v).
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Theorem 2.6. If the function f ∈ A has the form (1.1) and satisfies the condition

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak + (1− 2α)Ck(u, v))(−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣+∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak − Ck(u, v)) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣
)
≤ 2(1− α),

where 0 ≤ α < 1, γ, δ ∈ R and the coefficients Cn(u, v) are given by (1.7), then f ∈ Ks(α;u, v).

Proof. According to Lemma 1.7, to prove that 1 +
∞∑
n=2

Anz
n−1 6= 0 for all z ∈ U and |x| = 1,

where An are given by (1.10), it is sufficient to show that(
1 +

∞∑
n=2

Anz
n−1

)
(1− z)γ (1 + z)

δ
=

1 +
∞∑
n=2

[
n∑
l=1

{
l∑

k=1

Ak(−1)l−k
(

γ

l − k

)}(
δ

n− l

)]
zn−1 6= 0,

for all z ∈ U and |x| = 1, where A0 = 0, A1 = 1 and γ, δ ∈ R. Thus, if the function f satisfies

∞∑
n=2

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

Ak(−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣ ≤ 1, |x| = 1,

that is, if

1
2(1− α)

∞∑
n=2

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak + (1− 2α)Ck(u, v))

+x (kak − Ck(u, v)) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣ ≤
1

2(1− α)

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak + (1− 2α)Ck(u, v)) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣
+ |x|

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak − Ck(u, v)) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣
)
≤ 1, |x| = 1,

then f ∈ Ks(α;u, v), and the proof is complete.

Letting γ = δ = 0 in Theorem 2.6, we have:

Corollary 2.7. If the function f ∈ A has the form (1.1) and satisfies the condition

∞∑
n=2

(|nan + (1− 2α)Cn(u, v)|+ |nan − Cn(u, v)|) ≤ 2(1− α)

for some α (0 ≤ α < 1), where the coefficients Cn(u, v) are given by (1.7), then f ∈ Ks(α;u, v).

Taking u = 1 and v = −1 in Theorem 2.6, we obtain:
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Corollary 2.8. If the function f ∈ A has the form (1.1) and satisfies the condition

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak + (1− 2α)B2k−1) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣+∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak −B2k−1) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣
)
≤ 2(1− α)

for some α (0 ≤ α < 1) and γ, δ ∈ R, then f ∈ Ks(α) := Ks(α; 1,−1), where B2k−1
(k = 2, 3, 4 . . . ) are given by (1.8) and B1 = 0.

For α = 0 the above Corollary reduces to the next special case:

Corollary 2.9. If the function f ∈ A has the form (1.1) and satisfies the condition

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak +B2k−1) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣ +∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(kak −B2k−1) (−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣
)
≤ 2,

where γ, δ ∈ R, then f ∈ Ks(0), where B2k−1 (k = 2, 3, 4 . . . ) are given by (1.8) and B1 = 0.

3 Fekete-Szegő Inequality

In this section we assume that the function ϕ is an analytic function with positive real part, that
maps the unit disk U onto a starlike region which is symmetric with respect to real axis, and is
normalized by ϕ(0) = 1 and ϕ′(0) > 0. In such case, the function ϕ has an expansion of the
form ϕ(z) = 1 +B1z +B2z

2 + . . . , B1 > 0.

Definition 3.1. Let f be an analytic function in U defined by (1.1). We say that f ∈ Ks(ϕ;u, v),
if there exist g ∈ S∗

( 1
2

)
such that

uvz2f ′(z)

g(uz)g(vz)
≺ ϕ(z)

(u, v ∈ C∗, |u| ≤ 1 and |v| ≤ 1) ,

where the function ϕ satisfies the requirements mentioned just above this definition.

Theorem 3.2 (Fekete-Szegő Inequality). For a function f(z) = z+a2z
2 +a3z

3 + . . . belonging
to the class Ks(ϕ;u, v), the following sharp estimate holds:∣∣a3 − µa2

2

∣∣ ≤ 1
3

max
{
B1,

∣∣∣∣B2 −
3µ
4
B2

1

∣∣∣∣}− uv

3
+

B1c1b2(u+ v)

(
1
6
− µ

4

)
+ (u+ v)

2
(
b3

3
−
µb2

2
4

)
. (3.1)

Proof. Using the definition of the subordination between two analytic function, there exists a
function w analytic in U , normalized by w(0) = 0, satisfying |w(z)| < 1, z ∈ U , and

uvz2f ′(z)

g(uz)g(vz)
= ϕ(w(z)), z ∈ U .
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If
p1(z) =

1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + . . . , z ∈ U , (3.2)

then p1 is analytic and has positive real part in U , with p1(0) = 1, and from (3.2) we obtain

w(z) =
c1

2
z +

1
2

(
c2 −

c2
1

2

)
z2 + . . . , z ∈ U . (3.3)

Letting

p(z) =
uvz2f ′(z)

g(uz)g(vz)
= 1 + d1z + d2z

2 + . . . , z ∈ U , (3.4)

this gives

d1 = 2a2 − b2(u+ v),

d2 = 3a3 − 2a2b2(u+ v)− b3(u
2 + v2)− b2

2uv + b2
2(u+ v)2. (3.5)

Since ϕ is univalent and p(z) ≺ ϕ(z), by using (3.3) we obtain

p(z) = ϕ(w(z)) = 1 +
B1c1

2
z +

[
1
2

(
c2 −

c2
1

2

)
B1 +

1
4
c2

1B2

]
z2 + . . . , z ∈ U . (3.6)

Now, from (3.4), (3.5), and (3.6), we obtain

B1c1

2
= 2a2 − b2(u+ v),

1
2

(
c2 −

c2
1

2

)
B1 +

1
4
c2

1B2 =

3a3 − 2a2b2(u+ v)− b3(u
2 + v2)− b2

2uv + b2
2(u+ v)2,

and therefore, we conclude that

a3 − µa2
2 =

1
6
B1
(
c2 − νc2

1
)
− 2uv

3

(
b3 −

b2
2

2

)
+

B1c1b2(u+ v)

(
1
6
− µ

4

)
+ (u+ v)

2
(
b3

3
−
µb2

2
4

)
,

where
ν =

1
2

(
1− B2

B1
+

3µ
4
B1

)
.

The desired result follows upon using the Lemma 1.5 and using estimate that
∣∣∣∣b3 −

b2
2

2

∣∣∣∣ ≤ 1
2

, for

any analytic function g(z) = z + b2z
2 + b3z

3 + . . . , z ∈ U , which is starlike of order
1
2

(see
[1]).

Remarks 3.1. (i) Putting u = 1 and v = −1 in the above theorem we get the result obtained
recently by Cho et al. [1].

(ii) Setting µ = 0 in Theorem 3.2 we get the sharp estimate for the third coefficient of function
in Ks(ϕ;u, v), that is

|a3| ≤
B1

3
max

{
1,
∣∣∣∣B2

B1

∣∣∣∣}− uv

3
+
B1c1b2(u+ v)

6
+ (u+ v)

2 b3

3
. (3.7)
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(iii) Putting u = 1 and v = −1 in (3.7) we get the sharp estimate for the third coefficient of
function in the class Ks(ϕ), due to Cho et al. [1].

(iv) If we let µ→∞ in (3.1) we get the sharp estimate for |a2|, i.e.

|a2| ≤

√
B2

1
4
− b2(u+ v)

4
[B1c1 + (u+ v)b2]. (3.8)

(v) If we put u = 1 and v = −1 in (3.8) we get the result due to Cho et al. [1]. Also, for

u = 1 and v = −1 and ϕ(z) =
1 + z

1− z
, the results reduces to the corresponding one from [2,

Theorem 2, p. 125].
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