CERTAIN RESULTS ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

S. P. Goyal, Onkar Singh and Teodor Bulboacă
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 30C45, Secondary 30C80.
Keywords and phrases: Analytic functions, starlike functions, close-to-convex functions, Schwarz's lemma, differential subordination.

The author (S. P. G) is thankful to CSIR, New Delhi, India for awarding Emeritus Scientistship, under scheme number 21(084)/10/EMR-II. The second author (O. S.) is also thankful to CSIR for JRF under the same scheme.

Abstract. In this paper we introduce and study a subclass of close-to-convex functions defined in the open unit disk. We establish the inclusion relationship, coefficient estimates and some sufficient conditions for a normalized function to be in our classes of functions. Furthermore, we discuss Fekete-Szegő problem for a more generalized class. The results presented here would provide extensions of those given in some earlier works.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathcal{U} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} \mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{K} and \mathcal{S}^{*} denote the usual subclass of \mathcal{A} whose members are close-to-convex and starlike in \mathcal{U} respectively. We also denote by $\mathcal{S}^{*}(\alpha)$ the class of starlike functions of order $\alpha(0 \leq \alpha<1)$.

For two functions f and g analytic in \mathcal{U}, we say that the function f is subordinate to g, and write $f(z) \prec g(z)$, if there exists a Schwarz function w (i.e. w is analytic in \mathcal{U}, with $w(0)=0$ and $|w(z)|<1, z \in \mathcal{U})$, such that $f(z)=g(w(z))$ for all $z \in \mathcal{U}$.

In particular, if the function g is univalent in \mathcal{U}, then we have

$$
f(z) \prec g(z) \Leftrightarrow f(0)=0 \quad \text { and } \quad f(\mathcal{U}) \subset g(\mathcal{U}) .
$$

More recently, Kowalczyk and Leś-Bomba [4] studied a subclass $K_{s}(\alpha)$ of analytic function related to the starlike functions. Thus, let f be an analytic function in \mathcal{U} defined by (1.1). We say that $f \in K_{s}(\alpha)(0 \leq \alpha<1)$ if there exists a function $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$ such that

$$
\operatorname{Re}\left(\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)>\alpha, z \in \mathcal{U}
$$

Also, in terms of subordination, an analytic function $f \in \mathcal{A}$ belongs to the class $K_{s}(\alpha)(0 \leq \alpha<$ $1)$ if and only if there exists a function $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$, such that

$$
\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)} \prec \frac{1+(1-2 \alpha) z}{1-z} .
$$

Motivated by the work by Kowalczyk and Leś-Bomba [4], we introduce and study a new class $K_{s}(A, B ; u, v)$ of analytic functions related to starlike functions, as follows:

Definition 1.1. If $f \in \mathcal{A}$, we say that $f \in K_{s}(A, B ; u, v)$ if there exists a function $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$ such that

$$
\begin{gather*}
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)} \tag{1.2}\\
\prec \frac{1+A z}{1+B z} \\
\left(-1 \leq B<A \leq 1 ; u, v \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\},|u| \leq 1 \text { and }|v| \leq 1\right)
\end{gather*}
$$

Also, we say that the function $f \in K_{s}(A, B ; u, v)$ is generated by the function g.
Remarks 1.1. (i) For the special case $A=1-2 \alpha(0 \leq \alpha<1)$ and $B=-1$, we find that

$$
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)} \prec \frac{1+(1-2 \alpha) z}{1-z}
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}\right)>\alpha, z \in \mathcal{U}, \quad(0 \leq \alpha<1) \tag{1.3}
\end{equation*}
$$

and we denote this subclass of functions by $K_{s}(\alpha ; u, v)$.
(ii) Obviously, $K_{s}:=K_{s}(0 ; 1,-1)$, where K_{s} is the class of functions studied by Gao and Zhou [2]. Also, $K_{s}(\gamma):=K_{s}(\gamma ; 1,-1)$, where $K_{s}(\gamma)$ is the class of functions due to Kowalczyk and Leś-Bomba [4].
(iii) By simple calculations it is easy to see that the inequality (1.2) is equivalent to

$$
\begin{equation*}
\left|\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}-1\right|<\left|\frac{B u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}-A\right|, z \in \mathcal{U} \tag{1.4}
\end{equation*}
$$

In this present paper we investigate coefficient inequalities, inclusion relationship, and the Fekete-Szegő problem for functions belonging to the class $K_{s}(A, B ; u, v)$.

In our proposed investigation of the class $K_{s}(A, B ; u, v)$ we require the following lemmas.
The next lemma can be easily proved:
Lemma 1.2. Let $u, v \in \mathbb{C}^{*}$, with $|u| \leq 1,|v| \leq 1$ and let

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}\left(\frac{1}{2}\right) \tag{1.5}
\end{equation*}
$$

If we put

$$
\begin{equation*}
G(z)=\frac{g(u z) g(v z)}{u v z}=z+\sum_{n=2}^{\infty} C_{n}(u, v) z^{n}, z \in \mathcal{U} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}(u, v)=\sum_{j=1}^{n} b_{j} b_{n-j+1} u^{j-1} v^{n-j} \quad(n=2,3, \ldots) \tag{1.7}
\end{equation*}
$$

with $b_{1}=1$, then $G \in \mathcal{S}^{*}$.
Remarks 1.2. (i) Since $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$, from Lemma 1.2 we obtain that G given by (1.5) belongs to \mathcal{S}^{*}. Then, by (1.3) we see that the class $K_{s}(\alpha ; u, v)$ is a subclass of the class \mathcal{K} of close-to-convex functions.
(ii) If we put $u=1$ and $v=-1$, from (1.7) we find that

$$
C_{n}(u, v)= \begin{cases}0, & \text { if } \quad n=2 k \\ B_{2 k-1}, & \text { if } \quad n=2 k-1\end{cases}
$$

where

$$
\begin{equation*}
B_{2 k-1}=2 b_{2 k-1}-2 b_{2} b_{2 k-2}+\cdots+(-1)^{k} 2 b_{k-1} b_{k+1}+(-1)^{k+1} b_{k}^{2} \tag{1.8}
\end{equation*}
$$

and we get the earlier given result by Gao and Zhou [2] for their class of functions.

Lemma 1.3. Let the function

$$
H(z)=1+h_{1} z+h_{2} z^{2}+\ldots, z \in \mathcal{U}
$$

be analytic in the unit disk \mathcal{U}. Then, the function H satisfies the condition

$$
\left|\frac{H(z)-1}{A-B H(z)}\right|<\beta, z \in \mathcal{U}, \quad(-1 \leq B<A \leq 1)
$$

for some $\beta(0<\beta \leq 1)$, if and only if there exists an analytic function φ in the unit disk \mathcal{U}, such that $|\varphi(z)| \leq \beta$ for $z \in \mathcal{U}$, and

$$
H(z)=\frac{1-A z \varphi(z)}{1-B z \varphi(z)}, z \in \mathcal{U}
$$

Proof. We will employ the technique similar with those of Padamanabhan [7]. Assume that the function

$$
H(z)=1+h_{1} z+h_{2} z^{2}+\ldots, z \in \mathcal{U}
$$

satisfies the condition

$$
\left|\frac{H(z)-1}{A-B H(z)}\right|<\beta, z \in \mathcal{U} \quad(-1 \leq B<A \leq 1)
$$

Setting

$$
h(z)=\frac{1-H(z)}{A-B H(z)}
$$

we see that the function h analytic in \mathcal{U}, satisfies the inequality $|h(z)|<\beta$ for $z \in \mathcal{U}$ and $h(0)=$ 0 . Now, by using the Schwarz's lemma, we get that the function h has the form $h(z)=z \varphi(z)$, where φ is analytic in \mathcal{U} and satisfies $|\varphi(z)| \leq \beta$ for $z \in \mathcal{U}$. Thus, we obtain

$$
H(z)=\frac{1-A h(z)}{1-B h(z)}=\frac{1-A z \varphi(z)}{1-B z \varphi(z)}
$$

On the other hand, if

$$
H(z)=\frac{1-A z \varphi(z)}{1-B z \varphi(z)}
$$

and $|\varphi(z)| \leq \beta$ for $z \in \mathcal{U}$, then H is analytic in the unit disk $z \in \mathcal{U}$. Furthermore, since $|z \varphi(z)| \leq \beta|z|<\beta$ for $z \in \mathcal{U}$, we get

$$
\left|\frac{H(z)-1}{A-B H(z)}\right|=|z \varphi(z)|<\beta, z \in \mathcal{U}
$$

which completes the proof of our lemma.
Lemma 1.4. [5] Let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$. Then,

$$
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z}
$$

Let \mathcal{P} denote the class of functions p of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, z \in \mathcal{U} \tag{1.9}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} \mathcal{U}$.

Lemma 1.5. [6] If $p \in \mathcal{P}$ has the form (1.9) and satisfies $\operatorname{Re} p(z)>0, z \in \mathcal{U}$, then for any number $\mu \in \mathbb{C}$ we have

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1 ;|2 \mu-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z}{1-z} \quad \text { and } \quad p(z)=\frac{1+z^{2}}{1-z^{2}}
$$

Lemma 1.6. [3] A function $p \in \mathcal{P}$ satisfies $\operatorname{Re} p(z)>0, z \in \mathcal{U}$, if and only if

$$
p(z) \neq \frac{x-1}{x+1}, z \in \mathcal{U}
$$

for all $|x|=1$.
Lemma 1.7. If $f \in \mathcal{A}$ has the form (1.1), then $f \in K_{s}(\alpha ; u, v)$ if and only if

$$
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0, z \in \mathcal{U},|x|=1
$$

where

$$
\begin{equation*}
A_{n}=\frac{n a_{n}+(1-2 \alpha) C_{n}(u, v)+\left(n a_{n}-C_{n}(u, v)\right) x}{2(1-\alpha)} \tag{1.10}
\end{equation*}
$$

and the coefficients $C_{n}(u, v)$ are given by (1.7).
Proof. . According to Lemma 1.6, we have that $f \in K_{s}(\alpha ; u, v)$ if and only if

$$
\begin{equation*}
\frac{\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}-\alpha}{1-\alpha} \neq \frac{x-1}{x+1}, z \in \mathcal{U} \tag{1.11}
\end{equation*}
$$

for all $|x|=1$.
For $z=0$, the above relation holds, since

$$
\left.\frac{\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}-\alpha}{1-\alpha}\right|_{z=0}=1 \neq \frac{x-1}{x+1},|x|=1
$$

For $z \neq 0$, the relation (1.11) is equivalent to

$$
(x+1)\left(u v z^{2} f^{\prime}(z)-\alpha g(u z) g(v z)\right) \neq(x-1)(1-\alpha) g(u z) g(v z)
$$

for all $z \in \mathcal{U} \backslash\{0\}$ and $|x|=1$. Thus, we have

$$
2(1-\alpha) z+\sum_{n=2}^{\infty}\left[n a_{n}+(1-2 \alpha) C_{n}(u, v)+x\left(n a_{n}-C_{n}(u, v)\right] z^{n} \neq 0\right.
$$

for $z \in \mathcal{U} \backslash\{0\}$ and $|x|=1$, equivalently

$$
\begin{equation*}
2(1-\alpha) z\left[1+\frac{\sum_{n=2}^{\infty}\left[n a_{n}+(1-2 \alpha) C_{n}(u, v)+x\left(n a_{n}-C_{n}(u, v)\right]\right.}{2(1-\alpha)} z^{n-1}\right] \neq 0 \tag{1.12}
\end{equation*}
$$

Dividing both sides of (1.12) by $2(1-\alpha) z$, we obtain

$$
1+\frac{\sum_{n=2}^{\infty}\left[n a_{n}+(1-2 \alpha) C_{n}(u, v)+x\left(n a_{n}-C_{n}(u, v)\right]\right.}{2(1-\alpha)} z^{n-1} \neq 0
$$

for $z \in \mathcal{U} \backslash\{0\}$ and $|x|=1$, which completes our proof.

2 Main Results

We will prove a theorem which provides us a sufficient condition for functions to belong into the class $K_{s}(A, B ; u, v)$.

Theorem 2.1. Let the functions f and g defined by (1.1) and (1.5) respectively, and for $n=$ $2,3,4, \ldots$ let define the coefficients $C_{n}(u, v)$ by (1.7). If

$$
\begin{aligned}
& (1+|B|) \sum_{n=2}^{\infty} n\left|a_{n}\right|+(1+|A|) \sum_{n=2}^{\infty}\left|C_{n}(u, v)\right|<A-B \\
& \left(-1 \leq B<A \leq 1 ; u, v \in \mathbb{C}^{*},|u| \leq 1,|v| \leq 1\right)
\end{aligned}
$$

then $f \in K_{s}(A, B ; u, v)$.
Proof. For the functions f given by (1.1) and g given by (1.5) set

$$
\begin{gathered}
\Delta=\left|z f^{\prime}(z)-\frac{g(u z) g(v z)}{u v z}\right|-\left|B z f^{\prime}(z)-\frac{A g(u z) g(v z)}{u v z}\right|= \\
\left|\sum_{n=2}^{\infty} n a_{n} z^{n}-\sum_{n=2}^{\infty} C_{n}(u, v) z^{n}\right|-\left|(B-A) z+B \sum_{n=2}^{\infty} n a_{n} z^{n}-A \sum_{n=2}^{\infty} C_{n}(u, v) z^{n}\right|
\end{gathered}
$$

From here, we have

$$
\Delta \leq-(A-B)|z|+(1+|B|) \sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n}+(1+|A|) \sum_{n=2}^{\infty}\left|C_{n}(u, v)\right||z|^{n}
$$

hence

$$
\Delta \leq\left(-(A-B)+(1+|B|) \sum_{n=2}^{\infty} n\left|a_{n}\right|+(1+|A|) \sum_{n=2}^{\infty}\left|C_{n}(u, v)\right|\right)|z|, z \in \mathcal{U}
$$

Using the assumption we obtain $\Delta<0$, and thus we have

$$
\left|z f^{\prime}(z)-\frac{g(u z) g(v z)}{u v z}\right|<\left|B z f^{\prime}(z)-\frac{A g(u z) g(v z)}{u v z}\right|, z \in \mathcal{U}
$$

hence from (1.4) we conclude that $f \in K_{s}(A, B ; u, v)$.
Remark 2.2. Taking $u=1, v=-1, A=1-2 \gamma(0 \leq \gamma<1)$ and $B=-1$ in Theorem 2.1, we get the result obtained by Kowalczyk and Leś-Bomba [4].

The next theorem gives the estimate of the coefficients.
Theorem 2.3. Let $-1 \leq B<A \leq 1$. Suppose that an analytic function f given by (1.1) and $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$ given by (1.5) are such that the condition (1.2) holds. Then, for $n \geq 2$ we have

$$
\begin{gather*}
\left|n a_{n}-C_{n}(u, v)\right|^{2}-|A-B|^{2} \leq \tag{2.1}\\
\sum_{k=2}^{n-1}\left(\left|B^{2}-1\right| k^{2}\left|a_{k}\right|^{2}+\left|A^{2}-1\right|\left|C_{k}(u, v)\right|^{2}+2 k\left|a_{k} C_{k}(u, v)\right||1-A B|\right)
\end{gather*}
$$

where the coefficients $C_{n}(u, v)$ are defined by (1.7).

Proof. Since $f \in K_{s}(A, B ; u, v)$ for some $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$, the inequality (1.4) holds. From Lemma 1.3 we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{G(z)}=\frac{1-A z \varphi(z)}{1-B z \varphi(z)}, z \in \mathcal{U} \tag{2.2}
\end{equation*}
$$

where φ is an analytic functions in $\mathcal{U},|\varphi(z)| \leq 1$ for $z \in \mathcal{U}$, and G is given by (1.6).
From (2.2), by using the definitions (1.1) and (1.6) for f and G respectively, we obtain that

$$
\begin{gather*}
{\left[-B\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+A\left(z+\sum_{n=2}^{\infty} C_{n}(u, v) z^{n}\right)\right] z \phi(z)=} \\
\sum_{n=2}^{\infty} C_{n}(u, v) z^{n}-\sum_{n=2}^{\infty} n a_{n} z^{n}, z \in \mathcal{U} \tag{2.3}
\end{gather*}
$$

Since the function $z \varphi(z)$ has the expansion

$$
z \varphi(z)=\sum_{n=1}^{\infty} t_{n} z^{n}, z \in \mathcal{U}
$$

from (2.3) we find that

$$
\begin{gather*}
\left((A-B) z-B \sum_{n=2}^{\infty} n a_{n} z^{n}+A \sum_{n=2}^{\infty} C_{n}(u, v) z^{n}\right) \sum_{n=1}^{\infty} t_{n} z^{n}= \\
\sum_{n=2}^{\infty} C_{n}(u, v) z^{n}-\sum_{n=2}^{\infty} n a_{n} z^{n}, z \in \mathcal{U} \tag{2.4}
\end{gather*}
$$

Now, equating the coefficient of z^{n} in (2.4), we get

$$
\begin{gathered}
C_{n}(u, v)-n a_{n}=(A-B) t_{n-1}+\left(-2 B a_{2}+A C_{2}(u, v)\right) t_{n-2}+ \\
\left(-3 B a_{3}+A C_{3}(u, v)\right) t_{n-3}+\cdots+\left(-(n-1) B a_{n-1}+A C_{n-1}(u, v)\right) t_{1}
\end{gathered}
$$

and thus, the coefficient combination on the R.H.S. of (2.4) depends only upon the coefficients combinations

$$
\left(-2 B a_{2}+A C_{2}(u, v)\right), \ldots,\left(-(n-1) B a_{n-1}+A C_{n-1}(u, v)\right)
$$

Hence, for $n \geq 2$ we can write that

$$
\begin{gathered}
{\left[(A-B) z+\sum_{k=2}^{n-1}\left(-B k a_{k}+A C_{k}(u, v)\right) z^{k}\right] z \varphi(z)=} \\
\sum_{k=2}^{n}\left(C_{k}(u, v)-k a_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}, z \in \mathcal{U}
\end{gathered}
$$

and using the fact that $|z \varphi(z)| \leq|z|<1$ for all $z \in \mathcal{U}$, this reduces to the inequality

$$
\left|(A-B) z+\sum_{k=2}^{n-1}\left(-B k a_{k}+A C_{k}(u, v)\right) z^{k}\right|>\left|\sum_{k=2}^{n}\left(C_{k}(u, v)-k a_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}\right|
$$

Squaring the above inequality and integrating along the circle $|z|=r(0<r<1)$, we obtain

$$
\begin{gathered}
\int_{0}^{2 \pi}\left|(A-B) r e^{i \theta}+\sum_{k=2}^{n-1}\left(-B k a_{k}+A C_{k}(u, v)\right) r^{k} e^{i k \theta}\right|^{2} d \theta> \\
\int_{0}^{2 \pi}\left|\sum_{k=2}^{n}\left(C_{k}(u, v)-k a_{k}\right) r^{k} e^{i k \theta}+\sum_{k=n+1}^{\infty} d_{k} r^{k} e^{i k \theta}\right|^{2} d \theta
\end{gathered}
$$

Using now the Parseval's inequality, we obtain

$$
\begin{gathered}
|A-B|^{2} r^{2}+\sum_{k=2}^{n-1}\left|-B k a_{k}+A C_{k}(u, v)\right|^{2} r^{2 k}> \\
\sum_{k=2}^{n}\left|k a_{k}-C_{k}(u, v)\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k}
\end{gathered}
$$

Letting $r \rightarrow 1$ in this inequality, we get

$$
|A-B|^{2}+\sum_{k=2}^{n-1}\left|-B k a_{k}+A C_{k}(u, v)\right|^{2} \geq \sum_{k=2}^{n}\left|k a_{k}-C_{k}(u, v)\right|^{2}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2}
$$

which implies

$$
|A-B|^{2}+\sum_{k=2}^{n-1}\left|-B k a_{k}+A C_{k}(u, v)\right|^{2} \geq \sum_{k=2}^{n}\left|k a_{k}-C_{k}(u, v)\right|^{2}
$$

Hence we deduce that

$$
\begin{gathered}
\left|n a_{n}-C_{n}(u, v)\right|^{2}-|A-B|^{2} \leq \\
\sum_{k=2}^{n-1}\left(\left|B^{2}-1\right| k^{2}\left|a_{k}\right|^{2}+\left|A^{2}-1\right|\left|C_{k}(u, v)\right|^{2}+2 k\left|a_{k} C_{k}(u, v)\right||1-A B|\right)
\end{gathered}
$$

and thus we obtain the inequality (2.1), which completes our proof.
Remark 2.4. Taking $u=1, v=-1, A=1-2 \gamma(0 \leq \gamma<1)$, and $B=-1$ in above theorem, we get the result obtained by Kowalczyk and Leś-Bomba [4].

Now we establish a result on inclusion relationship contained in the next theorem.
Theorem 2.5. Let $u, v \in \mathbb{C}^{*}$, with $|u| \leq 1,|v| \leq 1$, and let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2}<1$. Then,

$$
K_{s}\left(A_{1}, B_{1} ; u, v\right) \subset K_{s}\left(A_{2}, B_{2} ; u, v\right)
$$

Proof. Supposing that $f \in K_{s}\left(A_{1}, B_{1} ; u, v\right)$, we have

$$
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)} \prec \frac{1+A_{1} z}{1+B_{1} z}
$$

Since $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2}<1$, by Lemma 1.4 we get

$$
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)} \prec \frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z},
$$

hence $f \in K_{s}\left(A_{2}, B_{2} ; u, v\right)$.

Theorem 2.6. If the function $f \in \mathcal{A}$ has the form (1.1) and satisfies the condition

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}+(1-2 \alpha) C_{k}(u, v)\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|+\right. \\
\left.\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}-C_{k}(u, v)\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2(1-\alpha)
\end{gathered}
$$

where $0 \leq \alpha<1, \gamma, \delta \in \mathbb{R}$ and the coefficients $C_{n}(u, v)$ are given by (1.7), then $f \in K_{s}(\alpha ; u, v)$.
Proof. According to Lemma 1.7, to prove that $1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0$ for all $z \in \mathcal{U}$ and $|x|=1$, where A_{n} are given by (1.10), it is sufficient to show that

$$
\begin{gathered}
\left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)(1-z)^{\gamma}(1+z)^{\delta}= \\
1+\sum_{n=2}^{\infty}\left[\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} A_{k}(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right] z^{n-1} \neq 0
\end{gathered}
$$

for all $z \in \mathcal{U}$ and $|x|=1$, where $A_{0}=0, A_{1}=1$ and $\gamma, \delta \in \mathbb{R}$. Thus, if the function f satisfies

$$
\sum_{n=2}^{\infty}\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l} A_{k}(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right| \leq 1,|x|=1
$$

that is, if

$$
\begin{gathered}
\left.\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty} \right\rvert\, \sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}+(1-2 \alpha) C_{k}(u, v)\right)\right. \\
\left.+x\left(k a_{k}-C_{k}(u, v)\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\} \left.\binom{\delta}{n-l} \right\rvert\, \leq \\
\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}+(1-2 \alpha) C_{k}(u, v)\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|\right. \\
\left.+|x|\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}-C_{k}(u, v)\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|\right) \leq 1,|x|=1,
\end{gathered}
$$

then $f \in K_{s}(\alpha ; u, v)$, and the proof is complete.
Letting $\gamma=\delta=0$ in Theorem 2.6, we have:
Corollary 2.7. If the function $f \in \mathcal{A}$ has the form (1.1) and satisfies the condition

$$
\sum_{n=2}^{\infty}\left(\left|n a_{n}+(1-2 \alpha) C_{n}(u, v)\right|+\left|n a_{n}-C_{n}(u, v)\right|\right) \leq 2(1-\alpha)
$$

for some $\alpha(0 \leq \alpha<1)$, where the coefficients $C_{n}(u, v)$ are given by (1.7), then $f \in K_{s}(\alpha ; u, v)$.
Taking $u=1$ and $v=-1$ in Theorem 2.6, we obtain:

Corollary 2.8. If the function $f \in \mathcal{A}$ has the form (1.1) and satisfies the condition

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}+(1-2 \alpha) B_{2 k-1}\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|+\right. \\
\left.\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}-B_{2 k-1}\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2(1-\alpha)
\end{gathered}
$$

for some $\alpha(0 \leq \alpha<1)$ and $\gamma, \delta \in \mathbb{R}$, then $f \in K_{s}(\alpha):=K_{s}(\alpha ; 1,-1)$, where $B_{2 k-1}$ $(k=2,3,4 \ldots)$ are given by (1.8) and $B_{1}=0$.

For $\alpha=0$ the above Corollary reduces to the next special case:
Corollary 2.9. If the function $f \in \mathcal{A}$ has the form (1.1) and satisfies the condition

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}+B_{2 k-1}\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|+\right. \\
\left.\left|\sum_{l=1}^{n}\left\{\sum_{k=1}^{l}\left(k a_{k}-B_{2 k-1}\right)(-1)^{l-k}\binom{\gamma}{l-k}\right\}\binom{\delta}{n-l}\right|\right) \leq 2
\end{gathered}
$$

where $\gamma, \delta \in \mathbb{R}$, then $f \in K_{s}(0)$, where $B_{2 k-1}(k=2,3,4 \ldots)$ are given by (1.8) and $B_{1}=0$.

3 Fekete-Szegő Inequality

In this section we assume that the function φ is an analytic function with positive real part, that maps the unit disk \mathcal{U} onto a starlike region which is symmetric with respect to real axis, and is normalized by $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. In such case, the function φ has an expansion of the form $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\ldots, B_{1}>0$.

Definition 3.1. Let f be an analytic function in \mathcal{U} defined by (1.1). We say that $f \in K_{s}(\varphi ; u, v)$, if there exist $g \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$ such that

$$
\begin{gathered}
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)} \\
\prec \varphi(z) \\
\left(u, v \in \mathbb{C}^{*},|u| \leq 1 \text { and }|v| \leq 1\right)
\end{gathered}
$$

where the function φ satisfies the requirements mentioned just above this definition.
Theorem 3.2 (Fekete-Szegő Inequality). For a function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belonging to the class $K_{s}(\varphi ; u, v)$, the following sharp estimate holds:

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3} \max \left\{B_{1},\left|B_{2}-\frac{3 \mu}{4} B_{1}^{2}\right|\right\}-\frac{u v}{3}+ \\
& B_{1} c_{1} b_{2}(u+v)\left(\frac{1}{6}-\frac{\mu}{4}\right)+(u+v)^{2}\left(\frac{b_{3}}{3}-\frac{\mu b_{2}^{2}}{4}\right) \tag{3.1}
\end{align*}
$$

Proof. Using the definition of the subordination between two analytic function, there exists a function w analytic in \mathcal{U}, normalized by $w(0)=0$, satisfying $|w(z)|<1, z \in \mathcal{U}$, and

$$
\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}=\varphi(w(z)), z \in \mathcal{U}
$$

If

$$
\begin{equation*}
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots, z \in \mathcal{U} \tag{3.2}
\end{equation*}
$$

then p_{1} is analytic and has positive real part in \mathcal{U}, with $p_{1}(0)=1$, and from (3.2) we obtain

$$
\begin{equation*}
w(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\ldots, z \in \mathcal{U} . \tag{3.3}
\end{equation*}
$$

Letting

$$
\begin{equation*}
p(z)=\frac{u v z^{2} f^{\prime}(z)}{g(u z) g(v z)}=1+d_{1} z+d_{2} z^{2}+\ldots, z \in \mathcal{U} \tag{3.4}
\end{equation*}
$$

this gives

$$
\begin{align*}
& d_{1}=2 a_{2}-b_{2}(u+v), \\
& d_{2}=3 a_{3}-2 a_{2} b_{2}(u+v)-b_{3}\left(u^{2}+v^{2}\right)-b_{2}^{2} u v+b_{2}^{2}(u+v)^{2} . \tag{3.5}
\end{align*}
$$

Since φ is univalent and $p(z) \prec \varphi(z)$, by using (3.3) we obtain

$$
\begin{equation*}
p(z)=\varphi(w(z))=1+\frac{B_{1} c_{1}}{2} z+\left[\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}\right] z^{2}+\ldots, z \in \mathcal{U} . \tag{3.6}
\end{equation*}
$$

Now, from (3.4), (3.5), and (3.6), we obtain

$$
\begin{gathered}
\frac{B_{1} c_{1}}{2}=2 a_{2}-b_{2}(u+v), \\
\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}= \\
3 a_{3}-2 a_{2} b_{2}(u+v)-b_{3}\left(u^{2}+v^{2}\right)-b_{2}^{2} u v+b_{2}^{2}(u+v)^{2}
\end{gathered}
$$

and therefore, we conclude that

$$
\begin{aligned}
& a_{3}-\mu a_{2}^{2}=\frac{1}{6} B_{1}\left(c_{2}-\nu c_{1}^{2}\right)-\frac{2 u v}{3}\left(b_{3}-\frac{b_{2}^{2}}{2}\right)+ \\
& B_{1} c_{1} b_{2}(u+v)\left(\frac{1}{6}-\frac{\mu}{4}\right)+(u+v)^{2}\left(\frac{b_{3}}{3}-\frac{\mu b_{2}^{2}}{4}\right),
\end{aligned}
$$

where

$$
\nu=\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}+\frac{3 \mu}{4} B_{1}\right) .
$$

The desired result follows upon using the Lemma 1.5 and using estimate that $\left|b_{3}-\frac{b_{2}^{2}}{2}\right| \leq \frac{1}{2}$, for any analytic function $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots, z \in \mathcal{U}$, which is starlike of order $\frac{1}{2}$ (see [1]).
Remarks 3.1. (i) Putting $u=1$ and $v=-1$ in the above theorem we get the result obtained recently by Cho et al. [1].
(ii) Setting $\mu=0$ in Theorem 3.2 we get the sharp estimate for the third coefficient of function in $K_{s}(\varphi ; u, v)$, that is

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}}{3} \max \left\{1,\left|\frac{B_{2}}{B_{1}}\right|\right\}-\frac{u v}{3}+\frac{B_{1} c_{1} b_{2}(u+v)}{6}+(u+v)^{2} \frac{b_{3}}{3} . \tag{3.7}
\end{equation*}
$$

(iii) Putting $u=1$ and $v=-1$ in (3.7) we get the sharp estimate for the third coefficient of function in the class $K_{s}(\varphi)$, due to Cho et al. [1].
(iv) If we let $\mu \rightarrow \infty$ in (3.1) we get the sharp estimate for $\left|a_{2}\right|$, i.e.

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{B_{1}^{2}}{4}-\frac{b_{2}(u+v)}{4}\left[B_{1} c_{1}+(u+v) b_{2}\right]} \tag{3.8}
\end{equation*}
$$

(v) If we put $u=1$ and $v=-1$ in (3.8) we get the result due to Cho et al. [1]. Also, for $u=1$ and $v=-1$ and $\varphi(z)=\frac{1+z}{1-z}$, the results reduces to the corresponding one from [2, Theorem 2, p. 125].

References

[1] N. E. Cho, O. S. Kwon and V. Ravichandran, Coefficient, distortion and growth inequalities for certain close-to-convex functions, J. Inequal. Appl. (2011), 2011:100.
[2] C.-Y. Gao and S.-Q. Zhou, On a class of analytic functions related to the starlike functions, Kyungpook Math. J., 45(2005), 123-130.
[3] T. Hayami, S. Owa and H. M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Ineq. Pure Appl. Math., 8(2007), Issue 4, Article 95, 1-10.
[4] J. Kowalczyk and E. Leś-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23(2010), 1147-1151.
[5] M. S. Liu, On a subclass of p-valent close-to-convex functions of order β and type α, J. Math. Study, 30(1997), 102-104.
[6] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157-169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
[7] K. S. Padmanabhan, On a certain classes of starlike functions in the unit disc, J. Indian Math. Soc., 32(1968), 89-103.

Author information

S. P. Goyal, Onkar Singh, Department of Mathematics, University of Rajasthan, Jaipur-302004, India.

E-mail: somprg@gmail.com onkarbhati@gmail.com
Teodor Bulboacă, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 ClujNapoca, Romania.
E-mail: bulboaca@math.ubbcluj.ro

Received: January 2, 2013
Accepted: June 11, 2013

