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Abstract. We briefly survey results about Invertible Algebras (algebras having bases that
consist entirely of units) and other related notions. In addition, we consider the existence of
an augmentation map as a possible way in which results about group rings, the archetypical
invertible algebras, may be extended to more general settings.

1 Invertible Algebras and Some Related Notions

Section 1 of this paper surveys the study of Invertible Algebras (over not-necessarily commuta-
tive rings) and other related notions. Section 2 introduces new ideas analogous to the augmenta-
tion map of group rings.

Invertible algebras are those algebras that satisfy the condition that they have a basis consist-
ing entirely of units. Our brief survey also touches on a few other related concepts. The concept
of invertible algebras was originally introduced in [10] and is the subject of two recent papers
[8] and [11]. The somewhat related notion of fluidity is studied in the upcoming paper [9]. Other
notions mentioned in this first section are k-good rings (c.f. [17]) and S-rings (c.f. [15]).

Group Rings are clearly an example of invertible algebras; their theory is very well developed
and is central in many areas of mathematics. Standard references for group rings include the
classics [13] and [14]. Section 2 points out a direction of research aiming to extend results about
group rings to a larger family of invertible algebras. This is done by characterizing precisely
those algebras that have an augmentation map.

In this paper, when we use the expression A is an R-algebra we deviate from the standard
use of that terminology in two ways: one which narrows the net that we cast and another one
that widens it. First, we do not allow a proper homomorphic image of the ring R to be contained
in A; according to the definition we use in this paper, R itself is contained in A. The second
difference is that R is not necessarily assumed to be contained in the center of A; in fact, we
do not even assume that the ring R is commutative. Also, a feature that will be common to all
those algebras considered here is that they will be free as (left-) R-modules. In other words, our
setting is that we have a ring A that has a subring R such that A is a free left R-module.

Definition 1.1. LetA be an algebra over a ringR and B be a basis forA overR. B is an invertible
basis if each element of B is invertible in A. If B is an invertible basis such that B−1, the set of
the inverses of the elements of B, also constitutes a basis then B is an invertible-2(I2) basis. An
algebra with an invertible basis is an invertible algebra and an algebra with an I2 basis is an I2
algebra.

Various papers in the literature have considered properties of rings having to do with express-
ing their elements in terms of sums of units. See ([4], [16] and [18]), for example. In particular,
S-rings and k-good are defined in ([15] and [17]) as follows:

Definition 1.2. In [17], for k ∈ Z+, Vámos calls a ring R a k-good ring if each element of R is
the sum of k units. A related concept is that of an S-ring, a ring in which every element is the
sum of units. (c.f. [15]).

Lemma 1.3 (Lemma 1, [15]). Let A be a ring, let G be a group and let R be the group ring
defined by A and G. Then R is an S-ring if and only if A is an S-ring.

Lemma 1.4 (Lemma 5, [15]). (a) In an even S-ring, zero can be written as the sum of an odd
number of units.

(b) If R is an S-ring that contains a unit u such that u+ 1 is a unit, then R is an even S-ring.
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(c) A finite product of even S-rings is an even S-ring.

(d) If R is any ring, then Rn is an even S-ring for all n > 1.

(e) If R is an even S-ring, and S is an S-ring, then R⊕ S is an S-ring.

Proposition 1.5 (Proposition 6, [15]). Let R be completely reducible. Then R is an S-ring if
and only if the two-element field occurs at most once in the decomposition of R into completely
reducible simple rings. R is an even S-ring if and only if this field does not occur at all.

As usual, we denote the ring of n×nmatrices over an arbitrary ringR byMn(R). Performing
an elementary row operation on the identity matrix results in an elementary matrix.

Definition 1.6. In [17], the author defines the elementary group of Mn(R), denoted by En(R),
as the subgroup of GLn(R) generated by elementary matrices, permutation matrices and -1.

Definition 1.7. A matrix is strongly k-good if it can be written as a sum of k elements of the
elementary group, and a matrix ring is strongly k-good if every matrix is strongly k-good (see
[17].)

Lemma 1.8 (Lemma 5, [17]). Let R be an arbitrary ring and n ≥ 2. Then any diagonal matrix
in Mn(R) is strongly 2-good.

Proposition 1.9 (Proposition 6, [17]). A proper matrix ring over an elementary divisor ring is
2-good. Over an Euclidean domain proper matrix rings are strongly 2-good.

Proposition 1.10 (Proposition 8, [17]). Let R be a ring, m,n ≥ 1 and k ≥ 2. If the matrix rings
Mn(R) and Mm(R) are both k-good, then so is the matrix ring Mn+m(R).

Definition 1.11. Let R be a subring of S. R is said to be unit closed in S if no nonunit of R
becomes a unit in S, i.e. U(S) ∩R = U(R) (see [17].)

Proposition 1.12 (Theorem 13, [17]). Every ring can be embedded as a unit closed subring in a
2-good ring.

The study of k-good rings has been furthered recently in [5] which yielded the following
interesting results:

Proposition 1.13 (Theorem 1, [5]). For a right self-injective ringR, the following conditions are
equivalent:

(1) Every element of R is a sum of two units.

(2) Identity of R is a sum of two units.

(3) R has no factor ring isomorphic to Z2.

Proposition 1.14 (Theorem 3, [5]). Let MS be a quasi-continuous module with finite exchange
property and R = EndS(M). Then every element of R is a sum of two units if and only if no
factor ring of R is isomorphic to Z2.

Proposition 1.15 (Proposition 7, [5]). If R is a right self-injective ring and G a locally finite
group, then every element of RG is a sum of two units unless R has a factor ring isomorphic to
Z2.

The study of invertible-2 algebras naturally leads to considering questions about when the
sets of inverses of linearly independent sets of units are linearly independent. This condition
seems hard to satisfy and indeed the phenomena described here seem rather rare. We start by
introducing appropriate terminology from [9].

Definition 1.16. (i) A linearly independent set S of units of the algebra A is said to be fluid if
S−1, the set of inverses of its elements, is also linearly independent.

(ii) An algebra A is said to be fluid if every linearly independent set of units S of A is fluid.

(iii) In order to prevent vacuous nonsensical consequences, we must introduce the following
parameter: for an algebra A over a ring R, the mojo of A (mojo(A)) is the largest number
of linearly independent units one can find in A. Clearly, if A is free as a module over
R then mojo(A) ≤ rankR(A). When A has finite rank as a free module over R then
mojo(A) = rankR(A) if and only if A is an invertible algebra.
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(iv) For a number t ≤ mojo(A), we say that the algebraA is t-fluid if every linearly independent
set of units S with at most t elements is fluid. The fluidity of A (fluid(A)) is the largest t
such that A is t-fluid. Clearly if fluid(A) = rankR(A) then A is invertible-2.

We start with a few immediate remarks.

Remark 1.17. (i) Every linearly independent set of units S having exactly two elements is
fluid.

(ii) If mojo(A) ≥ 2 then fluid(A) ≥ 2.

(iii) A = F [x] is an example of an F -algebra with mojo(A) = fluid(A) = 1.

(iv) If A is a subalgebra of B then if B is fluid then so is A.

The following example shows that it is indeed possible for the fluidity, mojo and dimension
of an algebra to be different from one another.

Example 1.18. LetA = T3(F2), the ring of upper triangular matrices over F2. Clearly dim(A) =
6. It is straightforward to show 4 ≤ mojo(A) 6= 6. Furthermore, we easily find a set of 4 linearly
independent units whose inverses are linearly dependent, thus fluid(A) < 4.

Fluid fields extensions are rather scarce, in fact, that is the subject of the following proposition
from [9].

Proposition 1.19. Let E be a field extension over F. Then fluid(E) = 2 and therefore, E/F is
fluid if and only if the degree of E over F is 2.

As we will show in Proposition 1.27, matrix algebras have played an important role in the
study of invertible algebras. It is therefore also interesting to consider their fluidity. The next
proposition from [9] announces that, in general, in spite of being I2, matrix algebras are far from
being fluid and, in fact their fluidity is almost always 2.

Proposition 1.20. Let R be a commutative ring such that 1 = a+ b where a and b are units and
n ≥ 3. Then the fluidity of Mn(R) is 2.

The technical condition that the identity of R be a sum of two units is not necessary for the
result to hold. This is illustrated in the following proposition. In fact, while we do not know any
way to remove the hypothesis from Proposition 1.20, we also do not know at this moment any
examples where the result fails.

Proposition 1.21. Let R = F2 and n ≥ 3. Then the fluidity of Mn(R) is 2.

One of the first remarkable results about invertible algebras is the following characterization
of group rings from [10].

Proposition 1.22 (Proposition 2.12, [10]). Let A be an algebra over a ring R. A is a group
ring if and only if A has an invertible basis that is closed under products and whose elements
commute with those of R.

Proposition 1.22 has as a corollary which strengthens a result about field extensions reported
in [6] for reals over rationals and in general in [12]. Namely, Corollary 1.23 extends the result
that no proper field extension has a basis that is closed under multiplication.

Corollary 1.23. If a simple ring A is an invertible R-algebra with invertible basis B 6= 1 then B
is not closed under products.

Propositon 1.22 was later generalized in [8] to include characterizations of the various crossed
products as algebras having invertible bases with additional properties which are softer versions
of those in Proposition 1.22.

Definition 1.24. Let A be an algebra over a ring R, and B an R-basis for A. If for all v ∈ B there
exists σv ∈ Aut(R) such that for all r ∈ R, vr = σv(r)v then R scalarly commutes with B. In
the case that for all v ∈ B, σv = 1 we naturally say R commutes with B.

Definition 1.25. Let A be an algebra over a ring R and B be an invertible basis for A over R. If
for all v, w ∈ B, αvw ∈ B for some α ∈ U(R) then B is scalarly closed under products.

Proposition 1.26 (Proposition 2.7, [8]). Let A be an algebra over a ring R.
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(i) A is a crossed product if and only if A has an invertible basis that is scalarly closed under
products and whose elements scalarly commute with those of R.

(ii) A is a skew group ring if and only if A has an invertible basis that is closed under products
and whose elements scalarly commute with those of R.

(iii) A is a twisted group ring if and only if A has an invertible basis that is scalarly closed
under products and whose elements commute with those of R.

(iv) A is a group ring if and only if A has an invertible basis that is closed under products and
whose elements commute with those of R.

In [10] it was shown that over any ring R, the matrix ring A = Mn(R) (for any n ≥ 1) is an
I2 R-algebra. Then the result was significantly extended in [8].

Proposition 1.27 (Proposition 3.1, [8]). Let A be an algebra over a ring R with a basis that
includes 1. Then Mn(A) is an invertible algebra over R for all n ≥ 2.

Corollary 1.28. Invertibility is not a Morita invariant.

Proposition 1.29. Let D be a division ring and let A be a semilocal D-algebra. If D 6= F2
then A is invertible. If D = F2 then A is invertible if and only if A does not admit an algebra
epimorphism to F2 ⊕ F2.

Proposition 1.30 (Proposition 4.6, [8]). Let R be a ring and let A be a free local R-algebra.
Then A is invertible.

2 Toward an analogue of the augmentation map

Group rings were one of the original motivations for our study of invertible algebras. As it has
been shown in the previous sections, the class of invertible algebras is much bigger than that. It
is therefore not to be expected that many of the results concerning structural properties of group
rings can be extended to invertible algebras. We investigate, however, conditions that may allow
some of those results to extend. Our first observation is that the idea of an augmentation map
can sometimes be extended to a more general setting.

We start by describing properties that will allow the augmentation map φ : A→ R defined by
φ(
∑

i αivi) =
∑

i αi, to become a ring homomorphism and we will show that these conditions
are indeed necessary and sufficient in Proposition 2.8.

It is well-known that for a finite group G, the group ring R[G] is self-injective if and only if
R is self-injective [3]. The next example illustrates how this result does not extend to invertible
algebras.

Example 2.1. It is well known that a finite-dimensional commutative local algebra A over a field
R = F , is self-injective if and only if A has a unique minimal ideal [7]. Consider the F3-algebra
A = F3[x,y]

〈x,y〉2 . It is easily checked that the basis B = {1, 1 + x, 1 + y} is an invertible basis for
A. Now 〈x, y〉 is the unique maximal ideal of A and so A is a local ring. Now 〈x〉, and 〈y〉 are
both minimal ideals and therefore A does not have a unique minimal ideal. Therefore, A is not
self-injective even though it is finite dimensional over F (which, as all fields, is self-injective.)

A key element of the proof in [3] of the above characterization of self-injective group rings
is the fact that the R-homomorphism φ : R[G] → R given by φ(

∑
g∈G αgg) =

∑
g∈G αg is a

ring homomorphism. It seems reasonable to ask, for a basis B of an algebra A over a ring R,
when the map φ : A → R given by φ(

∑
b∈B αbb) =

∑
b∈B αb is a ring homomorphism. We

introduce next a few definitions that will be essential components of the answer to that question
provided by Proposition 2.8 below. Furthermore, these definitions and Proposition 2.8 will be
instrumental in providing a partial converse to Proposition 2.2 in [10].

Definition 2.2. Let A be an R-algebra with basis B. We say that R commutes linearly with B if
for all v ∈ B and β ∈ R, if vβ =

∑
vk∈B δkvk then

∑
δk = β.

Definition 2.3. Let A be an R-algebra with basis B. We call B linearly closed under products if
for all v, w ∈ B, if vw =

∑
vi∈B αivi then

∑
vi∈B αi = 1.

Definition 2.4. Let A be an R-algebra with invertible basis B. We say B is linearly closed under
inverses if for all v ∈ B, if v−1 =

∑
vi∈B αivi then

∑
vi∈B αi = 1.
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Clearly Definition 2.3 is satisfied by group rings. However, in [10], an example of an invert-

ible algebra that is not a group ring is given, namely
F2[x, y]

〈x, y〉2
. An invertible basis of this algebra

also illustrates that Definition 2.3 does not just pertain to group rings.

Example 2.5. ConsiderA =
F2[x, y]

〈x, y〉2
. As stated in [10] we knowA is not a group ring. However,

A is an invertible algebra with invertible basis B = {1, 1 + x, 1 + y}. The product of 1 + x and
1 + y is

(1 + x)(1 + y) = 1 + x+ y = 1(1) + 1(1 + x) + 1(1 + y).

The sum of the coefficients is 1. The other combinations are trivial. Therefore, B satisfies
Definition 2.3.

Proposition 2.6. Let A be an invertible R-algebra with invertible basis B. Assume B is linearly
closed under products and scalarly closed under products. Then B is a group.

Proof. Let vi, vj ∈ B. Since B is scalarly closed under products we have vivj = αvk. But since
B is linearly closed under products we must have α = 1. Therefore, B is closed under products
and by Proposition 2.12 in [10], B is a group.

An obvious question is are there other examples of algebras with bases that are linearly
closed under products and inverses, yet are not group rings. The previous example inspired a

consideration of algebras of the form
R[x1, x2, . . . , xn]

〈x1, x2, . . . , xn〉m
. The following proposition will show

there are numerous examples of algebras that are linearly closed under products and inverses yet
not group rings.

Proposition 2.7. Let A =
R[x1, x2, . . . , xn]

〈x1, x2, . . . , xn〉m
where R is any ring, n ≥ 1 and m ≥ 2. Assume

{xi|i = 1, . . . n} is a commutative set. Then A has an invertible basis that is linearly closed
under products and inverses, namely, B = {1}

⋃
{1 + xr1

1 x
r2
2 · · ·xrnn } where 0 ≤ ri < m for all i

and 1 ≤
n∑

i=1

ri < m.

Proof. Let 1 + xs1
1 x

s2
2 · · ·xsnn , 1 + xt1

1 x
t2
2 · · ·xtnn ∈ B. Then

v = (1 + xs1
1 x

s2
2 · · ·x

sn
n )(1 + xt1

1 x
t2
2 · · ·x

tn
n )

= 1 + xs1
1 x

s2
2 · · ·x

sn
n + xt1

1 x
t2
2 · · ·x

tn
n + xs1+t1

1 xs2+t2
2 · · ·xsn+tn

n .

First suppose
n∑

i−1

(si + ti) < m. Then 1 + xs1+t1
1 xs2+t2

2 · · ·xsn+tn
n ∈ B. Writing v as a linear

combination of elements from B we have

v = −2(1) + (1 + xs1
1 x

s2
2 · · ·x

sn
n ) + (1 + xt1

1 x
t2
2 · · ·x

tn
n ) + (1 + xs1+t1

1 xs2+t2
2 · · ·xsn+tn

n ).

The sum of the coefficients of the basis elements is −2 + 1 + 1 + 1 = 1. So in this case B is
linearly closed under products.

Now assume
n∑

i−1

(si + ti) ≥ m. Then xs1+t1
1 xs2+t2

2 · · ·xsn+tn
n = 0. Using this information we

write v as a linear combination of elements from B to obtain

v = −1(1) + (1 + xs1
1 x

s2
2 · · ·x

sn
n ) + (1 + xt1

1 x
t2
2 · · ·x

tn
n ).

Again we notice the sum of the coefficients is 1 and B is linearly closed under products.
Given an arbitrary element w = 1 + xs1

1 x
s2
2 · · ·xsnn ∈ B we see the inverse is

w−1 = 1− (xs1
1 x

s2
2 · · ·x

sn
n ) + (xs1

1 x
s2
2 · · ·x

sn
n )2 − · · ·+ (xs1

1 x
s2
2 · · ·x

sn
n )k

where k is the smallest integer such that (k + 1)
n∑

i=1

si ≥ m. If k is odd then writing w−1 as a

linear combination of elements from B we have

w−1 = 2(1)− (1 + xs1
1 x

s2
2 · · ·x

sn
n ) + (1 + (xs1

1 x
s2
2 · · ·x

sn
n )2)− . . .+ (1− (xs1

1 x
s2
2 · · ·x

sn
n )k),
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and the coefficients of w−1 sum up to 1.
On the other hand, if k is even

w−1 = 1(1)− (1 + xs1
1 x

s2
2 · · ·x

sn
n ) + (1 + (xs1

1 x
s2
2 · · ·x

sn
n )2)− . . .+ (1 + (xs1

1 x
s2
2 · · ·x

sn
n )k).

Now there are an even number of terms of w−1 not including 1. As the signs alternate we see
they all cancel out and therefore when we add of the coefficients we have 1. Combining these
two results we have B is linearly closed under inverses.

Note that if the ring R is self-injective then the R-algebra A in the previous proposition is
not a group ring. This holds as A is local and does not have a unique minimal ideal, thus is not
self-injective.

Proposition 2.8. Let A be a left R-algebra with basis B = {vi|i ∈ I} and φ : A → R the
R-homomorphism given by φ(

∑
i αivi) =

∑
i αi. Then the following are equivalent:

(i) φ is a ring homomorphism.

(ii) B is linearly closed under products and R commutes linearly with B.

(iii) For every v, w ∈ B and β ∈ R, if vβw =
∑

v∈B βvv then
∑

v∈B βv = β.

Proof. (1) ⇒ (2): First suppose φ is a ring homomorphism. Let v, w ∈ B and write vw =∑
i αivi. Now φ(v)φ(w) = 1 · 1 = 1 and φ(vw) =

∑
i αi. Since φ is a ring homomorphism we

have φ(v)φ(w) = φ(vw) which gives
∑

i αi = 1.
If vβ =

∑
j γjvj , then φ(vβ) =

∑
j γj . Write 1 =

∑
k δkvk. So β = β

∑
k δkvk. Since φ is a

ring homomorphism we have φ(1) = 1, but also

φ(1) = φ(
∑
k

δkvk) =
∑
k

δk

giving
∑

k δk = 1. Now

φ(β) = φ(β
∑
k

δkvk) = φ(
∑
k

βδkvk) =
∑
k

βδk = β
∑
k

δk = β · 1 = β.

So φ(vβ) = φ(v)φ(β) = 1 · β = β. Hence β =
∑

j γj .

(2)⇒ (3): Let v, w ∈ B and β ∈ R, if vβw =
∑

i βivi then φ(vβw) =
∑

i βi. Alternatively,
(vβ)w =

∑
i αi(viw), where

∑
i αi = β. It follows that

(vβ)w =
∑
i

αi

∑
j

δijvj

where for all i,
∑

j δij = 1. Thus,

φ(vβw) =
∑
i

αi

∑
j

δij =
∑
i

αi = β.

Therefore,
∑

i βi = β.

(3) ⇒ (1) It suffices to show that φ is multiplicative. Let r, s ∈ A. So r =
∑

i αivi and
s =

∑
j βjvj . Then

φ(rs) = φ(
∑
i

αivi
∑
j

βjvj) = φ(
∑
i,j

αi(viβj)vj).

Now, for every i, j, write viβjvj =
∑

k δijkvk. By (3),
∑

k δijk = βj . So,

φ(rs) = φ(
∑
i,j,k

αiδijkvk) =
∑
i

αi

∑
j

∑
k

δijk
∑
i

αi

∑
j

βj .

It is easy to see that this is also the value of φ(r)φ(s).

Notice that the invertible basis in Example 2.1 satisfies condition (2) of Proposition 2.8.

Corollary 2.9. Let RtG be a proper twisted group ring. Then the map φ : RtG → R given by
φ(
∑

i αigi) =
∑

i αi is not a ring homomorphism.
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Proof. Notice RtG has an invertible basis, namely G = {g|g ∈ G}, that is scalarly closed under
products. If φ were a ring homomorphism, then by Proposition 2.8 G would be linearly closed
under products, and by Proposition 2.6 G would be a group. This contradicts the fact that RtG
is a proper twisted group ring.

Corollary 2.10. Let RG be a proper skew group ring. Then the map φ : RG → R given by
φ(
∑

i αigi) =
∑

i αi is not a ring homomorphism.

Proof. RG has an invertible basis, namely G, that scalarly commutes with R. If φ were a ring
homomorphism, then by Proposition 2.8 R would commute linearly with G, thus R commutes
with G, a contradition.

Proposition 2.8 enables a straightforward verification that proper field extensions do not have
a basis that is linearly closed under products, an extension of Corollary 1.23.

Proposition 2.11. Let F ⊂ E be a proper field extension and suppose B is a basis, then B is not
linearly closed under products.

Proof. Clearly F linearly commutes with B. Suppose B is linearly closed under products. Then
by 2.8 we have φ : E → F , the F -homomorphism given by φ(

∑
i αivi) =

∑
i αi is a ring

homomorphism. Then ker(φ) = E or ker(φ) = 0. However, e1 − e2 ∈ ker(φ) so ker(φ) 6= 0.
Also e1 /∈ ker(φ) and so ker(φ) 6= E. Thus B is not linearly closed under products.
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