FIP and FCP products of ring morphisms

Gabriel Picavet and Martine Picavet-L'Hermitte
Communicated by Ayman Badawi

MSC 2010 Classifications: 13B02, 13B21, 13B22, 13E10, 13B30, 05A18, 13F10
Keywords and phrases: Δ_{0}-extension, SPIR, Stirling number, ramified minimal extension, FIP, FCP extension, infraintegral extension, integral extension, Artinian ring, seminormal, subintegral, support of a module.

Abstract

We characterize some types of FIP and FCP ring extensions $R \subset S$, where S is not an integral domain and R may not be an integral domain, contrary to a general trend. In each of the sections, S is a product of finitely many rings that are related to R in various ways. Ring extensions of the form $R^{n} \hookrightarrow R^{p}$ associated to some matrices are also considered. Our tools are minimal ring morphisms and seminormalization, while Artinian conditions on rings are ubiquitous.

1 Introduction and Notation

All rings R considered are commutative, nonzero and unital; all morphisms of rings are unital. Let $R \subseteq S$ be a (ring) extension. The set of all R-subalgebras of S is denoted by $[R, S]$. The extension $R \subseteq S$ is said to have FIP (for the "finitely many intermediate algebras property") if [R, S] is finite. A chain of R-subalgebras of S is a set of elements of $[R, S]$ that are pairwise comparable with respect to inclusion. We say that the extension $R \subseteq S$ has FCP (for the "finite chain property") if each chain of R-subalgebras of S is finite. It is clear that each extension that satisfies FIP must also satisfy FCP. Our main tool are the minimal (ring) extensions, a concept introduced by Ferrand-Olivier [10]. Recall that an extension $R \subset S$ is called minimal if $[R, S]=\{R, S\}$. The key connection between the above ideas is that if $R \subseteq S$ has FCP, then any maximal (necessarily finite) chain $R=R_{0} \subset R_{1} \subset \cdots \subset R_{n-1} \subset R_{n}=S$, of R-subalgebras of S, with length $n<\infty$, results from juxtaposing n minimal extensions $R_{i} \subset R_{i+1}, 0 \leq i \leq n-1$. Following [14], the length of $[R, S]$, denoted by $\ell[R, S]$, is the supremum of the lengths of chains of R-subalgebras of S. In particular, if $\ell[R, S]=r$, for some integer r, there exists a maximal chain $R=R_{0} \subset R_{1} \subset \cdots \subset R_{r-1} \subset R_{r}=S$ of R-subalgebras of S with length r. Against the general trend, we characterized arbitrary FCP and FIP extensions in [8], a joint paper by D. E. Dobbs and ourselves whereas most of papers on the subject are concerned with extensions of integral domains. It is worth noticing here that FCP extensions of integral domains (ignoring fields) are generally nothing but extensions of overrings as a quick look at [6, Theorems 4.1,4.4] shows because FCP extensions are composite of minimal extensions.

In this paper, we will continue to consider the FCP or FIP properties of extensions for special types of extensions between not necessarily integral domains, like $K \rightarrow K^{n}$ where K is a field. It is known that these latter extensions have FIP and actually they motivated us to study generalizations. Our study shows phenomena that do not arise in the integral domain case and provides us a lot of new examples, that may be sometimes surprising. They are most of time integral and seminormal within the meaning of Swan. Problems arise when they are not seminormal, leading to the computation of seminormalizations. The Gilmer's seminal work on FIP and FCP is settled for overrings of an integral domain R, with quotient field K. In particular, [12, Theorem 2.14] shows that $R \subseteq S$ has FCP for each overring S of R only if R / C is an Artinian ring, where $C=(R: \bar{R})$ is the conductor of R in its integral closure. This necessary Artinian condition is not surprisingly present in all our results.

Product morphisms $R \rightarrow \prod_{i=1}^{n} R_{i}$ that are extensions are the theme of our work. We warn the reader that we have developed a similar theory for idealizations of modules, with necessarily finitely many submodules [19]. We will observe that results may depend on the value of n, and a lot of them are only valid for $n=2$.

In Section 2, we look at diagonal extensions $R \subseteq \prod_{i=1}^{n} R_{i}$, for some finitely many FCP or FIP
extensions $R \subseteq R_{i}$. When $R \subseteq R_{i}$ has FCP for each i, Theorem 2.11 asserts that $R \subseteq \prod_{i=1}^{n} R_{i}$ has FCP if and only if R is an Artinian ring. The FIP condition is much more complicated. For instance, R has finitely many ideals if $R \subseteq \prod_{i=1}^{n} R_{i}$ has FIP (Proposition 2.2). Moreover, $R \subseteq R^{2}$ has FIP if and only if R has finitely many ideals (Corollary 2.5).

Section 3 is concerned with extensions of the form $R / \cap_{j=1}^{n} I_{j} \subseteq \prod_{j=1}^{n}\left(R / I_{j}\right)$, where I_{1}, \ldots, I_{n} are proper ideals of a ring R, not necessarily distinct and such that $\cap_{j=1}^{n} I_{j}=0$. Then, $R \subseteq \prod_{j=1}^{n} R / I_{j}$ has FCP if and only if R / C is Artinian, where its conductor C can be computed as follows. Setting $J_{j}:=\cap_{k=1, k \neq j}^{n} I_{k}$ for each $j \in\{1, \ldots, n\}$, we get that $C:=\sum_{j=1}^{n} J_{j}$ (Proposition 3.1). We are able to generalize a Ferrand-Olivier's result. It states that if R is a ring and $\left\{I_{1}, \ldots, I_{n}\right\}, n>2$, is a family of ideals of R such that $\cap_{j=1}^{n} I_{j}=0$, then $R \subseteq \prod_{j=1}^{n}\left(R / I_{j}\right)$ is a minimal extension if and only if there exist $j_{0}, k_{0} \in\{1, \ldots, n\}, j_{0} \neq k_{0}$ such that $I_{j_{0}}+I_{k_{0}} \in \operatorname{Max}(R)$ and $I_{j}+I_{k}=R$ for any $(j, k) \neq\left(j_{0}, k_{0}\right), j \neq k$. If this condition holds, then $\left\{I_{1}, \ldots, I_{n}\right\}$ satisfies a weak Chinese Remainder Theorem (Theorem 3.13).

Section 4 is devoted to diagonal extensions $R \subseteq R^{n}$ and heavily uses results of Section 3. We get in Theorem 4.2 that $R \subseteq R^{n}$ has FIP if and only if R has finitely many ideals and $n \leq 2$ as soon as there exists a maximal ideal M of R such that R_{M} is not a field and R / M is an infinite field. We are then able to give a general characterization of FIP extensions $R \subseteq \prod_{i=1}^{n} R_{i}$ studied in Section 2. We show that R^{n} may have different structures of R^{p}-algebras if $p<n$ are two positive integers, leading to different occurrences of FIP extensions $R^{p} \hookrightarrow R^{n}$.

Let R be a ring. As usual, $\operatorname{Spec}(R)$ (resp. $\operatorname{Max}(R)$) denotes the set of all prime ideals (resp. maximal ideals) of R. If I is an ideal of R, we set $\mathrm{V}_{R}(I):=\{P \in \operatorname{Spec}(R) \mid I \subseteq P\}$. If $R \subseteq S$ is a ring extension and $P \in \operatorname{Spec}(R)$, then S_{P} is the localization $S_{R \backslash P}$ and $(R: S)$ is the conductor of $R \subseteq S$. When there is no possible confusion, we denote the integral closure of R in S by \bar{R}. Recall that if E is an R-module, its support $\operatorname{Supp}_{R}(E)$ is the set of prime ideals P of R such that $E_{P} \neq 0$ and $\operatorname{MSupp}_{R}(E):=\operatorname{Supp}_{R}(E) \cap \operatorname{Max}(R)$. If E is an R-module, $\mathrm{L}_{R}(E)$ is its length. We will shorten finitely generated module into f.g. module. Recall that a special principal ideal ring (SPIR) is a principal ideal ring R with a unique nonzero prime ideal $M=R t$, such that M is nilpotent of index $p>0$. Hence a SPIR is not a field. Each nonzero element of a SPIR is of the form $u t^{k}$ for some unit u and some unique integer $k<p$. Finally, as usual, \subset denotes proper inclusion and $|X|$ denotes the cardinality of a set X.

There are four types of minimal extension, but we only need ramified minimal extensions.
Theorem 1.1. [10, Théorème 2.2], [18, Theorem 3.3] Let $R \subset T$ be a ring extension and $M:=$ $(R: T)$. Then $R \subset T$ is a minimal ramified extension if and only if $M \in \operatorname{Max}(R)$ and there exists $M^{\prime} \in \operatorname{Max}(T)$ such that $M^{\prime 2} \subseteq M \subset M^{\prime},[T / M: R / M]=2\left(\operatorname{resp} . \mathrm{L}_{R}\left(M^{\prime} / M\right)=1\right)$, and the natural map $R / M \rightarrow T / M^{\prime}$ is an isomorphism.

If these conditions hold, then $R_{P}=T_{P}$ for each $P \in \operatorname{Spec}(R) \backslash\{M\}$.
We also need some results about seminormality and t-closedness that we recall here.
Definition 1.2. An integral extension $f: R \hookrightarrow S$ is termed:
(1) infra-integral if all its residual extensions are isomorphisms [17].
(2) subintegral if f is infra-integral and ${ }^{a} f$ is bijective [20].

A minimal morphism is ramified if and only if it is subintegral. Let $\left\{R_{1}, \ldots, R_{n}\right\}$ be finitely many infra-integral extensions of a ring R. It is easy to show that $R \rightarrow \prod_{i=1}^{n} R_{i}$ is infra-integral. But this result is no longer valid for subintegrality.

A ring extension $R \subseteq S$ is called t-closed if $b \in S, r \in R, b^{2}-r b, b^{3}-r b^{2} \in R \Rightarrow b \in R$ [17]. Now, $R \subseteq S$ is called seminormal if $b \in S, b^{2}, b^{3} \in R \Rightarrow b \in R$ [20]. If $R \subset S$ is seminormal, $(R: S)$ is a radical ideal of S. The t-closure ${ }_{S}^{t} R$ (resp. seminormalization ${ }_{S}^{+} R$) of R in S is the smallest $B \in[R, S]$ such that $B \subseteq S$ is t-closed (resp. seminormal). Moreover, ${ }_{S}^{t} R$ (resp. ${ }_{S}^{+} R$) is the greatest $B \in[R, S]$ such that $R \subseteq B$ is infra-integral (resp. subintegral). The chain $R \subseteq{ }_{S}^{+} R \subseteq{ }_{S}^{t} R \subseteq S$ is called the canonical decomposition of $R \subseteq S$.

T-closures and seminormalizations both commute with localization at arbitrary multiplicatively closed subsets ([16, Proposition 3.6], [20, Proposition 2.9]).

According to J. A. Huckaba and I. J. Papick [13], an extension $R \subseteq S$ is termed a Δ_{0}-extension provided each R-submodule of S containing R is an element of $[R, S]$. We recall here for later use an unpublished result of the Gilbert's dissertation.

Proposition 1.3. [11, Proposition 4.12] Let $R \subseteq S$ be a ring extension with conductor I and such that $S=R+R$ for some $t \in S$. Then the R-modules R / I and S / R are isomorphic. Moreover, each of the R-modules between R and S is a ring (and so there is a bijection from $[R, S]$ to the set of ideals of $R / I)$.

We end this introduction with a new result that introduces and gives the flavor of the next section.

Proposition 1.4. Let R be a commutative ring and $n \geq 2$ a positive integer.
(1) $\left(R: R^{n}\right)=0$ and $R \subseteq R^{n}$ is infra-integral. Moreover, $R \subseteq R^{n}$ is seminormal if and only if R is reduced.
(2) $R \subseteq R^{n}$ has $F C P$ if and only if R is an Artinian ring.

Proof. (1) Obviously, $R \subseteq R^{n}$ has a zero conductor and is infra-integral. Assume that R is reduced. Then, [20, Lemma 3.1] gives that $R \subseteq R^{n}$ is seminormal. Conversely, if $R \subseteq R^{n}$ is seminormal, then $0=\left(R: R^{n}\right)$ is a radical ideal of R, so that R is reduced.
(2) Assume that $R \subseteq R^{n}$ has FCP and that there is an infinite chain $\left\{I_{j}\right\}_{j \in J}$ of ideals of R. For each $j \in J$, set $S_{j}:=R+\left(0 \times I_{j}\right)$. Then, $\left\{S_{j}\right\}_{j \in J}$ is an infinite chain of R-subalgebras of R^{n}, which is absurd. Hence, any chain of ideals of R is finite and R is Artinian.

Conversely, R^{n} is f.g. over R. Thus $R \subseteq R^{n}$ has FCP in view of [8, Theorem 4.2], if R is Artinian.

The following results will be useful.
Proposition 1.5. Let (R, M) be a local Artinian ring such that R / M is infinite and $R \subseteq S$ a ring extension with conductor $C:=(R: S)$.
(1) If $R \subset S$ has FIP and is subintegral, then $[R, S]$ is linearly ordered.
(2) If $R \subseteq S$ is finite, seminormal and infra-integral, then $R \subseteq S$ has FIP.
(3) If $R \subset S$ is finite and infra-integral, then $R \subset S$ has FIP if and only if $R \subseteq{ }_{S}^{+} R$ has FIP.

Proof. (1) There is no harm to assume that $C=0$ because the map $[R, S] \rightarrow[R / C, S / C]$ defined by $T \mapsto T / C$ is bijective. If R is not a field, then the proof of [8, Proposition 5.15] shows that $[R, S]$ is linearly ordered.

Now, assume that R is a field, so that $0=(R: S)$ and R is infinite. Since $R \subset S$ is an FIP subintegral extension, S is Artinian local and not a field with $\{N\}:=\operatorname{Max}(S)$, because $R \cong S / N$ by subintegrality shows that $N \neq 0$. From [2, Theorem 3.8], we get that $S=R[\alpha]$, for some $\alpha \in S$ such that $\alpha^{3}=0$. In view of the proof of [2, Lemma 3.6(b)], $[R, S]$ is linearly ordered.
(2) We can assume that $R \neq S$ and $C=0$ by considering $R / C \rightarrow S / C$ and using [8, Proposition 3.7(c)]. By [8, Proposition 5.16], we get that $R \subset S$ has FIP.
(3) Assume that $R \subset S$ is finite and infra-integral and set $T:={ }_{S}^{+} R$. Then, T is local Artinian with maximal ideal N and $T / N \cong R / M$ is infinite. Moreover, $T \subseteq S$ is finite, seminormal, infra-integral and has FIP by (2).

If $R \subset S$ has FIP, then $R \subseteq T$ has FIP. Conversely, assume that $R \subseteq T$ has FIP. In view of [8, Theorem 5.8], $R \subset S$ has FIP.

We will use the following result. If R_{1}, \ldots, R_{n} are finitely many rings, the ring $R_{1} \times \cdots \times R_{n}$ localized at the prime ideal $P_{1} \times R_{2} \times \cdots \times R_{n}$ is isomorphic to $\left(R_{1}\right)_{P_{1}}$ for $P_{1} \in \operatorname{Spec}\left(R_{1}\right)$. This rule works for any prime ideal of the product.

2 FCP or FIP extensions for products of rings

We extract from the more precise result [9, Proposition 4.15] the following statement, about the canonical diagonal extension $K \subseteq K^{n}$, for a field K and a positive integer $n>1$. Recall that the nth Bell number B_{n} is the number of partitions of $\{1, \ldots, n\}$ [3, p. 214]. Actually, the finiteness of $\left|\left[K, K^{n}\right]\right|$ comes from [5, Proposition 3, p. 29].

Proposition 2.1. Let K be a field and n a positive integer, $n>1$. Then $\left|\left[K, K^{n}\right]\right|=B_{n}$, where B_{n} is the nth Bell number and $K \subseteq K^{n}$ is a seminormal and infra-integral FIP extension.

We now intend to extend the above result to diagonal ring extensions $\delta_{n}: R \hookrightarrow R^{n}$, for arbitrary rings R. We need information about some closures and give necessary conditions for the FCP or FIP properties hold. If $R \subseteq R_{i}, i=1, \ldots, n, n \geq 2$ are finitely many ring extensions and $\delta: R \hookrightarrow \prod_{i=1}^{n} R_{i}$ is the canonical diagonal extension, it can be factored $R \hookrightarrow$ $R^{n} \hookrightarrow \prod_{i=1}^{n} R_{i}$. We can also consider that $R \hookrightarrow R^{2}$ is a subextension by considering the product $R \times R \rightarrow R_{1} \times \prod_{i=2}^{n} R_{i}$ of the extensions $R \hookrightarrow R_{1}$ and $R \hookrightarrow \prod_{i=2}^{n} R_{i}$. Of course, this embedding of R^{2} is not unique. A more complete study appears in Section 4 (see Proposition 4.6).

Proposition 2.2. Let $R \subseteq R_{i}, i=1, \ldots, n, n \geq 2$ be finitely many ring extensions, $\mathcal{R}:=$ $\prod_{i=1}^{n} R_{i}$ and $R \subseteq \prod_{i=1}^{n} R_{i}=\mathcal{R}$ the canonical diagonal extension. Then:
(1) $\operatorname{Supp}(\mathcal{R} / R)=\operatorname{Spec}(R)$.
(2) Assume that $R \subseteq \mathcal{R}$ has FCP (resp. FIP). Then, R is an Artinian ring and each extension $R \subseteq R_{i}$ has $F C P$ (resp. FIP).
(3) Assume that $R \subseteq \mathcal{R}$ has FIP. Then, R has finitely many ideals.

Proof. We have $R^{2} \subseteq \prod_{i=1}^{n} R_{i}$ and $R^{n} \subseteq \prod_{i=1}^{n} R_{i}$.
(1) Let $P \in \operatorname{Spec}(R)$. Then, $R_{P} \neq 0$ implies $(1,0) \notin R_{P}$ and $P \in \operatorname{Supp}\left(R^{2} / R\right) \subseteq$ $\operatorname{Supp}(\mathcal{R} / R)$, which gives (1). Indeed, $\left(R^{2} / R\right)_{P} \cong\left(R_{P}\right)^{2} / R_{P}$.
(2) Assume that $R \subseteq \mathcal{R}$ has FCP, so that $R \subseteq R^{n}$ has FCP. Then, R is an Artinian ring in view of Proposition 1.4. Statements about FCP or FIP are clear.
(3) Assume that $R \subseteq \mathcal{R}$ has FIP, so that $R \subseteq R^{2}$ has FIP. Let I, J be two distinct ideals of R. Then, $R+(0 \times I)$ and $R+(0 \times J)$ are two distinct R-subalgebras of R^{2}. Since $R \subseteq R^{2}$ has FIP, it follows that R has finitely many ideals.

Rings which have finitely many ideals are characterized by D. D. Anderson and S. Chun [1], a result that will be often used.

Proposition 2.3. [1, Corollary 2.4] A commutative ring R has only finitely many ideals if and only if R is a finite direct product of finite local rings, SPIRs, and fields, that are the local rings of R.

From now on, a ring R with finitely many ideals is termed an FMIR and a Σ FMIR if at least a local ring of R is an infinite SPIR. We also call Σ PIR an infinite SPIR. For an arbitrary ring R, we denote by $\Sigma \operatorname{Max}(R)$ the set of all $M \in \operatorname{Max}(R)$ such that R_{M} is an infinite FMIR.

Proposition 2.4. Let $R \subseteq R_{i}, i=1, \ldots, n$ be finitely many ring extensions and $\mathcal{R}:=\prod_{i=1}^{n} R_{i}$. Let \bar{R}_{i} (resp. $\overline{\mathcal{R}}$) be the integral closure of R in R_{i} (resp. \mathcal{R}). Then:
(1) $\overline{\mathcal{R}}=\prod_{i=1}^{n} \bar{R}_{i}$.
(2) Assume that $R \subseteq R_{i}$ has $F C P$ for each i. Then, $\overline{\mathcal{R}} \subseteq \mathcal{R}$ has $F C P$ (and FIP).

Proof. (1) is [4, Proposition 9, ch. V, p. 16].
(2) Assume that $R \subseteq R_{i}$ has FCP for each i. In view of [8, Theorem 3.13], we get that $\bar{R}_{i} \subseteq R_{i}$ has FCP for each i. This extension has also FIP since FCP and FIP are equivalent for an integrally closed extension [8, Theorem 6.3]. Now, use [7, Proposition III.4], to get that $\prod_{i=1}^{n} \bar{R}_{i} \subseteq \prod_{i=1}^{n} R_{i}$ has FCP (and then FIP because integrally closed).

Corollary 2.5. Let $R \subseteq R_{1}$ and $R \subseteq R_{2}$ be two integrally closed extensions. Then, $R \subseteq R_{1} \times R_{2}$ has FCP (resp. FIP) if and only if each $R \subseteq R_{i}$ has FCP and R is Artinian (resp. an FMIR).

In particular, $R \subseteq R^{2}$ has FIP if and only if R is an FMIR.
Proof. One implication is obvious, since any R-subalgebra S_{1} of R_{1} yields an R-subalgebra $S_{1} \times R_{2}$ of $R_{1} \times R_{2}$. Then, use Proposition 2.2.

Conversely, assume that $R \subseteq R_{1}$ and $R \subseteq R_{2}$ have both FCP (and then FIP) and that R is Artinian. Then, $R^{2} \subseteq R_{1} \times R_{2}$ has FCP (resp. FIP) by Proposition 2.4. Moreover, $R^{2} \subseteq R_{1} \times R_{2}$
is integrally closed and $R \subseteq R^{2}$ is an integral extension. In view of Proposition 1.4, it follows that $R \subseteq R^{2}$ and so $R \subseteq R_{1} \times R_{2}$ have FCP by [8, Theorem 3.13].

Now, assume that $R \subseteq R_{1}$ and $R \subseteq R_{2}$ have both FIP and that R is an FMIR. By Proposition 1.3, $R \subseteq R^{2}$ as well as $R \subseteq R_{1} \times R_{2}$ have FIP by [8, Theorem 3.13].

Proposition 2.6. Let $R \subseteq R_{i}, i=1, \ldots, n$, be finitely many integral extensions, $S_{i}:={ }_{R_{i}}^{+} R, T_{i}:=$ $\stackrel{t}{R_{i}} R$ for each $i, \mathcal{R}:=\prod_{i=1}^{n} R_{i}, \mathcal{S}:=\prod_{i=1}^{n} S_{i}$ and $\mathcal{T}:=\prod_{i=1}^{n} T_{i}$. Then:
(1) ${ }_{\mathcal{R}}^{+} R={ }_{\mathcal{S}}^{+} R$ and ${ }_{\mathcal{R}}^{t} R=\mathcal{T}$.
(2) If each $T_{i} \subseteq R_{i}$ has FCP (resp. FIP), then ${ }_{\mathcal{R}} R \subseteq \mathcal{R}$ has FCP (resp. FIP). This holds if each $R \subseteq R_{i}$ has FCP (resp. FIP).

Proof. (1) Obviously, ${ }_{\mathcal{S}}^{+} R \subseteq{ }_{\mathcal{R}}^{+} R$ and is subintegral. Moreover, $\mathcal{S} \subseteq \mathcal{R}$ is seminormal, since so are each $S_{i} \subseteq R_{i}$. Then, $\mathcal{S} \in\left[{ }_{\mathcal{R}}^{+} R, \mathcal{R}\right]$, with ${ }_{\mathcal{R}}^{+} R \subseteq \mathcal{S}$ seminormal, so that ${ }_{\mathcal{S}}^{+} R \subseteq{ }_{\mathcal{R}}^{+} R$ is also seminormal, then an equality.

We know that $\prod_{i=1}^{n} T_{i} \subseteq \prod_{i=1}^{n} R_{i}$ is t-closed [15, Lemma 5.6]. To conclude, it is enough to show that $R \subseteq \prod_{i=1}^{n} T_{i}$ is infra-integral.

The prime ideals of $\prod_{i=1}^{n} T_{i}$ are the $P_{i} \times \prod_{j=1, j \neq i}^{n} T_{j}$, where P_{i} is a prime ideal of T_{i}. For $P_{i} \in \operatorname{Spec}\left(T_{i}\right)$, set $Q_{i}:=P_{i} \cap R$. Then, $\left(\prod_{i=1}^{n} T_{i}\right) /\left(P_{i} \times \prod_{j=1, j \neq i}^{n} T_{j}\right) \cong T_{i} / P_{i} \cong R / Q_{i}$, since $R \subseteq T_{i}$ is infra-integral. It follows that $R \subseteq \prod_{i=1}^{n} T_{i}$ is infra-integral
(2) In view of [8, Proposition 3.7(d)], we get that $\prod_{i=1}^{n} T_{i}={ }_{\mathcal{R}}^{t} R \subseteq \mathcal{R}$ has FCP (resp. FIP). There was a misprint in the statement of [8, Proposition 3.7(d)], where we should read: If $R=R_{1} \times \cdots \times R_{n}$ is a finite product of rings and $R \subseteq S$ satisfies FCP, then S can be identified with a product of rings $S_{1} \times \cdots \times S_{n}$ where $R_{i} \subseteq S_{i}$ for each i. Then $\ell[R, S]=\sum_{i=1}^{n} \ell\left[R_{i}, S_{i}\right]$.

The next proposition and Proposition 2.2 enable us to reduce our study to quasi-local rings.
Proposition 2.7. [8, Proposition 3.7 and Corollary 3.2] Let $R \subseteq S$ be a ring extension.
(1) If $R \subseteq S$ has $F C P$ (FIP), then $|\operatorname{Supp}(S / R)|<\infty$.
(2) If $|\operatorname{MSupp}(S / R)|<\infty$, then $R \subseteq S$ has $F C P$ (FIP) if and only if $R_{M} \subseteq S_{M}$ has FCP (FIP) for each $M \in \operatorname{MSupp}(S / R)$.

Proposition 2.8. Let $R \subseteq R_{i}, i=1, \ldots, n$, be finitely many subintegral extensions and $\mathcal{R}:=$ $\prod_{i=1}^{n} R_{i}$, where (R, M) is a quasi-local ring. Then:
(1) Each R_{i} is a quasi-local ring with $\left\{N_{i}\right\}:=\operatorname{Max}\left(R_{i}\right)$ and $R \subseteq \mathcal{R}$ is infra-integral.
(2) Set $N:=\prod_{i=1}^{n} N_{i}$ and $S:=R+N$. Then (S, N) is a quasi-local ring and $\operatorname{Spec}(S)=$ $\left\{P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} N_{j} \mid P_{i}^{\prime} \in \operatorname{Spec}\left(R_{i}\right), i=1, \ldots, n\right\}$. In particular, $R \subseteq S$ is infra-integral and ${ }_{\mathcal{R}}^{+} R \subseteq S$.
(3) Assume $\operatorname{dim}(R)=0$. Then, ${ }_{\mathcal{R}}^{+} R=S$.
(4) If each R_{i} is a Noetherian ring and a f.g. R-module, then S is a f.g. R-module.

Proof. (1) R_{i} is quasi-local since $R \subseteq R_{i}$ is subintegral (Definition 1.2). Now, an arbitrary prime ideal of \mathcal{R} is of the form $P^{\prime}:=P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} R_{j}$, for some i and $P_{i}^{\prime} \in \operatorname{Spec}\left(R_{i}\right)$. Setting $P:=P^{\prime} \cap R$, we see that $P=P_{i}^{\prime} \cap R$. From $\mathcal{R} / P^{\prime} \cong R_{i} / P_{i}^{\prime} \cong R / P$, since $R \subseteq R_{i}$ is subintegral, we deduce that $R \subseteq \mathcal{R}$ is infra-integral.
(2) The ideals $\bar{N}_{i}^{\prime}:=N_{i} \times \prod_{j=1, j \neq i}^{n} R_{j}$ are the maximal ideals of \mathcal{R}, for $i \in\{1, \ldots, n\}$, and they all lie over M. Observe that S is an R-subalgebra of \mathcal{R}. From $N \cap R=M$, we infer that $S / N \cong R / M$ and that $N \in \operatorname{Max}(S)$. Since $R \subseteq \mathcal{R}$ is an integral extension, so is $S \subseteq \mathcal{R}$. Moreover, each N_{i}^{\prime} lies over N. Hence (S, N) is a quasi-local ring.

Let $Q \in \operatorname{Spec}(S)$, there is some $P \in \operatorname{Spec}(\mathcal{R})$ lying over Q, of the form $P:=P_{i}^{\prime} \times$ $\prod_{j=1, j \neq i}^{n} R_{j}$, for some $P_{i}^{\prime} \in \operatorname{Spec}\left(R_{i}\right)$. Since $Q \subseteq N$, we get $Q \subseteq\left(P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} R_{j}\right) \cap$ $\left(\prod_{k=1}^{n} N_{k}\right)=P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} N_{j} \subseteq S \cap P=Q$, so that $Q=P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} N_{j}$. Conversely, any ideal of the form $P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} N_{j}$, for some i and $P_{i}^{\prime} \in \operatorname{Spec}\left(R_{i}\right)$ is in $\operatorname{Spec}(S)$, since $P_{i}^{\prime} \times \prod_{j=1, j \neq i}^{n} R_{j}$ lies over it.

Since $R \subseteq S$ is a subextension of $R \subseteq \mathcal{R}$, (1) entails that $R \subseteq S$ is infra-integral. But $\prod_{i=1}^{n} N_{i}$ is also an ideal of \mathcal{R}, so that $N=(S: \mathcal{R})$. To end, $\mathcal{R} / N \cong(R / M)^{n}$ and $S / N \cong R / M$ give that $S / N \subseteq \mathcal{R} / N$ is seminormal by Proposition 2.1, and so is $S \subseteq \mathcal{R}$. Then, ${ }_{\mathcal{R}} R \subseteq S$.
(3) Assume $\operatorname{dim}(R)=0$, in which case $\operatorname{Spec}(S)=\left\{\prod_{i=1}^{n} N_{i}\right\}=\{N\}$. Then $S / N \cong R / M$ shows that $R \subseteq S$ is a subintegral extension and $S={ }_{\mathcal{R}}^{+} R$.
(4) If each R_{i} is Noetherian and f.g. over R, then, each N_{i} is a f.g. R_{i}-module, and also a f.g. R-module. Hence, $R+N$ is a f.g. R-module.

Remark 2.9. Contrary to the t -closure, the seminormalization of a diagonal morphism is not the product of the seminormalizations. We can compare these results with [15, Lemma 5.6], which says that seminormalization and t -closure commute with finite products of morphisms.

Proposition 2.10. Let $R \subseteq R_{i}, i=1, \ldots, n$ be finitely many integral extensions and $\mathcal{R}:=$ $\prod_{i=1}^{n} R_{i}$, where (R, M) is a quasi-local ring. Then:
(1) ${ }_{\mathcal{R}} R \subseteq \mathcal{R}$ has FCP (resp.FIP) if each $R \subseteq R_{i}$ has FCP (resp. FIP).
(2) If $\operatorname{dim}(R)=0$ and each $R \subseteq R_{i}$ has $F C P$, then, ${ }_{\mathcal{R}}^{+} R \subseteq{ }_{\mathcal{R}}^{t} R$ has FIP.
(3) If $\operatorname{dim}(R)=0$ and each $R \subseteq R_{i}$ has FCP (resp. FIP), then $R \subseteq \mathcal{R}$ has FCP (resp. FIP) if and only if $R \subseteq{ }_{\mathcal{R}}^{+} R$ has $F C P$ (resp. FIP).

Proof. (1) Proposition 2.6 gives that ${ }_{\mathcal{R}} R \subseteq \mathcal{R}$ has FCP (resp. FIP).
(2) Set $T_{i}:={ }_{R_{i}}^{t} R, S_{i}:={ }_{R_{i}}^{+} R, T:=\prod_{i=1}^{n} T_{i}={ }_{\mathcal{R}}^{t} R$. Now, each $R \subseteq S_{i}$ is subintegral. It follows from Proposition 2.8 and [15, Lemma 5.6] that $S:=R+\prod_{i=1}^{n} N_{i}={ }_{\mathcal{R}} R$, where N_{i} is the maximal ideal of S_{i} for each i. Moreover, $N_{i} \subseteq\left(S_{i}: T_{i}\right)$ holds for each i by [8, Proposition 4.9] and S_{i} and T_{i} share the ideal N_{i}, since $S_{i} \subseteq T_{i}$ is seminormal and infra-integral. Actually, $N_{i}=\left(S_{i}: T_{i}\right)$ when $S_{i} \neq T_{i}$ and $\left(S_{i}: T_{i}\right)=S_{i}$ when $S_{i}=T_{i}$. Therefore we get $N:=\prod_{i=1}^{n} N_{i} \subseteq(S: T)$ and N is a common ideal of S and T, maximal in S by Proposition 2.8. Set $k:=R / M \cong S / N \cong S_{i} / N_{i} \cong T_{i} / N_{i, j}$, for each maximal ideal $N_{i, j}$ of T_{i}. For each i, we have $N_{i}=\cap_{j=1}^{n_{i}} N_{i, j}$, for some n_{i}, [8, Proposition 4.9], so that $T_{i} / N_{i} \cong \prod_{j=1}^{n_{i}} T_{i} / N_{i, j}$. Then the extension $S / N \subseteq\left(\prod_{i=1}^{n} T_{i}\right) / N \cong \prod_{i=1}^{n}\left(T_{i} / N_{i}\right)$ can be identified to $k \subseteq k^{\sum n_{i}}$, which has FIP (and then FCP) by Proposition 2.1. It follows that ${ }_{\mathcal{R}}^{+} R \subseteq{ }_{\mathcal{R}}^{t} R$ has FIP (and then FCP) by [8, Proposition 3.7].
(3) By [8, Theorem 4.6 and Theorem 5.8], $R \subseteq \mathcal{R}$ has FCP (resp. FIP) if and only if $R \subseteq$ ${ }_{\mathcal{R}}^{+} R,{ }_{\mathcal{R}}^{+} R \subseteq{ }_{\mathcal{R}}^{t} R$ and ${ }_{\mathcal{R}}^{t} R \subseteq \mathcal{R}$ have FCP (resp. FIP) if and only if $R \subseteq{ }_{\mathcal{R}}^{+} R$ has FCP (resp. FIP) by (1) and (2).

The FCP case is now completely solved with the following theorem.
Theorem 2.11. Let $R \subseteq R_{i}, i=1, \ldots, n, n \geq 2$ be finitely many extensions and $\mathcal{R}:=\prod_{i=1}^{n} R_{i}$. Then $R \subseteq \mathcal{R}$ has $F C P$ if and only if R is an Artinian ring and each extension $R \subseteq R_{i}$ has $F C P$.
Proof. The"only if" implication is Proposition 2.2(2).
Conversely, assume that R is an Artinian ring and each $R \subseteq R_{i}$ has FCP. From Proposition 2.4, we infer that $\overline{\mathcal{R}} \subseteq \mathcal{R}$ has FCP. Moreover $R^{n} \subseteq \overline{\mathcal{R}}=\prod_{i=1}^{n} \bar{R}_{i}$ has FCP by [8, Proposition 3.7] and $R \subseteq R^{n}$ has FCP by Proposition 1.4, giving that $R \subseteq \overline{\mathcal{R}}$ has FCP by [8, Corollary 4.3]. To end, use [8, Theorem 3.13] to get that $R \subseteq \prod_{i=1}^{n} R_{i}$ has FCP.

We now consider the FIP property for the product of two FIP extensions. The case of $n>2$ FIP extensions is studied in Section 4.

Proposition 2.12. Let $R \subset R_{1}, R_{2}$ be two subintegral FIP extensions and set $\mathcal{R}:=R_{1} \times R_{2}$. Assume that (R, M) is quasi-local such that $|R / M|=\infty$. Then $R \subseteq \mathcal{R}$ has not FIP.

Proof. Let N_{i} be the maximal ideal of R_{i}. The infra-integrality of $R \subset R_{i}$ implies that $M \neq N_{i}$. It follows that $S_{1}:=R+\left(N_{1} \times M\right)$ and $S_{2}:=R+\left(M \times N_{2}\right)$ are incomparable R-subalgebras of $S:=R+\left(N_{1} \times N_{2}\right)$, because $(x, 0) \in S_{1} \backslash S_{2}$ for $x \in N_{1} \backslash M$ and $(0, y) \in S_{2} \backslash S_{1}$ for $y \in N_{2} \backslash M$.

Assume now that $R \subset \mathcal{R}$ has FIP. In this case, $R \subset S$ has FIP and R is Artinian by Proposition 2.2. It follows that $S={ }_{\mathcal{R}}^{+} R$ by Proposition 2.8, so that $R \subset S$ is a subintegral extension. From Proposition 1.5, we deduce that S_{1} and S_{2} are comparable, a contradiction and $R \subset \mathcal{R}$ has not FIP.

In order to settle the main Theorem 2.17 of the section, we begin to clear the way by studying when $R \subseteq \mathcal{R}$ has not FIP. We can suppose that $R_{1}=R$, because $R \times R_{2} \subseteq R_{1} \times R_{2}$. By Proposition 2.2 and Proposition 2.3, we need only to consider a Σ PIR (R, M) in view of [8, Proposition 3.7]. Indeed, the case of a field R has already been studied in [2]. Note that if (R, M) is a local Artinian ring, then R is finite if and only if R / M is finite, since $M^{n}=0$ for some integer n. In such a case, any finite extension of R has FIP. We first look at minimal ramified extensions. Before, we give a useful lemma.

Lemma 2.13. Let $R \subset S$ be a ring extension, where (R, M) is a quasi-local ring with $|R / M|=$ ∞. Let \mathcal{F} be a set of representative elements of R / M. If there exists a family $\left\{R_{\alpha}\right\}$ of elements of $[R, S]$ such that $R_{\alpha} \neq R_{\beta}$ for each $\alpha \neq \beta \in \mathcal{F}$, then $R \subset S$ has not FIP.

Proof. Obvious.
Lemma 2.14. Let $R \subset S$ be a minimal ramified extension, where (R, M) is a SPIR.
(1) There exists $t \in M$ such that $M=R t$ and $t^{p}=0$, with $t^{p-1} \neq 0$, for some integer $p>1$.
(2) Let N be the maximal ideal of S. There exists $x \in S \backslash R$ such that $S=R+R x, N=R t+R x$. Moreover, there are some unique positive integers $p \geq k, q \geq 1$ and some $a, b \in R \backslash M$ such that $x^{2}=a t^{k}, t x=b t^{q}$. Then, $\left(R:_{R} x\right)=M=(R: S)$.
(3) $q \geq 2$ holds.

Proof. (1) is the definition of a SPIR (see Section 1). Each element of R is of the form $u t^{h}$ for some unique integer $h \leq p$ and some unit u.
(2) The integers k and q exist by Theorem 1.1 or [8, Theorem 2.3 (c)] because $x^{2}, t x \in M$ and are unique by (1) since the ideals of R are linearly ordered.
(3) Assume $q=1$. Then, $t x=b t$ implies $t(x-b)=0$. But $x-b \notin N$ since $b \in R \backslash M$, so that $x-b$ is a unit in S, and then $t=0$, a contradiction, which yields $q \geq 2$. In particular, $t x \in R t^{2}$.

Proposition 2.15. Let $R \subset S$ be a minimal ramified extension, where (R, M) is a $\Sigma P I R$. We set $\mathcal{R}:=R \times S$ and $\{N\}:=\operatorname{Max}(S)$.
(1) $T:={ }^{+} R=R+(M \times N)$.
(2) $R \subset \mathcal{R}$ has FIP if and only if $N^{2}=M$ and $M N=M^{2}=0$.

Proof. (1) The value of T is given in Proposition 2.8.
(2) We keep the notation of Lemma 2.14. There exists $t \in M$ such that $M=R t$ and $t^{p}=0$, with $t^{p-1} \neq 0$, for some integer $p>1$. There exists $x \in S \backslash R$ such that $S=R+R x, N=$ $R t+R x$. Moreover, there are some positive integers $p \geq k, q \geq 1$ and some $a, b \in R \backslash M$ such that $x^{2}=a t^{k}, t x=b t^{q}$, with $q \geq 2$. Then, $M^{2}=R t^{2}, M N=R t^{2}+R t x=R t^{2}$ since $t x \in R t^{2}$, so that $M^{2}=M N$, and $N^{2}=R t^{2}+R t x+R x^{2}=R t^{2}+R t^{k}$.

Let \mathcal{F} be a set of representative elements of R / M. Then \mathcal{F} is infinite.
Assume first that $k>1$, so that $x^{2} \in R t^{2}$. For $\alpha \in \mathcal{F}$, set $R_{\alpha}:=R+R(0, t+\alpha x)+R\left(0, t^{2}\right)$. Then, $R_{\alpha} \in[R, T]$. Let $\beta \in \mathcal{F}$ be such that $\alpha \neq \beta$, so that $\alpha-\beta \notin M$. Assume that $R_{\alpha}=R_{\beta}$. We get that $(0, t+\alpha x)=(c, c)+(0, d t+d \beta x)+\left(0, e t^{2}\right)$, for some $c, d, e \in R$, giving $0=c$ and $t+\alpha x=c+d t+d \beta x+e t^{2}=d t+d \beta x+e t^{2}$. Since $(\alpha-d \beta) x=(d-1) t+e t^{2} \in M$, we get $\alpha-d \beta \in M(*)$ in view of Lemma 2.14(2). It follows that there exists $d^{\prime} \in R$ such that $\alpha-d \beta=d^{\prime} t$, yielding $d^{\prime} t x=d^{\prime} b t^{q}=(d-1) t+e t^{2}$, so that $(d-1) t=d^{\prime} b t^{q}-e t^{2} \in R t^{2}$, leading to $d-1 \in M(* *)$. But $(*)$ and $(* *)$ give $\alpha-\beta \in M$, a contradiction. Then, $R_{\alpha} \neq R_{\beta}$, and $R \subset \mathcal{R}$ has not FIP in view of Lemma 2.13.

It follows that when $R \subset \mathcal{R}$ has FIP, we must have $k=1$.
Now, assume that $k=1$. Then, $x^{2} t=a t^{2}=(t x) x=x b t^{q}=(x t) b t^{q-1}=b^{2} t^{2 q-1}$, so that $a t^{2}-b^{2} t^{2 q-1}=t^{2}\left(a-b^{2} t^{2 q-3}\right)=0$. But $q \geq 2$ implies $2 q-3 \geq 1$, giving $a-b^{2} t^{2 q-3}$ is a unit in R. Then, $t^{2}=0$ and $p=q=2$, with $t x=0$.

So, when $R \subset \mathcal{R}$ has FIP, then $k=1$ and $p=q=2$, which give $M^{2}=M N=0$ and $N^{2}=R t=M$.

Assume now that $N^{2}=M$ and $M N=M^{2}=0$. Then, $R t=R t^{2}+R t^{k}$, giving $k=1$, and $R t^{2}=0$, giving $p=q=2$. Observe that $R \subset \mathcal{R}$ is an integral FCP extension by Theorem 2.11.

Using notation and statement of [8, Theorem 5.18], set $R_{1}:=R+T M=R$. Then, $T=$ $R[(0, x)],(0, x)^{3}=0 \in M$, and, with $T^{\prime}:=R\left[(0, x)^{2}\right]=R[(0, t)]$ and $T^{\prime \prime}:=R+T^{\prime} M=R$, we have $T^{\prime}=T^{\prime \prime}[(0, t)]$, with $(0, t) \in T$, and $(0, t)^{3}=0 \in T^{\prime} M$. We can conclude that $R \subset \mathcal{R}$ has FIP.

Corollary 2.16. Let $R \subset S$ be a non minimal subintegral FIP extension, where (R, M) is a Σ PIR. Then, $R \subset R \times S$ has not FIP.

Proof. Since $R \subset S$ has FIP, there is $S_{1} \in[R, S]$, such that $R \subset S_{1}$ is a minimal extension, necessarily ramified. Assume that $R \subseteq R \times S$ has FIP, then so has $R \subset R \times S_{1}$. Using the notation of Lemma 2.14 and Proposition 2.15 for $R \subseteq S_{1}$, we have $M=R x^{2}, S_{1}=R+R x$, $N=R x^{2}+R x$, where N is the maximal ideal of S_{1} and $x^{3}=0, x^{2} \neq 0$. There exists $S_{2} \in\left[S_{1}, S\right]$ such that $S_{1} \subset S_{2}$ is a minimal extension, necessarily ramified. Let P be the maximal ideal of S_{2}. In view of [8, Theorem 2.3(c)], there is $y \in S_{2}$ such that $S_{2}=S_{1}+S_{1} y=R+R x+R y+R x y$ and $P=N+S_{1} y=R x^{2}+R x+R y+R x y$. Moreover, $\left(S_{1}: y\right)=N$. But, $N P \subseteq N$ gives $x y \in N$ and $P^{2} \subseteq N$ gives $y^{2} \in N$, so that $P=R x^{2}+R x+R y$ and there exist $b, c, d, e \in R$ such that $y^{2}=b x^{2}+c x(*)$ and $y x=d x^{2}+e x(* *)$. It follows that $y x^{2}=x\left(d x^{2}+e x\right)=e x^{2}$, so that $(y-e) x^{2}=0$. If $e \notin M$, then $e \notin P$ and $e-y$ is a unit in S_{2}, giving $x^{2}=0$, a contradiction. But $e \in M$ implies that $e x^{2} \in R x^{4}=0$, so that $y x^{2}=0$. Now, $(*)$ gives $x y^{2}=b x^{2} x+c x^{2}=d x^{2} y+e x y=c x^{2}$. But $e \in M=R x^{2}$ entails $e x \in R x^{3}=0$, so that $x y^{2}=d x^{2} y=0$, whence $c x^{2}=0$, from which we infer that $c \in M=R x^{2}$. Therefore, we get $y^{2}=b x^{2}$ since $x^{3}=0$. Let \mathcal{F} be a set of representative elements of R / M. For $\alpha \in \mathcal{F}$, set $R_{\alpha}:=R+R(0, x+\alpha y)+R\left(0, x^{2}\right)$. Then, $R_{\alpha} \in\left[R, R+\left(R \times S_{2}\right)\right]$ since $(x+\alpha y)^{2}=$ $\left(1+2 \alpha d+\alpha^{2} b\right) x^{2}$. Let $\beta \in \mathcal{F}$ be such that $\alpha \neq \beta$, so that $\alpha-\beta \notin M$. Assume that $R_{\alpha}=R_{\beta}$. We get that $(0, x+\alpha y)=(c, c)+(0, d x+d \beta y)+\left(0, e x^{2}\right)$, for some $c, d, e \in R$, giving $0=c$ and $x+\alpha y=c+d x+d \beta y+e x^{2}=d x+d \beta y+e x^{2}$. Since $(\alpha-d \beta) y=(d-1) x+e x^{2} \in N$, we get $\alpha-d \beta \in N \cap R=M(\dagger)$. It follows that there exists $d^{\prime} \in R$ such that $\alpha-d \beta=d^{\prime} x^{2}$, yielding $0=d^{\prime} x^{2} y=(d-1) x+e x^{2}$, so that $(d-1) x \in M$, leading to $d-1 \in M(\dagger \dagger)$. But (\dagger) and ($\dagger \dagger$) give $\alpha-\beta \in M$, a contradiction. Then, $R_{\alpha} \neq R_{\beta}$, and $R \subset R \times S$ has not FIP in view of Lemma 2.13.

To shorten, a minimal ramified (subintegral) extension $(R, M) \hookrightarrow(S, N)$ between quasilocal rings is called special if $M^{2}=M N=0$ and $N^{2}=M$, as in Proposition 2.15. Such extensions exist. Any minimal ramified extension $R \subset S$ such that R is a field is special. Here is another example. Let K be a field and $R:=K[T] /\left(T^{2}\right)$. If t is the class of T in R, let $S:=R[X] /\left(X^{2}-t, X t\right)$. The natural map $R \rightarrow S$ is injective. This follows from the fact that $R[X]$ is a free $K[X]$-module with basis $\{1, t\}$ and some easy calculations. Let x be the class of X in S. Then, $M:=R t$ is the only maximal ideal of R, so that (R, M) is a quasi-local ring. Moreover, $S=R[x]$, with $x \in S \backslash R$ satisfying $x^{2} \in M$ and $M x \subseteq M$, so that $R \subset S$ is a minimal ramified extension [8, Theorem 2.3]. It follows that the only maximal ideal of S is $N:=R x+R t$, and we have the following relations: $t^{2}=x t=0$ and $x^{2}=t$, giving $N^{2}=R x^{2}=R t=M$ and $M N=R t^{2}+R t x=R t^{2}=M^{2}=0$. Then, $R \subset S$ is a special minimal ramified extension.

Theorem 2.17. Let $R \subseteq S_{1}, S_{2}$ be FIP extensions, $\Sigma_{i}:={ }_{S_{i}}^{+}$R for $i=1,2$ and $\mathcal{R}:=S_{1} \times S_{2}$. Then $R \subseteq \mathcal{R}$ has FIP if and only if R is an FMIR such that $\operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$, and, for each $M \in \operatorname{Supp}\left(\Sigma_{i} / R\right) \cap \Sigma \operatorname{Max}(R), i \in\{1,2\}$, either $R_{M} \subset\left(\Sigma_{i}\right)_{M}$ is a special minimal ramified extension or R_{M} is a field.

Proof. For a maximal ideal M of R, we denote by $S(M)$ the seminormalization of R_{M} in $\left(S_{1} \times\right.$ $\left.S_{2}\right)_{M}$.

Assume that $R \subseteq S_{1} \times S_{2}$ has FIP. In view of Proposition 2.2, R is an FMIR, and so is a finite direct product $\prod_{i=1}^{n} R_{i}$ of fields, finite local rings and SPIRs that are localization of R at some maximal ideal M of R by Proposition 2.3. Hence $R_{M} \subseteq\left(S_{1} \times S_{2}\right)_{M}=\left(S_{1}\right)_{M} \times\left(S_{2}\right)_{M}$ has FIP by Proposition 2.7. Assume that R_{M} is not a finite ring. Then, R_{M} is either an infinite field or a $\Sigma \mathrm{PIR}$.

Let $M \in \Sigma \operatorname{Max}(R)$, so that $\left|R_{M} / M^{\prime}\right|=\infty$ for $M^{\prime}:=M R_{M}$ (see the remark before Lemma 2.13). For $j \in\{1,2\}$, we have that $R_{M} \subseteq\left(\Sigma_{j}\right)_{M}$ is a subintegral FIP extension with $\left(R_{M}, M^{\prime}\right)$ a quasi-local ring. Assume first that R_{M} is a Σ PIR. Using Propositions 2.12, 2.15
and Corollary 2.16, we get that $R_{M}=\left(\Sigma_{j}\right)_{M}$ for some $j \in\{1,2\}$, so that $M \notin \operatorname{Supp}\left(\Sigma_{j} / R\right)$ and, for $l \in\{1,2\} \backslash\{j\}$, either $R_{M}=\left(\Sigma_{l}\right)_{M}$ or $R_{M} \subset\left(\Sigma_{l}\right)_{M}$ is a special minimal ramified extension. Assume now that R_{M} is an infinite field. Using Proposition 2.12, we get that $R_{M}=\left(\Sigma_{j}\right)_{M}$ for some $j \in\{1,2\}$ and, for $l \in\{1,2\} \backslash\{j\}$, there exists $\alpha \in\left(\Sigma_{l}\right)_{M}$ which satisfies $\left(\Sigma_{l}\right)_{M}=R_{M}[\alpha]$ and $\alpha^{3}=0$ by [2, Theorem 3.8] since $R_{M} \subseteq\left(\Sigma_{l}\right)_{M}$ has FIP. Then, $M \notin \operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right)$ and $\operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$.

Conversely, assume that R is an FMIR, and so a finite direct product $\prod_{i=1}^{n} R_{i}$ of fields, finite local rings and SPIRs such that $\operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$, with, for each $M \in \operatorname{Supp}\left(\Sigma_{i} / R\right) \cap \Sigma \operatorname{Max}(R), i \in\{1,2\}$, either $R_{M} \subset\left(\Sigma_{i}\right)_{M}$ is a special minimal ramified extension or R_{M} is an infinite field. Observe first that for each i, there is $M \in \operatorname{Max}(R)$ such that $R_{i}=R_{M}$.

Since R is a quasi-semilocal ring, $\operatorname{MSupp}\left(\left(S_{1} \times S_{2}\right) / R\right)$ is finite. Then, $R \subseteq S_{1} \times S_{2}$ has FIP if and only if $R_{M} \subseteq\left(S_{1} \times S_{2}\right)_{M}$ has FIP for each $M \in \operatorname{MSupp}\left(\left(S_{1} \times S_{2}\right) / R\right)$ by Proposition 2.7. Moreover, $R_{M} \subseteq\left(S_{j}\right)_{M}$ is an FIP extension for $j=1,2$. Fix $M \in \operatorname{MSupp}\left(\left(S_{1} \times S_{2}\right) / R\right)$. Proposition 2.4 tells us that $\overline{\mathcal{R}}_{M}=\left(\overline{S_{1}}\right)_{M} \times\left(\overline{S_{2}}\right)_{M}=\left(\overline{S_{1}} \times \overline{S_{2}}\right)_{M} \subseteq \mathcal{R}_{M}$ has FIP, where $\overline{\mathcal{R}}_{M}$ (resp. $\left.\left(\overline{S_{i}}\right)_{M}\right)$ is the integral closure of R_{M} in $\left(S_{1}\right)_{M} \times\left(S_{2}\right)_{M}=\left(S_{1} \times S_{2}\right)_{M}$ (resp. $\left.\left(S_{i}\right)_{M}\right)$. Then, in view of [8, Theorem 3.13], $R_{M} \subseteq\left(S_{1} \times S_{2}\right)_{M}$ has FIP if and only if $R_{M} \subseteq\left(\overline{S_{1}} \times \overline{S_{2}}\right)_{M}$ has FIP. From Proposition 2.10, we deduce that $R_{M} \subseteq\left(S_{1} \times S_{2}\right)_{M}$ has FIP if and only if $R_{M} \subseteq S(M)$ has FIP. But, $S(M)=\underset{\left(\Sigma_{1}\right)_{M} \times\left(\Sigma_{2}\right)_{M}}{ } R_{M}$ by Proposition 2.6. Therefore, $S(M)$ is module finite over the Artinian ring R_{M} by Proposition 2.8.
(1) If R_{M} is an infinite field, then $M \in \Sigma \operatorname{Max}(R)$. We have $R_{M}=\left(\Sigma_{l}\right)_{M}$ for some $l \in\{1,2\}$ since $\operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$. Let $j \neq l$. Since $R_{M} \subseteq\left(\Sigma_{j}\right)_{M}$ has FIP, there is $\alpha_{j} \in\left(\Sigma_{j}\right)_{M}$ such that $\left(\Sigma_{j}\right)_{M}=R_{M}\left[\alpha_{j}\right]$, with $\alpha_{j}^{3}=0$ by [2, Theorem 3.8]. Moreover, $R_{M}\left[\alpha_{j}\right]$ is a quasi-local ring with maximal ideal $\alpha_{j} R_{M}\left[\alpha_{j}\right]$. Set $\alpha_{l}:=0$ and $\alpha:=\left(\alpha_{1}, \alpha_{2}\right)$. In view of Proposition 2.8, we get $S(M)=R_{M}[\alpha]$, with $\alpha^{3}=0$, so that $R_{M} \subseteq S(M)$ has FIP by [2, Theorem 3.8]. Indeed, $S(M)=R_{M}+\left(\alpha_{j} R_{M}\left[\alpha_{j}\right] \times 0\right)=R_{M}+\alpha R_{M}$.
(2) If R_{M} is a $\Sigma \mathrm{PIR}$, then $M \in \Sigma \operatorname{Max}(R)$, there is some $j \in\{1,2\}$ such that $\left(\Sigma_{j}\right)_{M}=R_{M}$, with, for $l \in\{1,2\} \backslash\{j\}$, either $R_{M}=\left(\Sigma_{l}\right)_{M}$ or $R_{M} \subset\left(\Sigma_{l}\right)_{M}$ is a special minimal ramified extension. Then, $R_{M} \subseteq S(M)$ has FIP by either Proposition 2.15 or Corollary 2.5.
(3) If R_{M} is a finite ring, then $S(M)$ is a finite ring since a finitely generated R_{M}-module, and $R_{M} \subseteq S(M)$ has FIP.

In every case, $R_{M} \subseteq S(M)$ has FIP, and so has $R \subseteq S_{1} \times S_{2}$.
Corollary 2.18. Let $R \subseteq S_{1}, S_{2}$ be seminormal FIP extensions and $\mathcal{R}:=S_{1} \times S_{2}$. Then $R \subseteq \mathcal{R}$ has FIP if and only if R is an FMIR.

Proof. Since $R={ }_{S_{i}}^{+} R$ for $i=1,2$, we get $\operatorname{Supp}\left(\Sigma_{1} / R\right) \cap \operatorname{Supp}\left(\Sigma_{2} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$. Then, use Theorem 2.17.

3 FCP or FIP extensions and the CRT

The aim of this section is to get an extension of the Chinese Remainder Theorem (CRT) in the following sense. Let R be a ring, $n>1$ an integer and I_{1}, \ldots, I_{n} ideals of R distinct from R, but not necessarily distinct, such that $\cap_{j=1}^{n} I_{j}=0$. Such a family $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals of R is called a separating family, a reference to Algebraic Geometry where a finite family of morphisms $\left\{f_{j}: M \rightarrow M_{j} \mid j=1, \ldots, n\right\}$ of R-modules is called separating if $\cap_{j=1}^{n} \operatorname{ker} f_{j}=0$. We intend to study the ring extension $R \subseteq \prod_{j=1}^{n}\left(R / I_{j}\right)=: \mathcal{R}$ associated to a separating family, denoting by $C:=(R: \mathcal{R})$ its conductor, also called the conductor of the separating family. We set $J_{j}:=\cap_{k=1, k \neq j}^{n} I_{k}$, or more generally $J_{E}:=\cap_{k=1, k \notin E}^{n} I_{k}$ for any subset E of $\{1, \ldots, n\}$. We also denote by e_{i} the element of \mathcal{R} whose i th coordinate is 1 and the others are 0 and call $\left\{e_{1}, \ldots, e_{n}\right\}$ the "canonical basis". The above extension is an isomorphism if $C=R$ (Chinese Remainder Theorem). If not, either $|[R, \mathcal{R}]|$ or $\ell[R, \mathcal{R}]$ measures in some sense how R is far from \mathcal{R}.

Proposition 3.1. Let R be a ring and $\left\{I_{1}, \ldots, I_{n}\right\}$ a separating family of ideals of R. Then:
(1) $R \subseteq \mathcal{R}$ is an infra-integral extension.
(2) $C=\cap_{j=1}^{n}\left(I_{j}+J_{j}\right)=\sum_{j=1}^{n} J_{j}$.
(3) $R \subseteq \mathcal{R}$ has $F C P$ if and only if R / C is Artinian.

Proof. (1) Clearly, $R \rightarrow \prod_{j=1}^{n}\left(R / I_{j}\right)$ is an integral ring extension (actually, module finite), that is infra-integral because of the form of elements of $\operatorname{Spec}(\mathcal{R})$.
(2) is [21, Lemma 2.25].
(3) In view of [8, Theorem 4.2], we have that $R \subseteq \mathcal{R}$ has FCP if and only if R / C is an Artinian.

An immediate consequence is the following. Let R be a ring, $n>1$ an integer and I_{1}, \ldots, I_{n} ideals of R distinct from R, but not necessarily distinct. Set $C:=\sum_{j=1}^{n} J_{j}$. Then, $R /\left(\cap_{j=1}^{n} I_{j}\right) \subseteq$ $\prod_{j=1}^{n}\left(R / I_{j}\right)$ has FCP if and only if R / C is an Artinian ring.

In the rest of the section, we examine the FIP property. The case of a separating family with two elements is easy to solve.

Proposition 3.2. Let R be a ring, with two ideals I and J such that $I, J \neq R$ and $I \cap J=0$. Then $R \subseteq R / I \times R / J$ is a Δ_{0}-extension, which has FIP if and only if $R /(I+J)$ is an FMIR.

Proof. For $x \in R$, we denote by \bar{x} its class in R / I and by \tilde{x} its class in R / J. Set $e_{1}:=(\overline{1}, \tilde{0})$, $e_{2}:=(\overline{0}, \tilde{1})$, so that $\left\{e_{1}, e_{2}\right\}$ is a generating set of the R-module $R / I \times R / J$. From $e_{i}^{2}=e_{i}$ and $e_{1} e_{2}=0$ follow that $R / I \times R / J=R+R e_{1}$. Hence there is a bijection between the set of ideals of R containing $I+J$ and $[R, R / I \times R / J]$ by Proposition 1.3 and $R \subseteq R / I \times R / J$ has FIP if and only if $R /(I+J)$ is an FMIR.

Next lemma shows that we can reduce our study to a zero conductor extension.
Lemma 3.3. Let R be a ring and $\left\{I_{1}, \ldots, I_{n}\right\}$ a separating family of ideals of R. Then $R \subseteq \mathcal{R}$ has FIP if and only if the zero conductor extension $R /\left(\sum_{j=1}^{n} J_{j}\right) \subseteq \prod_{j=1}^{n}\left(R /\left(I_{j}+J_{j}\right)\right)$ has FIP.
Proof. By [8, Proposition 3.7], $R \subseteq \mathcal{R}$, with conductor C, has FIP if and only if $R / C \subseteq \mathcal{R} / C$ has FIP. Since C is an ideal of \mathcal{R}, for each $j \in\{1, \ldots, n\}$, there exists an ideal C_{j} of R containing I_{j} such that $C=\prod_{j=1}^{n} C_{j} / I_{j}$. Now, there is a natural isomorphism $\mathcal{R} / C \cong \prod_{j=1}^{n}\left(R / C_{j}\right)$. For each j, we get that $C_{j} / I_{j}=\left(I_{j}+J_{j}\right) / I_{j}$ because $I_{j}+\sum_{i=1}^{n} J_{i}=J_{j}+\left(\sum_{i=1, i \neq j}^{n} J_{i}\right)+I_{j}=I_{j}+J_{j}$. Then, $R / C_{j} \cong\left(R / I_{j}\right) /\left(C_{j} / I_{j}\right) \cong\left(R / I_{j}\right) /\left(\left(I_{j}+J_{j}\right) / I_{j}\right) \cong R /\left(I_{j}+J_{j}\right)$ giving the wanted result.

Proposition 3.4. Let R be a ring and $\left\{I_{1}, \ldots, I_{n}\right\}$ a separating family of ideals of R with zero conductor. Then:
(1) $J_{j}=0$ for each j
(2) If $R \subseteq \mathcal{R}$ has FIP, then $R /\left(J_{\mathcal{P}_{1}}+J_{\mathcal{P}_{2}}\right)$ is an FMIR for any partition $\left\{\mathcal{P}_{1}, \mathcal{P}_{2}\right\}$ of $\{1, \ldots, n\}$ as well as R / I_{j} for each j. In that case, R is an Artinian ring.

Proof. (1) By Proposition 3.1, $C=\sum_{j=1}^{n} J_{j}$, so that $J_{j}=0$.
(2) Set $K_{i}:=J_{\mathcal{P}_{i}}$ for $i=1,2$. Then, $K_{1} \cap K_{2}=0$, so that we have the extensions $R \subseteq$ $R / K_{1} \times R / K_{2}$ and $R / K_{i} \subseteq \prod_{j \in \mathcal{P}_{l}}\left(R / I_{j}\right)$ for $l \neq i, l \in\{1,2\}$ leading to the composite $R \subseteq R / K_{1} \times R / K_{2} \subseteq \mathcal{R}$. If $R \subseteq \mathcal{R}$ has FIP, then so has $R \subseteq R / K_{1} \times R / K_{2}$. By Proposition 3.2, $R /\left(K_{1}+K_{2}\right)$ is an FMIR. The second statement follows from (2) and $J_{j}=0$. To complete the proof, use Proposition 3.1 since $C=0$.

The following result shows that the case of a nonlocal Artinian ring R is very different from the local case.

Proposition 3.5. Let R be a ring containing a set of $p>2$ orthogonal idempotents $\left\{e_{1}, \ldots, e_{p}\right\}$, generating the ideal R. Then R is an FMIR if $R \subseteq \mathcal{R}$ has FIP for each separating family $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals of R. In particular, an Artinian nonlocal ring R is an FMIR if $R \subseteq \mathcal{R}$ has FIP for each separating family of ideals of R. The converse holds if no local ring of R is a SPIR.

Proof. Consider the faithfully flat extension $R \subseteq \prod_{i=1}^{p} R / R e_{i}=: S$ with zero conductor (Proposition 3.1). If $R \subseteq S$ has FIP, then each $R / R e_{i}$ is an FMIR by Proposition 3.4 and so is S. Then observe that if $R \rightarrow S$ is a faithfully flat ring morphism, R is an FMIR if so is S, because
$I S \cap R=I$ for each ideal I of R. Now if R is Artinian nonlocal, then R has $p>1$ idempotents generating the ideal R by the Structure Theorem of Artinian rings. If $p>2$, use the first part of the proof. If $p=2$, then $\{(0),(0)\}$ is a separating family of ideals of R, so that $R \subset R^{2}$ has FIP and R is a FMIR by Corollary 2.5 .

Now let (R, M) be a local Artinian ring with $|R / M|<\infty$. Then $|R|<\infty$ (see the remark before Lemma 2.13), so that $R \subseteq \mathcal{R}$ has FIP for each separating family, since $|\mathcal{R}|<\infty$.

We know that $|\operatorname{MSupp}(S / R)|<\infty$ if $R \subseteq S$ has FIP (Proposition 2.7(1)). By Proposition 2.7 and former results of the section, the FIP property study can be reduced to the next proposition hypotheses.

If (R, M) is an Artinian local ring, we denote by $n(R)$ the nilpotency index of M.
Proposition 3.6. Let (R, M) be an Artinian local ring with $|R / M|=\infty$ and a separating family $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals, with $C=0$.
We set $T:=R+M \mathcal{R}, \mathcal{C}:=(R: T), n(R / \mathcal{C})=p$, and for each $i>0, M_{i}:=M+T M^{i}=$ $M+\mathcal{R} M^{i+1}, R_{i}:=R+T M^{i}=R+\mathcal{R} M^{i+1}$. Then,
(1) $T={ }_{\mathcal{R}}^{+} R$ and $R \subseteq \mathcal{R}$ has FIP if and only if $R \subseteq T$ has FIP.
(2) $\mathcal{C}=(0: M)$.
(3) $R \subseteq T$ has FIP if and only if either $R=T$, or $R_{1}=T$, or $R_{1} \subset T$ is minimal (ramified), with, in the two last situations, either $M=(R: T)$, or $\mathrm{L}_{R}\left(M_{i} / M_{i+1}\right)=1$ for all $1 \leq i \leq$ $p-1$.

The case $R=T$ corresponds to an extension of the form $K \subseteq K^{n}$, where K is a field, and the case $M=\mathcal{C}$ to $M^{2}=0$.

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of the R-module \mathcal{R}. Since $(R: \mathcal{R})=0, J_{j}=0$ for each $j \in\{1, \ldots, n\}$ by Proposition 3.4.
(1) $T={ }_{\mathcal{R}}^{+} R$ follows from [8, Theorem 5.18] since $\operatorname{Rad}(\mathcal{R})=M \mathcal{R}$ and $R \subseteq \mathcal{R}$ has FCP by Proposition 3.1. Since $R \subseteq \mathcal{R}$ is infra-integral, $R \subseteq \mathcal{R}$ has FIP if and only if $R \subseteq T$ has FIP by Proposition 1.5.
(2) is an easy calculation, because each $J_{j}=0, \cap_{j=1}^{n} I_{j}=0$ and the unit element of \mathcal{R} is $e_{1}+\cdots+e_{n}$.
(3) Since $R \subseteq R_{i} \subseteq T$ is finite and subintegral, $\left(R_{i}, M_{i}\right)$ is local Artinian for each $i>0$. We have $T M=M+\mathcal{R} M^{2}=M_{1} \subseteq \mathcal{R} M \in \operatorname{Max}(T), R_{1}=R+\mathcal{R} M^{2}, R_{2}=R+\mathcal{R} M^{3}$ and $M_{2}=M+\mathcal{R} M^{3}$. Because R / M is infinite, [8, Theorem 5.18], applied with $S:=\mathcal{R}$, gives that $R \subseteq T$ has FIP if and only if the next two properties hold:
(i) Either $R=T$, or $M=(R: T)$, or $\mathrm{L}_{R}\left(M_{i} / M_{i+1}\right)=1$ for all $1 \leq i \leq p-1$;
(ii) If $R \neq T$, there exists $\alpha \in T$ such that $T=R_{1}[\alpha]$ and $\alpha^{3} \in T M$, and, with $T^{\prime}:=R_{1}\left[\alpha^{2}\right]$ and $T^{\prime \prime}:=R+T^{\prime} M$, there exists $\beta \in T$ such that $T^{\prime}=T^{\prime \prime}[\beta]$ and $\beta^{3} \in T^{\prime} M$.

Assume that $T \neq R, R_{1}$, so that $\alpha \notin R_{1}$. We first show that (ii) implies that $R_{1} \subset T$ is minimal. Let $\alpha \in T$ be such that $\alpha^{3} \in T M=M_{1} \subseteq \mathcal{R} M$, giving $\alpha \in \mathcal{R} M$, so that $\alpha^{2} \in \mathcal{R} M^{2} \subseteq M_{1}$ and $\alpha M_{1} \subseteq \mathcal{R} M M_{1}=\mathcal{R} M\left(M+\mathcal{R} M^{2}\right) \subseteq \mathcal{R} M^{2} \subseteq M_{1}$. Then, $R_{1} \subset T$ is minimal (ramified) in view of [8, Theorem 2.3(c)].

Conversely, we show that $R_{1} \subset T$ is minimal (ramified), with either $M=(R: T)$, or $\mathrm{L}_{R}\left(M_{i} / M_{i+1}\right)=1$ for all $1 \leq i \leq p-1$ implies (ii). Actually, (i) already holds. Since $R_{1} \subset T$ is minimal, there is $\alpha \in T$ such that $T=R_{1}[\alpha]$ and $\alpha^{2} \in M_{1} \subset R_{1}$, with $\alpha M_{1} \subseteq M_{1}$. Then, $\alpha^{3} \in M_{1}=T M$. Now, we can rewrite (ii) as $T^{\prime}=R_{1}\left[\alpha^{2}\right]=R_{1}$ and $T^{\prime \prime}=R+T^{\prime} M=$ $R+R_{1} M=R+\mathcal{R} M^{3}=R_{2}$. Assume that $M \neq(R: T)=(0: M)$, so that $M^{2} \neq 0$. Then, $M_{1}^{2}=\left(M+\mathcal{R} M^{2}\right)^{2} \subseteq M+\mathcal{R} M^{3}=M_{2} \subset M_{1}$ (because $\mathrm{L}_{R}\left(M_{1} / M_{2}\right)=1$) implies that $R_{2} \subset R_{1}$ is minimal ramified by Theorem 1.1. Arguing as for α, we obtain some $\beta \in T$ such that $T^{\prime}=T^{\prime \prime}[\beta]$ and $\beta^{3} \in T^{\prime} M$ and (ii) holds.

If $T=R_{1}$, it is enough to take $\alpha=\beta=0$ to get (ii).
If $R=T$, then $I_{j}=M$ for each j entails $M=\cap_{j=1}^{n} I_{j}=0$ and R is a field. Then $R \subseteq \mathcal{R}$ is of the form $K \subseteq K^{n}$, where K is a field, and has FIP (see Proposition 2.1). Assume that $M=\mathcal{C}$, then $M^{2}=0$.

By Proposition 3.4, we know that when $R \subseteq \mathcal{R}$ has FIP, then R / I_{j} is an FMIR for each j. It is natural to ask if the converse holds, and if not, what conditions are needed to get the FIP property. We consider here a simple case which already gives a rather complicated result.
Proposition 3.7. Let (R, M) be an Artinian local ring such that $M^{2}=0$ and $|R / M|=\infty$. Let $\left\{I_{1}, \ldots, I_{n}\right\}$ be a separating family of ideals, with conductor 0 and $n \geq 3$. Then, $R \subseteq \mathcal{R}$ has FIP if and only if R / I_{j} is an FMIR and $M=I_{j}+\cap_{k \neq j, l} I_{k}$, for each $j, l \in\{1, \ldots, n\}, j \neq l$.
Proof. Set $T:=R+M \mathcal{R}, \mathcal{C}:=(R: T)$, and for each $i>0, M_{i}:=M+T M^{i}=M+$ $\mathcal{R} M^{i+1}, R_{i}:=R+T M^{i}=R+\mathcal{R} M^{i+1}$. Since $M^{2}=0$, we get that $R_{1}=R$ and $M_{1}=M=$ M_{2}. Then, applying Proposition 3.6, we have that $R \subseteq \mathcal{R}$ has FIP if and only if $R \subseteq T$ has FIP, if and only if either $R=R_{1}=T$, or $R \subset T$ is minimal (ramified), with $M=(R: T)$. This last condition is always satisfied since $\mathcal{C}=(0: M)$. Then, $R \subseteq \mathcal{R}$ has FIP if and only if either $R=R_{1}=T$, or $R \subset T$ is minimal.

We begin to remark that $M=I_{k}$ for at least $n-1$ ideals I_{k} implies that $M=0$, so that R is a field and we are in the situation of Proposition 2.1. Indeed, if $n-1$ ideals I_{k} are equal to M, for instance I_{1}, \ldots, I_{n-1}, we get that $\cap_{k \neq n} I_{k}=M=0$ since $(R: \mathcal{R})=0$. In particular, we get that $I_{n}=0$. Hence, the assertion of Proposition 3.7 holds.

So, in the following, we may assume that there exist some $I_{j}, I_{l} \neq M, j \neq l$. Consider the following R-subextension of $\left(R / I_{j}\right) \times R$ defined by $R_{j}^{\prime}:=R+\left(\left(M / I_{j}\right) \times 0\right)=\{(\bar{x}+\bar{m}, x) \mid$ $x \in R, m \in M\}$. Since $\cap_{k \neq j} I_{k}=0$, we have the ring extension $R \subseteq R+\prod_{k \neq j} M / I_{k}$. An easy calculation shows that we have a ring extension $R_{j}^{\prime} \subseteq T$. Moreover, $R \neq R_{j}^{\prime}$ since $(\bar{m}, 0) \in R_{j}^{\prime} \backslash R$ for any $m \in M \backslash I_{j}$. In particular, $R \neq T$. The canonical map $\varphi: R_{j}^{\prime} \rightarrow T$ is defined by $\varphi(\bar{x}+\bar{m}, x)=(\bar{x}, \ldots, \bar{x})+(\bar{m}, \overline{0}, \ldots, \overline{0})$ (after reindexing the components).

Assume first that $R \subseteq \mathcal{R}$ has FIP, so that $R \subset T$ is a minimal extension. Then, $R \neq R_{j}^{\prime}$ implies that $R_{j}^{\prime}=T$ and φ is surjective. Let $y \in M$ and $j^{\prime} \in\{1, \ldots, n\}, j^{\prime} \neq j$. Consider $(\overline{0}, \ldots, \bar{y}, \ldots, \overline{0}) \in T$, where all the coordinates are $\overline{0}$ except possibly the j^{\prime} th which is \bar{y}. Then, there exist $x \in R, m \in M$ such that $(\overline{0}, \ldots, \bar{y}, \ldots, \overline{0})=(\bar{x}, \ldots, \bar{x})+(\bar{m}, \overline{0}, \ldots, \overline{0})$. This gives $y-x \in I_{j^{\prime}}, x+m \in I_{j}$ and $x \in I_{k}$ for each $k \neq j, j^{\prime}$. Then, $x \in \cap_{k \neq j, j^{\prime}} I_{k}$ and $y \in I_{j^{\prime}}+\cap_{k \neq j, j^{\prime}} I_{k}$, giving $M=I_{j^{\prime}}+\cap_{k \neq j, j^{\prime}} I_{k}$ for any $j^{\prime} \neq j$. Since there is some $l \neq j$ such that $M \neq I_{l}$, the same reasoning gives that $M=I_{j}+\cap_{k \neq j, l} I_{k}$. At last, if there exist $j^{\prime}, l^{\prime} \in\{1, \ldots, n\}, j^{\prime} \neq l^{\prime}$ such that $M \neq I_{j^{\prime}}, I_{l^{\prime}}$, the same reasoning gives again $M=I_{j^{\prime}}+\cap_{k \neq j^{\prime}, l^{\prime}} I_{k}$. But, when $M=I_{j^{\prime}}$, we have $M=I_{j^{\prime}}+\cap_{k \neq j^{\prime}, l^{\prime}} I_{k}$ whatever is $I_{l^{\prime}}$.

Conversely, assume that $R / I_{j^{\prime}}$ is an FMIR and $M=I_{j^{\prime}}+\cap_{k \neq j^{\prime}, l^{\prime}} I_{k}$, for each $j^{\prime}, l^{\prime} \in$ $\{1, \ldots, n\}, j^{\prime} \neq l^{\prime}$, with $M \neq I_{j}$ for some j. We are going to show that $R \subset R_{j}^{\prime}$ is minimal ramified and that $R_{j}^{\prime}=T$.

Since R / I_{j} is an FMIR with $|R / M|=\infty$ and $M \neq I_{j}$, there exists some $z \in M \backslash I_{j}$ such that $M / I_{j}=\left(R / I_{j}\right) \bar{z}$, with $\bar{z} \neq 0$ and $\bar{z}^{2}=0$. Set $t:=(\bar{z}, 0) \in R_{j}^{\prime} \backslash R$. Using the properties of R_{j}^{\prime}, we get that $R_{j}^{\prime}=R[t]$, with $t^{2}=0 \in M, t M=0 \subseteq M$, so that $R \subset R_{j}^{\prime}$ is a minimal ramified extension by [8, Theorem 2.3].

Let $j^{\prime} \neq j$ and $x \in M$. Since $M=I_{j^{\prime}}+\cap_{k \neq j^{\prime}, j} I_{k}$, there exist $a \in I_{j^{\prime}}$ and $b \in \cap_{k \neq j^{\prime}, j} I_{k}$ such that $x=a+b$. Then, $\bar{x}=\bar{b}$ in $M / I_{j^{\prime}}$. It follows that we get $(\overline{0}, \ldots, \bar{x}, \ldots, \overline{0})=(\bar{b}, \ldots, \bar{b}, \ldots, \bar{b})+$ $(\overline{0}, \ldots,-\bar{b}, \ldots, \overline{0})$, where \bar{x} stands at the j^{\prime} th component in the first element, and $-\bar{b}$ stands at the j th component in the last element. Indeed, for $k \neq j, j^{\prime}$, we have $\bar{b}=\overline{0}$ since $b \in \cap_{k \neq j^{\prime}, j} I_{k}$. We have $(\bar{b}, \ldots, \bar{b}, \ldots, \bar{b}) \in R$ and $(\overline{0}, \ldots,-\bar{b}, \ldots, \overline{0}) \in\left(M / I_{j}\right) \times 0$, so that $(\overline{0}, \ldots, \bar{x}, \ldots, \overline{0}) \in R_{j}^{\prime}$. This holds for any $j^{\prime} \neq j$ and obviously for $(\overline{0}, \ldots, \bar{x}, \ldots, \overline{0})$ where \bar{x} stands at the j th component by definition of R_{j}^{\prime}. Then, $T=R+\prod_{k}\left(M / I_{k}\right)=R+\left(\left(M / I_{j}\right) \times 0\right)=R_{j}^{\prime}$, giving that $R \subset T$ is minimal, so that $R \subset \mathcal{R}$ has FIP.

Remark 3.8. When $n=3$, the condition of Proposition 3.7 becomes $M=I_{j}+I_{l}$, for each $j, l \in\{1,2,3\}, j \neq l$. Here is an example where $I_{j} \nsubseteq I_{l}$ for each $j, l \in\{1,2,3\}, j \neq l$.

Let k be an infinite field, and set $R:=k[X, Y] /(X, Y)^{2}=k[x, y]$, for some indeterminates X, Y. Then, R is an Artinian local ring with maximal ideal $M:=(x, y)$ such that $M^{2}=0$ and $|R / M|=\infty$. Set $I_{j}:=k\left(x+\lambda_{j} y\right)$, where λ_{1}, λ_{2} and λ_{3} are three distinct elements of k. Then, $I_{j} \cap I_{l}=0$ for each $j, l \in\{1,2,3\}, j \neq l$. We have $R / I_{j}=k[\bar{x}]$, which is a SPIR, although R is not a SPIR, with $M / I_{j}=k \bar{x}$.

In the following, we are going to consider a kind of converse for Proposition 3.4, taking for R a local FMIR. By Proposition 2.3, either R is a field, or a finite ring, or a Σ PIR. The case where
R is a field is Proposition 2.1. If R is a finite ring, \mathcal{R} being R-module finite, \mathcal{R} is also a finite ring, so that $R \subseteq \mathcal{R}$ has FIP. The last case to consider is a Σ PIR R.

Proposition 3.9. Let (R, M) be a SPIR and a separating family $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals, with conductor 0 . Then, $R \subseteq \mathcal{R}$ has FIP if and only if either $n=2$, or $I_{j}=M$ for $n-2$ ideals I_{j}.

Proof. For $n=2$, we get $I_{1}=I_{2}=0$ and Corollary 2.5 gives that $R \subseteq R / I_{1} \times R / I_{2}$ has FIP.
Assume that $n>2$. The ideals of the SPIR R are linearly ordered. Thus we can assume $I_{1} \subseteq \cdots \subseteq I_{j} \subseteq \cdots \subseteq I_{n}$. By Proposition 3.4, we get that $J_{j}=0$ for each $j \in\{1, \ldots, n\}$. Hence, for $j=1$, we get $I_{2}=0$ and $I_{1}=0$ for $j \neq 1$. Moreover, there is some $t \in M$ such that $M=R t$, with $t^{p}=0, t^{p-1} \neq 0$ for some positive integer $p>1$ since R is not a field, and, for each $j \in\{1, \ldots, n\}$, there is an integer $p_{j}>0$ such that $I_{j}=R t^{p_{j}}$, with $I_{j} \neq R t^{p_{j}-1}$. In particular, we have $p=p_{1}=p_{2} \geq \cdots \geq p_{j} \geq \cdots \geq p_{n}$.

Assume that $I_{3} \neq M$, whence $p_{3}>1$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of \mathcal{R} over R and \mathcal{F} a set of representative elements of R / M. For each $\alpha \in \mathcal{F}$, set $R_{\alpha}:=R+R\left(t^{p-1} e_{2}+\alpha t^{p_{3}-1} e_{3}\right)$, which is an R-subalgebra of \mathcal{R}. Let $\alpha, \beta \in \mathcal{F}, \alpha \neq \beta$, so that $\alpha-\beta \notin M$. Assume that $R_{\alpha}=R_{\beta}$. Then, $t^{p-1} e_{2}+\alpha t^{p_{3}-1} e_{3} \in R_{\beta}$, so that there exist $a, b \in R$ such that $t^{p-1} e_{2}+$ $\alpha t^{p_{3}-1} e_{3}=a \sum_{j=1}^{n} e_{j}+b\left(t^{p-1} e_{2}+\beta t^{p_{3}-1} e_{3}\right)$. This gives $a=0, t^{p-1}(1-b)=0(*)$ and $t^{p_{3}-1}(\alpha-b \beta) \in I_{3}(* *)$. But we get $1-b \in M$ by $(*)$ and $\alpha-b \beta \in M$ by $(* *)$, so that $\alpha-\beta \in M$, a contradiction; whence $R_{\alpha} \neq R_{\beta}$, and $R \subseteq \mathcal{R}$ has not FIP by Lemma 2.13.

Now, assume that $n>2$ and $I_{j}=M$ for all $j \geq 3$. Using the notation of Proposition 3.6, we get that $T=R+(M \times M) \subseteq R^{2}$. But $R \subseteq R^{2}$ has FIP by Corollary 2.5 , so that $R \subseteq T$ has FIP, inducing that $R \subseteq \mathcal{R}$ has FIP by Proposition 3.6.

Corollary 3.10. Let (R, M) be a quasi-local ring such that $|R / M|=\infty$, and a separating family $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals of R. Assume that $R /\left(\sum_{i=1}^{n} J_{j}\right)$ is a SPIR. Then, $R \subseteq \mathcal{R}$ has FIP if and only if either $n=2$, or $I_{j}+J_{j}=M$ for $n-2$ ideals $I_{j}+J_{j}$.

Proof. Set $R^{\prime}:=R /\left(\sum_{i=1}^{n} J_{j}\right)=R / C$, where $C:=(R: \mathcal{R})$, so that $R \subseteq \mathcal{R}$ has FIP if and only if $R^{\prime} \subseteq \prod_{j=1}^{n}\left(R /\left(I_{j}+J_{j}\right)\right)$ has FIP (Lemma 3.3). Then, apply Proposition 3.9 to this extension.

Remark 3.11. Let (R, M) be a local Artinian ring such that $|R / M|=\infty$, and a separating family I_{1}, \ldots, I_{n} of ideals of R different from M, with $n>2$, associated extension $R \subseteq \mathcal{R}$ and conductor C. We give below such an extension having FIP while R / C is not an FMIR.

Let K be an infinite field, $R:=K[X, Y] /(X, Y)^{2}$ with maximal ideal M. Then (R, M) is a local Artinian ring with $M^{2}=0$ and $R / M \cong K$ infinite. Let x, y be the classes of X, Y in R, $I_{1}:=R x, I_{2}:=R y, I_{3}:=R(x+y)$ and $\mathcal{R}:=\prod_{j=1}^{3}\left(R / I_{j}\right)$. From $I_{j} \cap I_{k}=0$ for each $j \neq$ $k \in\{1,2,3\}$, we deduce that $C=0$ by Proposition 3.1 and also that $\left\{I_{1}, I_{2}, I_{3}\right\}$ is a separating family. Let \bar{a} be the class of $a \in R$ in any R / I_{j}. Observe that $M / I_{1}=\left(R / I_{1}\right) \bar{y}, M / I_{2}=$ $\left(R / I_{2}\right) \bar{x}, M / I_{3}=\left(R / I_{3}\right) \bar{x}$, because $y=(x+y)-x$. Hence each M / I_{j} is a principal ideal with $\left(M / I_{j}\right)^{2}=0$, so that each R / I_{j} is a SPIR. Set $e_{1}:=(\bar{y}, \overline{0}, \overline{0}), \alpha:=e_{2}:=(\overline{0}, \bar{x}, \overline{0}), e_{3}:=$ $(\overline{0}, \overline{0}, \bar{x})$. Using the notation of Proposition 3.6, we have $(R: T)=M, T=R+\mathcal{R} M=$ $R+\sum_{i=1}^{3} R e_{i}$ and $R_{1}=R+\mathcal{R} M^{2}=R$. Since $(\overline{0}, \bar{x}, \bar{x})=x \in R$, we get $e_{2}+e_{3}=x$, whence $e_{3}=x-\alpha$. At last, $e_{1}=(\bar{y}, \overline{0}, \overline{0})=(\overline{x+y}, \overline{0}, \overline{0})=(\overline{x+y}, \overline{x+y}, \overline{x+y})-(\overline{0}, \bar{x}, \overline{0})=$ $(x+y)-\alpha$. It follows that $T=R[\alpha]$, with $\alpha^{2}=0$ and $M \alpha=0$, so that $R=R_{1} \subset T$ is a minimal ramified extension [8, Theorem 2.3]. Then, $R \subset T$ and $R=R_{1} \subset \mathcal{R}$ have FIP by Proposition 3.6, although (R, M) is a local ring which is not a SPIR: the set of ideals $\{R(x+a y) \mid a \in \mathcal{F}\}$ is infinite, if \mathcal{F} is a set of representative elements of $R / M \cong K$.

Corollary 3.12. Let (R, M) be a quasi-local ring with $|R / M|=\infty$. Let I, J be ideals of R with $I \cap J=0$ and such that $S:=R /(I+J)$ is a SPIR with nilpotency index $n(S)=p>0$ if $I+J \neq R$.
(1) Assume that $I+J=R$. Then, $|[R, R / I \times R / J]|=1$.
(2) Assume that $I+J \neq R$. Then, $|[R, R / I \times R / J]|=p+1$.

In particular, if (R, M) is a SPIR with $n(R)=q \geq 1$, then $\left|\left[R, R^{2}\right]\right|=q+1$ and $\left[R, R^{2}\right]=$ $\left\{R+M^{i} R^{2}\right\}_{i=0, \ldots, q}$.

Proof. (1) If $I+J=R$, then $|[R, R / I \times R / J]|=1$ by the CRT.
(2) Assume now that $I+J \neq R$. Since (S, N) is a SPIR with $N:=M /(I+J), R \subseteq$ $R / I \times R / J$ has FIP by Proposition 3.2 and its conductor is $C:=I+J$ by Proposition 3.1. Moreover, the proof of Proposition 3.2 shows that there is a bijection between $[R, R / I \times R / J]$ and the set of ideals of $R / C=S$. Since (S, N) is a SPIR, there is some $t \in S$ such that $N=S t$ and the ideals of S are linearly ordered. Then, this set of ideals is $\left\{S t^{k} \mid k \in\{0, \ldots, p\}\right\}$ and $|[R, R / I \times R / J]|=p+1$.

Now if (R, M) is a SPIR, with $n(R)=q \geq 1$, we deduce from (2) that $\left|\left[R, R^{2}\right]\right|=q+1$. Since (R, M) is a SPIR, there exists $x \in R$ such that $M=R x$ and the ideals of R are the $R x^{i}$, for $i=0, \ldots, q$. Moreover, the bijection φ between the set of ideals of R and $\left[R, R^{2}\right]$ is given by $\varphi\left(R x^{i}\right)=R+x^{i} R^{2}$.

We next generalize some Ferrand-Olivier's result [10, Lemme 1.5].
Theorem 3.13. Let R be a ring, $\left\{I_{1}, \ldots, I_{n}\right\}, n>2$, a separating family of ideals of R. Then, $R \subseteq \mathcal{R}$ is a minimal extension if and only if the following condition (\dagger) holds:
(\dagger) : There exist $j_{0}, k_{0} \in\{1, \ldots, n\}, j_{0} \neq k_{0}$ such that $I_{j_{0}}+I_{k_{0}} \in \operatorname{Max}(R)$ and $I_{j}+I_{k}=R$ for any $(j, k) \neq\left(j_{0}, k_{0}\right), j \neq k$.

If (\dagger) holds, then $\left\{I_{1}, \ldots, I_{n}\right\}$ satisfies a weak Chinese Remainder Theorem: $I_{j}+\cap_{k \neq j} I_{k}=$ $\cap_{k \neq j}\left(I_{j}+I_{k}\right)$ for each $j \in\{1, \ldots, n\}$.

Proof. Assume first that (\dagger) holds. There is no harm to suppose that $j_{0}=1, k_{0}=2$ and set $J:=\cap_{j=2}^{n} I_{j}$. Then $I_{j}+I_{k}=R$ for any $j, k \geq 2, j \neq k$ gives that $\prod_{j=2}^{n}\left(R / I_{j}\right) \cong R / J$. So, we are reduced to the extension $R \subseteq R / I_{1} \times R / J$. But, $I_{1}+I_{j}=R$ for each $j>2$ and $I_{1}+I_{2}=M$ give $I_{1}+J=M$ because $I_{1}+J \subseteq M$. For the reverse inclusion, consider in R / I_{1} the relations $\overline{1}=\bar{x}_{j}\left(*_{j}\right)$ for some $x_{j} \in I_{j}$, for any $j>2$. Let $m \in M$. There is $x_{2} \in I_{2}$ with $\bar{m}=\bar{x}_{2}$ in R / I_{1}. Using $\left(*_{j}\right)$, we get that $\bar{m}=\bar{x}_{2} \cdots \bar{x}_{n}$, so that $m \in I_{1}+J$. Then, by [10, Lemme 1.5], $R \subseteq \mathcal{R}$ is a minimal extension since $I_{1} \cap J=0$.

Conversely, if $R \subseteq \mathcal{R}$ is minimal (integral), then $M:=(R: \mathcal{R}) \in \operatorname{Max}(R)$ is an ideal of \mathcal{R}. Moreover, there is some $N_{1} \in \operatorname{Max}(\mathcal{R})$ above M and possibly only another one N_{2}. There is no harm to suppose that $N_{1}=M / I_{1} \times \prod_{k=2}^{n} R / I_{k}$ with $I_{1} \subseteq M$ and $N_{2}=R / I_{1} \times M / I_{2} \times$ $\prod_{k=3}^{n} R / I_{k}$ with $I_{2} \subseteq M$. Any other $M^{\prime} \neq M$ in $\operatorname{Max}(R)$, is lain over by a unique element of $\operatorname{Max}(\mathcal{R})$, of the form $M^{\prime} \mathcal{R}=\prod_{j=1}^{n}\left(\left(M^{\prime}+I_{j}\right) / I_{j}\right)$ by [8, Lemma 2.4]. Then, $M^{\prime}+I_{j}=R$ for all j but one, so that there is a unique I_{j} contained in M^{\prime}. Then, for any $j, k>2, j \neq k$ and $i=1,2$, we have $I_{j}+I_{k}=I_{i}+I_{j}=R$, which gives $\prod_{j=2}^{n}\left(R / I_{j}\right) \cong R / J$ where $J:=\cap_{j=2}^{n} I_{j}$. So, the minimal extension $R \subseteq R / I_{1} \times R / J$ is involved. By [10, Lemme 1.5], we get that $I_{1}+J=M^{\prime \prime}$, for some $M^{\prime \prime} \in \operatorname{Max}(R)$, whence $I_{1}, J \subseteq M^{\prime \prime}$. Actually, we have $M=M^{\prime \prime}$. Deny, then $I_{j} \nsubseteq M^{\prime \prime}$ for all $j \geq 2$ gives $J \nsubseteq M^{\prime \prime}$, a contradiction. A similar proof gives $I_{2} \subseteq M$ since $J \subseteq M$. From $M=I_{1}+J \subseteq I_{1}+I_{2} \subseteq M$, we get that $I_{1}+I_{2}=M$ and the proof is complete.

Assume that (\dagger) holds, then easy calculations show that $I_{j}+\cap_{k=1, k \neq j}^{n} I_{k}=\cap_{k=1, k \neq j}^{n}\left(I_{j}+I_{k}\right)$ for each $j \in\{1, \ldots, n\}$, so that $\left\{I_{1}, \ldots, I_{n}\right\}$ satisfies a weak Chinese Remainder Theorem.

4 The case of ring powers

In this section, we consider separating families whose ideals are zero.
Proposition 4.1. Let (R, M) be a $\Sigma P I R$ and an integer $n>1$. Then $R \subseteq R^{n}$ has FIP if and only if $n=2$.

Proof. Use Proposition 3.9 with $I_{j}=0$ for each j. Since $\left(R: R^{n}\right)=0$ and $M \neq 0$, we get the result.

We are now in position to get a result in the general case.
Theorem 4.2. Let R be a ring and $n>1$ an integer. Then $R \subseteq R^{n}$ has FIP if and only if R is an FMIR with $n=2$ when R is a Σ FMIR.

Proof. Assume that $R \subseteq R^{n}$ has FIP. Using Proposition 3.4 with $I_{j}=0$ for each j and since (R : $\left.R^{n}\right)=0$, we get that R is an FMIR. Moreover, $R_{M} \subseteq\left(R_{M}\right)^{n}$ has FIP for each $M \in \operatorname{Max}(R)$ in view of Proposition 2.7 since $\operatorname{MSupp}\left(R^{n} / R\right)=\operatorname{Max}(R)$ by Proposition 2.2. Assume that there is some $M \in \operatorname{Max}(R)$ such that R_{M} is a Σ PIR. Since $M R_{M} \neq 0$, we get that $n \leq 2$ by Proposition 4.1, so that $n=2$.

Conversely, if R is an FMIR, then $|\operatorname{Max}(R)|<\infty$ and $R \subseteq R^{n}$ has FIP if and only if $R_{M} \subseteq$ $\left(R_{M}\right)^{n}$ has FIP for each $M \in \operatorname{Max}(R)$. Let $M \in \operatorname{Max}(R)$. If R_{M} is a field, then $R_{M} \subseteq\left(R_{M}\right)^{n}$ has FIP by Proposition 2.1. If R_{M} is a finite ring, then so is $\left(R_{M}\right)^{n}$ and $R_{M} \subseteq\left(R_{M}\right)^{n}$ has FIP. Assume that R_{M} is a Σ PIR, so that R is a Σ FMIR and $n=2$. Then, Proposition 4.1 gives that $R_{M} \subseteq\left(R_{M}\right)^{n}$ has FIP. Therefore, $R \subseteq R^{n}$ has FIP.

We get now a generalization of Theorem 2.17.
Theorem 4.3. Let $R \subseteq S_{j}, j=1, \ldots, n$ be finitely many FIP extensions, $\Sigma_{j}:={ }_{S_{j}}^{+} R$ and $S:=\prod_{j=1}^{n} S_{j}$. Then $R \subseteq S$ has FIP if and only if R is an FMIR satisfying the following conditions $\left(B_{1}\right)$ and $\left(B_{2}\right)$:
$\left(B_{1}\right) \operatorname{Supp}\left(\Sigma_{j} / R\right) \cap \operatorname{Supp}\left(\Sigma_{l} / R\right) \cap \Sigma \operatorname{Max}(R)=\emptyset$ for any $j, l \in\{1, \ldots, n\}$ such that $j \neq l$.
$\left(B_{2}\right)$ If there exists $M \in \Sigma \operatorname{Max}(R)$ such that R_{M} is a $\Sigma P I R$, then $n=2$ and, for each such M and each $j \in\{1,2\}$, either $R_{M} \subset\left(\Sigma_{j}\right)_{M}$ is a special minimal ramified extension or $R_{M}=\left(\Sigma_{j}\right)_{M}$.
Proof. The result can be written under the form $(\mathrm{A}) \Leftrightarrow R$ is an FMIR satisfying conditions $\left(B_{1}\right)$ and $\left(B_{2}\right)$ where (A) is the statement: $R \subseteq S$ has FIP.

Assume that (A) holds. Then, $R \subseteq R^{n}$ has FIP. In view of Theorem 4.2, R is an FMIR and $n=2$ as soon as R is a Σ FMIR, in which case we can use Theorem 2.17.

If there exist $j, l \in\{1, \ldots, n\}, j \neq l$ and $M \in \operatorname{Supp}\left(\Sigma_{j} / R\right) \cap \operatorname{Supp}\left(\Sigma_{l} / R\right) \cap \Sigma \operatorname{Max}(R)$, then $R_{M} \neq\left(\Sigma_{j}\right)_{M},\left(\Sigma_{l}\right)_{M}$, with R_{M} infinite. Moreover, $R_{M} \subset\left(\Sigma_{j}\right)_{M}$ and $R_{M} \subset\left(\Sigma_{l}\right)_{M}$ are subintegral extensions. In view of Proposition 2.12, we get that $R_{M} \subset\left(\Sigma_{j}\right)_{M} \times\left(\Sigma_{l}\right)_{M}$ has not FIP, and so $R_{M} \subset S_{M}$ has not FIP, a contradiction. Then, $\left(B_{1}\right)$ holds.

If there exists $M \in \Sigma \operatorname{Max}(R)$ such that R_{M} is a $\Sigma \mathrm{PIR}$, then R is a Σ FMIR and $n=2$ by Theorem 4.2. Moreover, since R_{M} is not a field, Theorem 2.17 gives that for each $j \in\{1,2\}$, either $R_{M} \subset\left(\Sigma_{j}\right)_{M}$ is a special minimal ramified extension or $R_{M}=\left(\Sigma_{j}\right)_{M}$. Then $\left(B_{2}\right)$ holds.

Conversely, assume that R is an FMIR and that $\left(B_{1}\right)$ and $\left(B_{2}\right)$ hold. Clearly, $\operatorname{MSupp}(S / R)$ is finite. Then, $R \subseteq S$ has FIP if and only if $R_{M} \subseteq S_{M}$ has FIP for each $M \in \operatorname{MSupp}(S / R)$ by Proposition 2.7.

The integral closure of R in S is $\bar{S}=\prod_{j=1}^{n} \bar{S}_{j}$ by Proposition 2.4 and $\bar{S} \subseteq S$ has FIP. Hence, $\bar{S}_{M} \subseteq S_{M}$ has FIP for each $M \in \operatorname{MSupp}(S / R)$. Then, $R \subseteq S$ has FIP if and only if the module finite extension $R_{M} \subseteq \bar{S}_{M}$ has FIP for each $M \in \operatorname{MSupp}(S / R)$ [8, Theorem 3.13].

If R_{M} is finite, so is \bar{S}_{M} and $R_{M} \subseteq \bar{S}_{M}$ has FIP. Now if R_{M} is an infinite field, $R_{M} \subseteq \bar{S}_{M}^{+} R_{M}$ as well as $R_{M} \subseteq \bar{S}_{M}$ have FIP. To see this, mimic the proof of Theorem 2.17, using the fact that there is at most one $j \in\{1, \ldots, n\}$ such that $R_{M} \neq\left(\Sigma_{j}\right)_{M}$, so that $R_{M}=\left(\Sigma_{l}\right)_{M}$ for each $l \in\{1, \ldots, n\}, l \neq j$. As in the proof of Theorem 2.17, we get that $R_{M} \subset{ }_{S_{M}}^{+} R_{M}$ has FIP, because ${ }_{S_{M}}^{+} R_{M}=R_{M}[\alpha]$, where α is the n-uple whose all components are 0 , except the j th which is α_{j} defining $\left(\Sigma_{j}\right)_{M}=R_{M}\left[\alpha_{j}\right]$. Lastly, if R_{M} is a Σ PIR, then $n=2$ and Theorem 2.17 gives that $R_{M} \subseteq \bar{S}_{M}$ has FIP.

To conclude, $R \subseteq \bar{S}$ has FIP.
We can rephrase Theorem 4.2 in the following way.
Corollary 4.4. Let R be a ring and $n>1$ an integer. Then, $R \subseteq R^{n}$ has FIP if and only if R is Artinian and setting $\left\{M_{1}, \ldots, M_{m}\right\}:=\operatorname{Max}(R)$ and $\alpha_{i}:=n\left(R_{M_{i}}\right)$, then for each i, one of the following conditions holds:
(1) $\alpha_{i}=1$.
(2) $\left|R / M_{i}\right|<\infty$.
(3) $R_{M_{i}}$ is a SPIR and $n=2$ as soon as there exists some i such that $\alpha_{i}>1$ and $R_{M_{i}}$ is a EPIR.

Proof. By Theorem 4.2, $R \subseteq R^{n}$ has FIP if and only if R is a finite direct product $\prod_{i=1}^{m} R_{M_{i}}$ of finite local rings, SPIRs, and fields, with $n=2$ as soon as there is some $R_{M_{i}}$ which is a Σ PIR. Note that $0=\prod_{i=1}^{m} M_{i}^{\alpha_{i}}$ and set $R_{i}:=R_{M_{i}}$ so that $0=M_{i}^{\alpha_{i}} R_{i}$.

Assume that $R \subseteq R^{n}$ has FIP and fix some i. Then R_{i} is a field if and only if $\alpha_{i}=1$, giving (1). We know that $R_{M_{i}}$ is a finite ring if and only if $\left|R / M_{i}\right|<\infty$, which gives (2). Assume that $\alpha_{i}>1$ and $\left|R / M_{i}\right|=\infty$. Then, R_{i} is a Σ PIR, so that $n=2$ and we have (3).

Conversely, assume that R is an Artinian ring and that for each i one of conditions (1), (2) or (3) holds. It follows that R is a finite direct product $\prod_{i=1}^{m} R_{i}$ of primary rings. We have just seen that R_{i} is a field when $\alpha_{i}=1$. If $\left|R / M_{i}\right|=\left|R_{i} / M_{i} R_{i}\right|<\infty$, then R_{i} is a finite ring. At last, if $\alpha_{i}>1$ and $\left|R / M_{i}\right|=\infty$, then $R_{M_{i}}$ is a Σ PIR and $n=2$. Now, use Theorem 4.2 to get that $R \subseteq R^{n}$ has FIP.

Extensions of the form $R^{p} \subset R^{n}$, for some integers $1<p<n$ generalize extensions $R \subseteq R^{n}$. For R^{p} and R^{n} endowed with their canonical structures of R-algebras, we show that $\operatorname{Homal}_{R}\left(R^{p}, R^{n}\right)$ has at least $S(n, p)$ elements (the Stirling number of the second kind $S(n, p):=|P(n, p)|$ where $P(n, p)$ is the set of partitions of $\{1, \ldots, n\}$ into p subsets). We set $\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right):=\left\{\varphi \in \operatorname{Homal}_{R}\left(R^{p}, R^{n}\right) \mid \varphi\right.$ injective $\}$.

Proposition 4.5. Let R be a ring and $1<p<n$ two integers, then:
(1) $\left|\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)\right| \geq S(n, p)$.
(2) If R is connected, $\left|\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)\right|=S(n, p)$.
(3) If $R \subseteq \operatorname{Tot}(R)$ is t-closed and $\operatorname{Tot}(R)$ is Artinian (for instance, if R is Artinian), then $\left|\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)\right| \leq S(n, p)^{|\operatorname{Min}(R)|}$.

Proof. Let $\mathcal{C}:=\left\{f_{1}, \ldots, f_{p}\right\}$ and $\mathcal{B}:=\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical bases of the R-algebras R^{p} and R^{n}, that are complete families of orthogonal idempotents.

For $\varphi \in \operatorname{Homal}_{R}\left(R^{p}, R^{n}\right)$, let $\lambda(\varphi):=\left(a_{i, j}\right) \in M_{n, p}(R)$ be its matrix in the bases \mathcal{C} and \mathcal{B} (with the rule $\varphi\left(f_{j}\right)=\sum_{i=1}^{n} a_{i, j} \cdot e_{i}$ for each j). Then λ defines an injective map whose image Λ we compute. Applying the ring morphism φ to the relations $f_{j}^{2}=f_{j}, f_{j} f_{k}=0$ for each $j \neq k$ and $\sum_{j=1}^{p} f_{j}=1_{R^{p}}$, we get the conditions $\left(*_{1}\right): a_{i, j}^{2}=a_{i, j},\left(*_{2}\right): a_{i, j} a_{i, k}=0$ for each $j \neq k$ and $\left(*_{3}\right): \sum_{j=1}^{p} a_{i, j}=1$, for each i. It is easily seen that $\Lambda=\left\{\left(a_{i, j}\right) \in M_{n, p}(R) \mid\left(*_{1}\right),\left(*_{2}\right),\left(*_{3}\right)\right\}$ and that $\lambda: \operatorname{Homal}_{R}\left(R^{p}, R^{n}\right) \rightarrow \Lambda$ is bijective. Indeed, any element of Λ is the matrix of a ring morphism by $\left(*_{1}\right),\left(*_{2}\right),\left(*_{3}\right)$.
(1) Let $H:=\left\{\varphi \in \operatorname{Exal}_{R}\left(R^{p}, R^{n}\right) \mid \lambda(\varphi) \in M_{n, p}(\{0,1\})\right\}$. For $\varphi \in H$ and $\lambda(\varphi)=\left(a_{i, j}\right)$, we have $a_{i, j} \in\{1,0\}$ for each (i, j) and then $a_{i, k}=0$ as soon as $a_{i, j}=1$ for some $j \neq k$ by $\left(*_{2}\right)$. For each $j \in\{1, \ldots, p\}$, set $A_{j}:=\left\{i \in\{1, \ldots, n\} \mid a_{i, j}=1\right\}$. Since φ is injective, $\varphi\left(f_{j}\right) \neq 0$ for all j implies that each $A_{j} \neq \emptyset$. Then $\left(*_{2}\right)$ implies $A_{j} \cap A_{k}=\emptyset$ for $j \neq k$ and $\left(*_{3}\right)$ that $\{1, \ldots, n\}=\cup_{j=1}^{p} A_{j}$, since each $i \in\{1, \ldots, n\}$ is in one (and only one) A_{j}, so that $\left\{A_{1}, \ldots, A_{p}\right\} \in P(n, p)$. Hence, there is a map $\mu: H \rightarrow P(n, p)$, where $\mu(\varphi)=\left\{A_{1}, \ldots, A_{p}\right\}$, such that $\varphi\left(f_{j}\right)=\sum_{i \in A_{j}} e_{i}$ for each j. Then μ is bijective because any element $\left\{A_{1}, \ldots, A_{p}\right\}$ of $P(n, p)$ defines some $\varphi \in H$ by the relations $\varphi\left(f_{j}\right)=\sum_{i \in A_{j}} e_{i}$ for each j.
(2) If R is connected, $\left(*_{1}\right)$ implies that $H=\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)$.
(3) If $T:=\operatorname{Tot}(R)$ is Artinian, then $T \cong \prod_{l=1}^{m} R_{M_{l}}$, where $\operatorname{Min}(R):=\left\{M_{1}, \ldots, M_{m}\right\}$. Since $R \subseteq T$ is t-closed, the idempotents of R and T coincide. Then it is enough to use (2).

We show that anything is possible when R is a Σ PIR.
Proposition 4.6. Let (R, M) be a $\Sigma P I R$ and p, n two integers such that $1<p<n$ and $\varphi \in$ $\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)$. The following statements hold:
(1) If $n=p+1, \varphi$ has FIP.
(2) If $p+2 \leq n \leq 2 p$, φ has FIP in some cases and not FIP in some others.
(3) If $n \geq 2 p+1$, then φ has not FIP.

Proof. We keep notation of Proposition 4.5(2). Since R is connected, any extension φ of R algebra $R^{p} \subseteq R^{n}$ comes from some partition $\cup_{j=1}^{p} A_{j}$ of $\{1, \ldots, n\}$ with $\varphi\left(f_{j}\right)=\sum_{i \in A_{j}} e_{i}$. In view of [7, Lemma III.3], we may identify $S:=R^{n}$ with $\prod_{j=1}^{p} S_{j}$, where $S_{j}:=\varphi\left(f_{j}\right) S$ is a ring extension of R for each j. Moreover, $R^{p} \subseteq R^{n}$ has FIP if and only if each $R \subseteq S_{j}$ has FIP [7,

Proposition III.4]. But S_{j} is the R-algebra generated by $\left\{e_{i} \mid i \in A_{j}\right\}$, and then isomorphic to $R^{\left|A_{j}\right|}$. Consider the following cases and use Theorem 4.2 for each $R \subseteq S_{j}$.
(1) $n=p+1$. Then, $\left|A_{j}\right|=1$ for all j, except one j_{0} such that $\left|A_{j_{0}}\right|=2$. It follows that S_{j} is isomorphic either to R, or R^{2}. In both cases, $R \subseteq S_{j}$ has FIP and $R^{p} \subseteq R^{n}$ has FIP.
(2) $p+2 \leq n \leq 2 p$. We consider two subcases:
(a) If $\left|A_{j}\right|=1$ for all j, except one j_{0} such that $\left|A_{j_{0}}\right|=n-p+1 \geq 3$, then $R \subset S_{j_{0}}$ has not FIP, whence also $R^{p} \subseteq R^{n}$.
(b) Set $k:=n-p \leq p$ and consider a partition $\left\{A_{1}, \ldots, A_{p}\right\}$ such that $\left|A_{j}\right|=2$ for $j \leq k$ and $\left|A_{j}\right|=1$ for $j>k$. Then, $R \subseteq S_{j}$ has FIP for each j and so has $R^{p} \subseteq R^{n}$. We have proved that $R^{p} \subseteq R^{n}$ has FIP or not according to the structure of R^{p}-algebra considered for R^{n}.
(3) $n \geq 2 p+1$. Consider a partition as above. If $\left|A_{j}\right| \leq 2$ for all j, then $n \leq 2 p$ is a contradiction. Hence, there is j_{0} such that $\left|A_{j_{0}}\right|>2$. It follows that $R \subset S_{j_{0}}$ has not FIP and $R^{p} \subset R^{n}$ has not FIP.

Proposition 4.7. Let R be a (resp. connected) ring and $1<p<n$ two integers. Then, $\varphi \in$ $\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)$ has FIP if (resp. and only if) R is an FMIR and $n \leq 2 p$ when R is a EFMIR.

Proof. We use the notation of the proof of Proposition 4.6 which holds for an arbitrary ring. Then, $R^{p} \subseteq R^{n}$ has FIP if and only if $R \subseteq S_{j}$ has FIP for each j. Fix a partition $\left\{A_{1}, \ldots, A_{p}\right\}$ of $\{1, \ldots, n\}$, so that $S_{j} \cong R^{\left|A_{j}\right|}$. Set $k_{j}=\left|A_{j}\right|$ and $k:=\sup \left\{k_{j}\right\}_{j=1, \ldots, p}$. It follows that $R \subseteq S_{j}$ has FIP for each j if and only if $R \subseteq R^{k}$ has FIP, since there are extensions $R^{k_{j}} \subseteq R^{k}$. But Theorem 4.2 shows that $R \subseteq R^{k}$ has FIP if and only if R is an FMIR and $k \leq 2$ when R is Σ FMIR. Assume that R is a Σ FMIR. An easy calculation using the discussion of the proof of Proposition 4.6 leads to a partition $\left\{A_{1}, \ldots, A_{p}\right\}$ of $\{1, \ldots n\}$ such that $\left|A_{j}\right| \leq 2$ for each j if and only if $n \leq 2 p$, giving the wanted result.

If R is connected, Proposition 4.5 tells us that $\operatorname{Exal}_{R}\left(R^{p}, R^{n}\right)$ is in bijection with the set $P(n, p)$ of partitions $\left\{A_{1}, \ldots, A_{p}\right\}$ of $\{1, \ldots, n\}$. Assume that $\varphi: R^{p} \hookrightarrow R^{n}$ has FIP, so that $R \subseteq S_{j}$ has FIP for each $j \in\{1, \ldots, p\}$. The first part of the proof shows that this holds if and only if R is an FMIR and $k \leq 2$ when R is an Σ FMIR, whatever is its associated partition.

References

[1] D. D. Anderson and S. Chun, Commutative rings with finitely generated monoids of fractional ideals, J. Algebra, 320, (2008), 3006-3021.
[2] D. D. Anderson, D. E. Dobbs and B. Mullins, The primitive element theorem for commutative algebras, Houston J. Math., 25, (1999), 603-623.
[3] G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, 1976.
[4] N. Bourbaki, Algèbre Commutative, Chs. 5 and 6, Hermann, Paris, 1964.
[5] N. Bourbaki, Algèbre, Chs. 4-7, Masson, Paris, 1981.
[6] P.-J. Cahen, D. E. Dobbs and T. G. Lucas, Characterizing minimal extensions, Rocky Mountain J. Math., 41 (2011), 1081-1125.
[7] D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33 (2005), 3091-3119.
[8] D. E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, J. Algebra, 371 (2012), 391-429.
[9] D. E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Transfer results for the FIP and FCP properties of ring extensions, to appear in Comm. Algebra.
[10] D. Ferrand and J.-P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471.
[11] M. S. Gilbert, Extensions of commutative rings with linearly ordered intermediate rings, Ph. D. dissertation, University of Tennessee, Knoxville, (1996).
[12] R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc., 131 (2002), 2337-2346.
[13] J. A. Huckaba and I. J. Papick, A note on a class of extensions, Rend. Circ. Mat. Palermo, 38 (1989), 430-436.
[14] A. Jaballah, Finiteness of the set of intermediary rings in normal pairs, Saitama Math. J., 17 (1999), 59-61.
[15] G. Picavet, Seminormal or t-Closed Schemes and Rees Rings, Algebr. Represent. Theory, 1 (1998), 255-309.
[16] G. Picavet and M. Picavet-L'Hermitte, Morphismes t-clos, Comm. Algebra, 21 (1993), 179-219.
[17] G. Picavet and M. Picavet-L'Hermitte, T-Closedness, pp. 369-386, in: Non-Noetherian Commutative Ring Theory, Math. Appl. 520, Kluwer, Dordrecht, 2000.
[18] G. Picavet and M. Picavet-L'Hermitte, About minimal morphisms, pp. 369-386, in: Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York, 2006.
[19] G. Picavet and M. Picavet-L'Hermitte, Modules with finitely many submodules, to appear in Int. Electron. J. Algebra. (2016).
[20] R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210-229.
[21] M. A. Vitulli, Weak normality and seminormality, pp. 441-480, in: Commutative Algebra, Springer, New York, 2010.

Author information

Gabriel Picavet and Martine Picavet-L'Hermitte, Université Blaise Pascal, Laboratoire de Mathématiques,UMR6620 CNRS , 24, avenue des Landais, BP 80026, 63177 Aubière CEDEX, France.
E-mail: Gabriel.Picavet@math.univ-bpclermont.fr, picavet.gm@wanadoo.fr
Martine.Picavet@math.univ-bpclermont.fr

Received: May 23, 2015.

Accepted: September 18, 2015

