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Abstract. We characterize some types of FIP and FCP ring extengtoassS, wheresS is
not an integral domain anf® may not be an integral domain, contrary to a general trend. In
each of the sections; is a product of finitely many rings that are relatedian various ways.
Ring extensions of the fornk™ — RP associated to some matrices are also considered. Our
tools are minimal ring morphisms and seminormalization, while Artinian comditam rings are
ubiquitous.

1 Introduction and Notation

All rings R considered are commutative, nonzero and unital; all morphisms of @rgyunital.
Let R C S be a (ring) extension. The set of d@ttsubalgebras of is denoted by R, S]. The
extensionk C S is said to have FIP (for the “finitely many intermediate algebras propeifty")
[R, S] is finite. A chainof R-subalgebras of is a set of elements df?, S] that are pairwise
comparable with respect to inclusion. We say that the exten@ianS has FCP (for the “finite
chain property") if each chain aR-subalgebras of is finite. It is clear that each extension
that satisfies FIP must also satisfy FCP. Our main tool are the minimal) (extgnsions, a
concept introduced by Ferrand-Oliviel(]. Recall that an extensioR C S is calledminimalif
[R, S] = {R, S}. The key connection between the above ideas is ttfatif S has FCP, then any
maximal (necessarily finite) chaiR = Ry c Ry C --- C R,_1 C R, = S, of R-subalgebras of
S, with lengthn < oo, results from juxtaposing minimal extension®; C R, 1, 0<i <n—1.
Following [14], thelength of[R, S], denoted by[R, S], is the supremum of the lengths of chains
of R-subalgebras of. In particular, if¢[R, S] = r, for some integer, there exists a maximal
chainR =Ry C Ry C --- C R,._1 C R, = S of R-subalgebras of with lengthr. Against
the general trend, we characterized arbitrary FCP and FIP extensifjsa joint paper by D.
E. Dobbs and ourselves whereas most of papers on the subjedremermed with extensions
of integral domains. It is worth noticing here that FCP extensions of iatelpmains (ignoring
fields) are generally nothing but extensions of overrings as a quickabf@k Theorems 4.1,4.4]
shows because FCP extensions are composite of minimal extensions.

In this paper, we will continue to consider the FCP or FIP properties ohekirs for special
types of extensions between not necessarily integral domaingylike K™ where K is a field.

It is known that these latter extensions have FIP and actually they motiwatedstudy general-
izations. Our study shows phenomena that do not arise in the integraimlcase and provides
us a lot of new examples, that may be sometimes surprising. They ateofrtone integral and
seminormal within the meaning of Swan. Problems arise when they aseminormal, leading
to the computation of seminormalizations. The Gilmer’s seminal work oraRtPFCP is settled
for overrings of an integral domaiR, with quotient fieldK. In particular, L2, Theorem 2.14]
shows thatk C S has FCP for each overring of R only if R/C is an Artinian ring, where
C = (R : R) is the conductor of? in its integral closure. This necessary Artinian condition is
not surprisingly present in all our results.

Product morphism& — []."; R; that are extensions are the theme of our work. We warn
the reader that we have developed a similar theory for idealizations aflemadvith necessarily
finitely many submoduleslp]. We will observe that results may depend on the valug,@nd
a lot of them are only valid fon = 2.

In Section 2, we look at diagonal extensidis- []"_; R;, for some finitely many FCP or FIP
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extensions? C R;. WhenR C R; has FCP for each Theoren2.11asserts thak C []\"; R;
has FCP if and only ifR is an Artinian ring. The FIP condition is much more complicated.
For instanceR has finitely many ideals i C [] , R; has FIP (Propositio2.2). Moreover,

R C R? has FIP if and only if? has finitely many ideals (Corolla.5).

Section 3 is concerned with extensions of the foRnN7_; I; < [[7_;(R/I;), where
Ii,..., I, are proper ideals of a ring, not necessarily distinct and such that_,7; = 0.
Then, R C [[;_; R/I; has FCP if and only if?/C is Artinian, where its conductof’ can
be computed as follows. Setting; = Ni_; ;I for eachj € {1,...,n}, we get that
C = E;;l J; (Proposition3.1). We are able to generalize a Ferrand-Olivier’s result. It states
thatif Ris aring and{1y,...,I,}, n > 2, is a family of ideals o? such thah;.’zllj =0, then
R C [[}_1(R/I;) is a minimal extension if and only if there exift ko € {1,...,n}, jo # ko
such thatl, + I, € Max(R) andI; + I, = R for any (j, k) # (jo, ko), j # k. If this condition
holds, then{Is, ..., I, } satisfies a weak Chinese Remainder Theorem (The8r&8u

Section 4 is devoted to diagonal extensighs R™ and heavily uses results of Section 3. We
get in Theoremd.2that R C R™ has FIP if and only ifR has finitely many ideals and < 2 as
soon as there exists a maximal idéélof R such thatR,, is not a field andk/M is an infinite
field. We are then able to give a general characterization of FIP extes13ia [];_; R; studied
in Section 2. We show thak™ may have different structures &-algebras ifp < n are two
positive integers, leading to different occurrences of FIP extengins: R™.

Let R be aring. As usual, SpégR) (resp Max(R)) denotes the set of all prime ideals (resp
maximal ideals) ofr. If I is an ideal ofR, we set \i(I) := {P € Sped¢R) | I C P}. If
R C Sis aring extension an® ¢ Spe¢R), thenSp is the localizationSp, p and(R : S) is
the conductor of2 C S. When there is no possible confusion, we denote the integral closure of
Rin S by R. Recall that if£ is an R-module, itssupportSupp, (E) is the set of prime ideals
P of R such thatEp # 0 and MSupp,(E) := Supp;(E) N Max(R). If E is an R-module,
Lz(E) is its length. We will shorten finitely generated module inta frspdule. Recall that a
special principal ideal ring SPIR) is a principal ideal rin@® with a unique nonzero prime ideal
M = Rt, such thatV/ is nilpotent of indexp > 0. Hence a SPIR is not a field. Each nonzero
element of a SPIR is of the formt* for some unit; and someuniqueintegerk < p. Finally, as
usual,c denotes proper inclusion and | denotes the cardinality of a s&t

There are four types of minimal extension, but we only need ramifiechmairextensions.

Theorem 1.1.[10, Théoreme 2.2],18, Theorem 3.3] LeRk C T be a ring extension andl/ :=
(R:T). ThenR C T is a minimalramified extension if and only it/ € Max(R) and there
exists)M’ € Max(T) such thatM’®> € M c M', [T/M : R/M] = 2 (resp Lz(M'/M) = 1),
and the natural mag/M — T/M' is an isomorphism.

If these conditions hold, theRp = T for eachP € SpecR) \ {M}.

We also need some results about seminormality and t-closedness thetaldere.

Definition 1.2. An integral extensiorf : R < S is termed:
(1) infra-integral if all its residual extensions are isomorphisrg][
(2) subintegralif f is infra-integral and f is bijective RQ].

A minimal morphism is ramified if and only if it is subintegral. LERs, ..., R, } be finitely
many infra-integral extensions of a ridg) It is easy to show thak — ] ; R; is infra-integral.
But this result is no longer valid for subintegrality.

A ring extensionR C S is calledt-closedif b € S, r € R, ¥® —rb,b> —rb> € R=b e R
[17). Now, R C S is calledseminormalif b € S, ®,b° ¢ R = b € R[20. If R C S'is
seminormal(R : S) is a radical ideal of5. Thet-closure R (resp seminormalizatior;R) of
Rin Sis the smallesB € [R, S] such thatB C S is t-closed (respseminormal). Moreovef, R
(resp LR) is the greatesB € [R, S] such that? C B is infra-integral (respsubintegral). The
chainR C {R C LR C S'is called thecanonical decompositioof R C S.

T-closures and seminormalizations both commute with localization at agbitraltiplica-
tively closed subsets1p, Proposition 3.6],20, Proposition 2.9]).

According to J. A. Huckaba and I. J. Papidid], an extensiom? C S is termed d\p-extension
provided eacthR-submodule ofS containingR is an element ofR, S]. We recall here for later
use an unpublished result of the Gilbert’s dissertation.
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Proposition 1.3.[11, Proposition 4.12] LetR C S be a ring extension with conductdrand
such thatS = R + Rt for somet € S. Then theR-modulesk/I and S/R are isomorphic.
Moreover, each of th&-modules betweeR and S is a ring (and so there is a bijection from
[R, S] to the set of ideals ak/T).

We end this introduction with a new result that introduces and gives the ftdvbe next
section.

Proposition 1.4.Let R be a commutative ring and > 2 a positive integer.

(1) (R: R") =0andR C R" is infra-integral. MoreoverR C R™ is seminormal if and only if
R is reduced.

(2) R C R™has FCP if and only ifr is an Artinian ring.

Proof. (1) Obviously,R C R™ has a zero conductor and is infra-integral. Assume thad
reduced. Then,20, Lemma 3.1] gives thaR C R™ is seminormal. Conversely, R C R is
seminormal, then & (R : R™) is a radical ideal oR, so thatR is reduced.

(2) Assume tha? C R™ has FCP and that there is an infinite chéiii} ;< ; of ideals ofR.
For eachj € J, setS; := R+ (0 x I;). Then,{S;},c is an infinite chain ofkR-subalgebras of
R™, which is absurd. Hence, any chain of idealdk finite andR is Artinian.

Conversely,R™ is f.g. over R. ThusR C R™ has FCP in view of§, Theorem 4.2], ifR is
Artinian. |

The following results will be useful.

Proposition 1.5.Let (R, M) be a local Artinian ring such thaR/M is infinite andr C S a ring
extension with conducta? := (R : S).

(1) If R c S has FIP and is subintegral, thd®, S] is linearly ordered.
(2) If R C Sis finite, seminormal and infra-integral, thed C S has FIP.
(3) If R C Sis finite and infra-integral, thek C .S has FIP if and only ifR C £ R has FIP.

Proof. (1) There is no harm to assume tidat= 0 because the mgg, S| — [R/C, S/C] defined
by T — T/C is bijective. If R is not a field, then the proof oB[ Proposition 5.15] shows that
[R, S]is linearly ordered.

Now, assume thar is a field, so that 0= (R : S) and R is infinite. SinceR C S is an
FIP subintegral extensiorfy is Artinian local and not a field wit NV} := Max(S), because
R = S/N by subintegrality shows tha¥ # 0. From R, Theorem 3.8], we get th&# = R|q],
for somea € S such that® = 0. In view of the proof of 2, Lemma 3.6(b)]|R, 5] is linearly
ordered.

(2) We can assume thd@ # S andC = 0 by consideringk/C — S/C and using 8,
Proposition 3.7(c)]. By8, Proposition 5.16], we get thé c S has FIP.

(8) Assume thakk C S'is finite and infra-integral and sét:= {R. Then,T is local Artinian
with maximal idealN andT'/N = R/M is infinite. Moreover, I’ C S is finite, seminormal,
infra-integral and has FIP by (2).

If R C S has FIP, therR C T has FIP. Conversely, assume tiiatC 7" has FIP. In view of
[8, Theorem 5.8]R C S has FIP. O

We will use the following result. I2,, . .., R, are finitely many rings, the rin; x - - - x R,
localized at the prime idedh x Ry x - - - x R,, is isomorphic tq R;) p, for P1 € Spe¢R;). This
rule works for any prime ideal of the product.

2 FCP or FIP extensions for products of rings

We extract from the more precise res@t Proposition 4.15] the following statement, about the
canonical diagonal extensidti C K™, for a field K and a positive integer > 1. Recall that the
nth Bell numberB,, is the number of partitions dfl, . .., n} [3, p. 214]. Actually, the finiteness
of |[K, K™]| comes from}, Proposition 3, p. 29].
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Proposition 2.1.Let K be a field and: a positive integem > 1. Then|[K, K"|| = B,,, where
B, is thenth Bell number and< C K™ is a seminormal and infra-integral FIP extension.

We now intend to extend the above result to diagonal ring extengipnskR — R", for
arbitrary ringsR. We need information about some closures and give necessariticosd
for the FCP or FIP properties hold. B C R;, i = 1,...,n, n > 2 are finitely many ring
extensions and : R — [[;"; R; is the canonical diagonal extension, it can be factded>
R™ <[], R;. We can also consider th&— R? is a subextension by considering the product
Rx R — Ry x[[", R; of the extension® — R, andR < [[ , R,. Of course, this embedding
of R? is not unique. A more complete study appears in Section 4 (see Prop@saijon

Proposition 2.2.LetR C R;, i = 1,...,n, n > 2 be finitely many ring extension® :=
[1;, R, andR C [];"; R; = R the canonical diagonal extension. Then:

(1) SupdR/R) = SpecR).

(2) Assume thaR C R has FCP (resp. FIP). TherRg is an Artinian ring and each extension
R C R; has FCP (resp. FIP).

(3) Assume thak C R has FIP. ThenR has finitely many ideals.

Proof. We haver? C []}" ; R; andR™ C [} ; R;.

(1) Let P € SpedR). Then,Rp # 0 implies(1,0) ¢ Rp and P € SupgR?/R) C
SupR/R), which gives (1). Indeed,R?/R)p = (Rp)?/Rp.

(2) Assume thai? C R has FCP, so thaRk C R™ has FCP. ThenR is an Artinian ring in
view of Propositionl.4. Statements about FCP or FIP are clear.

(3) Assume thalk C R has FIP, so thak C R? has FIP. Letl, J be two distinct ideals of:.
Then,R+ (0 x I) andR + (0 x J) are two distinct?-subalgebras oR?. SinceR C R? has FIP,
it follows that R has finitely many ideals. ]

Rings which have finitely many ideals are characterized by D. D. Andeasd S. Chun1],
a result that will be often used.

Proposition 2.3.[1, Corollary 2.4] A commutative rind? has only finitely many ideals if and
only if R is a finite direct product of finite local rings, SPIRs, and fields, thattheslocal rings
of R.

From now on, a ring? with finitely many ideals is termed an FMIR an&&MIR if at least
a local ring ofR is an infinite SPIR. We also callPIR an infinite SPIR. For an arbitrary rirfg,
we denote byMax(R) the set of all\M/ € Max(R) such thatR,, is an infinite FMIR.

Proposition 2.4.LetR C R;, i = 1,...,n be finitely many ring extensions aid:= [];_; R;.
Let R; (resp R) be the integral closure aR in R; (resp R). Then:

(1) R = H?:l T{z
(2) Assume thak C R; has FCP for each. Then,R C R has FCP (and FIP).

Proof. (1) is [4, Proposition 9, ch. V, p. 16].

(2) Assume that? € R; has FCP for each. In view of [8, Theorem 3.13], we get that
R; C R; has FCP for eachh. This extension has also FIP since FCP and FIP are equivalent
for an integrally closed extensio,[Theorem 6.3]. Now, use/[ Proposition 111.4], to get that
[T, R: €[], R: has FCP (and then FIP because integrally closed). o

Corollary 2.5. LetR C Ry and R C R, be two integrally closed extensions. Thé&nc R; x R,
has FCP (respFIP) if and only if eachk C R; has FCP andr is Artinian (resp an FMIR).
In particular, R C R? has FIP if and only ifR is an FMIR.

Proof. One implication is obvious, since arfy-subalgebraS; of R; yields anR-subalgebra
S1 x Ry of Ry x Ry. Then, use Propositic& 2

Conversely, assume th& C R; and R C R, have both FCP (and then FIP) and tlfats
Artinian. Then,R? C R; x R, has FCP (resg-IP) by Propositior2.4. Moreover,R?> C Ry x R»
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is integrally closed andk C R? is an integral extension. In view of Propositiard, it follows
that R C R? and soR C Ry x R, have FCP by§, Theorem 3.13].

Now, assume thaR € R; andR C R, have both FIP and that is an FMIR. By Proposi-
tion 1.3 R C R?as well ask C R; x R, have FIP by $, Theorem 3.13]. m

Proposition2.6.LetR C R;, i = 1,...,n, be finitely many integral extensiorts, : = giR, T, =
p,Rforeachi, R :=T1[" Ri, S =[], S andT =[], T;. Then:

(1) fR=%tRanditR=T.

(2) IfeachT; C R, has FCP (respFIP), thent R C R has FCP (respFIP). This holds if each
R C R; has FCP (respFIP).

Proof. (1) Obviously,f{R C £ R and is subintegral. Moreoves, C R is seminormal, since so
are eachS; C R;. Then,S € [tR,R], with ;R C S seminormal, so thatR C %R is also
seminormal, then an equality.

We know that[ ;" , 7; C []\"; R; is t-closed [L5, Lemma 5.6]. To conclude, it is enough to
show thatk C ], 7; is infra-integral.

The prime ideals of ", 7; are theP; x H?:L#i T;, whereP; is a prime ideal off;. For
P, € Spe¢T;), setQ; := P,NR. Then,(I], T:)/(P; x H}’:L#i T;) = T;/P;, = R/Q;, since
R C T; is infra-integral. It follows thai? C H?:l T; is infra-integral

(2) In view of [8, Proposition 3.7(d)], we get thdf[ , 7; = 4R C R has FCP (resp
FIP). There was a misprint in the statement&flProposition 3.7(d)], where we should read: If
R = Ry x --- x R, is afinite product of rings an&t C S satisfies FCP, thefi can be identified
with a product of ringss; x - - - x S,, whereR; C S; for eachi. Then/[R, S] = >""  ¢[R;,S;]. O

The next proposition and Propositi@r2 enable us to reduce our study to quasi-local rings.
Proposition 2.7.[8, Proposition 3.7 and Corollary 3.2] LeR C S be a ring extension.

(1) If R C S has FCP (FIP), theiSupd S/R)| < cc.

(2) If IMSupp(S/R)| < oo, thenR C S has FCP (FIP) if and only if?); C Sy, has FCP (FIP)
for eachM € MSupp(S/R).

Proposition 2.8.LetR C R;, i = 1,...,n, be finitely many subintegral extensions aRd=
[T, R:, where(R, M) is a quasi-local ring. Then:

(1) Eachr; is a quasi-local ring with{ N;} := Max(R;) and R C R is infra-integral.

(2) SetN = [[; N; and S := R+ N. Then(S,N) is a quasi-local ring andSpe¢sS) =
{P/ x ITj-1,4 Nj | P/ € Spe¢R;),i = 1,...,n}. In particular, R C S'is infra-integral
andfR C S.

(3) Assum@im(R) =0. Then R = S.
(4) If eachR; is a Noetherian ring and a f.g-module, thert'is a f.g R-module.

Proof. (1) R; is quasi-local since? C R; is subintegral (DefinitioriL.2). Now, an arbitrary
prime ideal ofR is of the formP’ := P/ x ['_, ;, R;, for somei and P € Spe¢R;). Setting
P := P'NR, we seethaP = P/NR. FromR/P’ <R, /P! =2 R/P,sinceR C R; is subintegral,
we deduce thak C R is infra- mtegral

(2) The idealsN/ = N; x [[j_, ;; R; are the maximal ideals o®, fori € {1,...,n},
and they all lie oveM/. Observe thaS is anR subalgebra ofR. FromN N R = M, we mfer
that S/N = R/M and thatV € Max(S). SincerR C R is an integral extension, so B C R.
Moreover, eachV/ lies overN. Hence(S, N) is a quasi-local ring.

Let Q € SpecQS) there is someP € Spe¢R) lying over @, of the formP = P! x
[1j-1 2 Rj, for someP; € Spe¢R;). SinceQ C N, we getQ C (P/ x [[j_; ;. Rj) N
(Ileca Vi) = P < [[j_1 ;. N; € SNP = Q, sothatQ = P/ x [[}_ 1 Vi Conversely,
any ideal of the formP;/ x [[}_, ,, N;, for somei and P/ € SpecR;) is in Spe¢s), since
P} x I1}_1 ;4 R lies over it.



68 Gabriel Picavet and Martine Picavet-L’Hermitte

SinceR C S is a subextension ok C R, (1) entails thatk C S is infra-integral. But
[T;, N; is also an ideal oR, so thatV = (S : R). Toend,R/N = (R/M)™ andS/N = R/M
give thatS/N C R/N is seminormal by Propositic2 1, and so isS C R. Then,tR C S.

(3) Assume diniR) = 0, in which case Spés) = {[[~, N;} = {N}. ThenS/N = R/M
shows thatk C S is a subintegral extension asd= % R.

(4) If eachR; is Noetherian and f.gover R, then, eachiv; is a f.g R;-module, and also af.g
R-module. HenceR + N is a f.g R-module. ]

Remark 2.9.Contrary to the t-closure, the seminormalization of a diagonal morphisot the
product of the seminormalizations. We can compare these resultshsjithgdmma 5.6], which
says that seminormalization and t-closure commute with finite products igfhisons.

Proposition 2.10.Let R C R;, ¢ = 1,...,n be finitely many integral extensions afl :=
[1;-; R:, where(R, M) is a quasi-local ring. Then:

(1) £R C R has FCP (resg-IP) if eachR C R; has FCP (resp. FIP).
(2) Ifdim(R) = 0and eachk C R; has FCP, thent R C %R has FIP.

(3) Ifdim(R) = 0 and eachr C R; has FCP (respFIP), thenk C R has FCP (respFIP) if
and only ifR C 1 R has FCP (respFIP).

Proof. (1) Propositior2.6 gives that} R C R has FCP (resg-IP).

(2) SetT; := AR, S; == g R, T :=1][_,T: = L£R. Now, eachR C S; is subintegral.
It follows from Proposition2.8 and [L5, Lemma 5.6] thatS := R + [[; N; = 4R, where
N, is the maximal ideal of5; for each:. Moreover,N; C (S; : T;) holds for each by [8,
Proposition 4.9] and; andT; share the ideaV;, sinceS; C T; is seminormal and infra-integral.
Actually, N; = (S; : T;) whenS; # T, and(S; : T;) = S; whenS; = T;. Therefore we get
N :=T[.;N; C(S:T)andN isacommon ideal of and7’, maximal inS by Propositior2.8.
Setk := R/M = S/N = S;/N; = T;/N, ;, for each maximal ideaV; ; of T;. For eachi, we
have N; = n7: N; ;, for somen;, [8, Proposition 4.9], so thaf;/N; = []}2; T;/N; ;. Then
the extensiors/N C ([]1_, T;)/N = [[._,(T;/N;) can be identified t& C k=™, which has
FIP (and then FCP) by Propositi@il It follows that; R C % R has FIP (and then FCP) bg,|
Proposition 3.7].

(3) By [8, Theorem 4.6 and Theorem 5.8, C R has FCP (resgFIP) if and only if R C
LR, 2R C fRand}4R C R have FCP (resg-IP) if and only if R C £ R has FCP (resgFIP)
by (1) and (2). |

The FCP case is now completely solved with the following theorem.

Theorem 2.11.LetR C R;, i = 1,...,n, n > 2be finitely many extensions aft:= [, R;.
ThenR C R has FCP if and only if? is an Artinian ring and each extensiad C R; has FCP.

Proof. The*only if* implication is Propositior2.2(2).

Conversely, assume th&t is an Artinian ring and eacl® € R; has FCP. From Proposi-
tion 2.4, we infer thatR C R has FCP. MoreoveR™ C R = [[;", R; has FCP by§, Proposi-
tion 3.7] andR C R™ has FCP by Propositioh.4, giving thatR C R has FCP by#§, Corollary
4.3]. To end, usef, Theorem 3.13] to get thdt C []""_, R, has FCP. i

We now consider the FIP property for the product of two FIP extensiohs case ofi > 2
FIP extensions is studied in Section 4.

Proposition 2.12.Let R C Rj, R, be two subintegral FIP extensions and $&t= R; x R».
Assume thatR, M) is quasi-local such thatR /M| = co. ThenR C R has not FIP.

Proof. Let N; be the maximal ideal aR;. The infra-integrality ofR C R; implies thatM # N;.
It follows thatS; := R+ (N1 x M) andS; := R+ (M x N) are incomparabl&-subalgebras
of S := R+ (N1 x Ny), becaus€z,0) € S1\ Sz forz € N1\ M and(0,y) € S, \ S1 for
y € N\ M.

Assume now thak C R has FIP. In this case? C S has FIP andr is Artinian by Propo-
sition 2.2 It follows thatS = } R by Proposition2.8 so thatk C S is a subintegral extension.
From Propositiorl.5 we deduce that; andS, are comparable, a contradiction aRd= R has
not FIP. O
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In order to settle the main Theore2rl 7of the section, we begin to clear the way by studying
when R C R has not FIP. We can suppose thiat = R, becauseR x R, C Ry x Rp. By
Proposition2.2 and Propositior2.3, we need only to consider 2PIR (R, M) in view of [8,
Proposition 3.7]. Indeed, the case of a fidtdhas already been studied i8]] Note that if
(R, M) is a local Artinian ring, therR is finite if and only if R/M is finite, sinceM™ = 0
for some integern.. In such a case, any finite extensionhas FIP. We first look at minimal
ramified extensions. Before, we give a useful lemma.

Lemma 2.13.Let R C S be aring extension, whelg, M) is a quasi-local ring with R /M| =
oo. LetF be a set of representative elementsgil/. If there exists a family R, } of elements
of [R, S] such thatR, # Rg for eacha # § € F, thenR C S has not FIP.

Proof. Obvious. o
Lemma 2.14.Let R C S be a minimal ramified extension, whe, /) is a SPIR.

(1) There exist$ € M such thatM = Rt andt? = 0, with t»~1 £ 0, for some integep > 1.

(2) LetN bethe maximalideal f. There exists € S\ RsuchthatS = R+Rx, N = Rt+Ruz.
Moreover, there are some unique positive integersk, ¢ > 1 and some:, b € R\ M such
thatx? = at®, tx = bt?. Then(R:g2) = M = (R: S).

(3) ¢ > 2holds.

Proof. (1) is the definition of a SPIR (see Section 1). Each elemett isfof the formut” for
some unique integer < p and some unit.

(2) The integers: andq exist by Theoreni.1or [8, Theorem 2.3 (c)] becaus€, tz € M
and are unique by (1) since the idealsfoére linearly ordered.

(3) Assumeg = 1. Then,tx = bt impliest(z —b) = 0. Butz —b & N sinceb € R\ M,
so thatz — b is a unit inS, and thery = 0, a contradiction, which yieldg > 2. In particular,
tr € Rt?. O

Proposition 2.15.Let R c S be a minimal ramified extension, whei®, /) is a ZPIR. We set
R =R x Sand{N} := Max(9).

(1) T:= 4R=R+ (M x N).
(2) R c R hasFIPifand only ifN? = M andMN = M? = 0.

Proof. (1) The value off" is given in Propositior2.8.

(2) We keep the notation of Lemn2al4 There exists € M such thatM = Rt and#” =0
with tP=1 =£ 0, for some integep > 1. There exists: € S\ R such thatS = R+ Rz, N =
Rt + Rx. Moreover, there are some positive integers k,q > 1 and somei,b € R\ M
such thate? = at®, tz = bt9, with ¢ > 2. Then,M? = Rt?2, MN = Rt? + Rtz = Rt? since
fz € Ri2, sothatM2 — MN, andN2 — Ri? + Rtz + Ra? = Ri2 + Ri*,

Let F be a set of representative elementsgl/. ThenF is infinite.

Assume first thak > 1, so thatr? € Rt?. Fora € F, setR,, := R+ R(0,t+ ax) + R(0,t?).
Then,R, € [R,T]. Let3 € F be such that # 3, so thate — 8 ¢ M. Assume thaR, = Rg.
We get that(0, ¢ + ax) = (c,c) + (0,dt + dBx) + (0, et?), for somec,d,e € R, giving 0 = ¢
andt + ax = ¢+ dt + dfz + et? = dt + dBz + et?. Since(a — dB)x = (d — 1)t +et? € M,
we geta — dB € M (x) in view of Lemma2.142). It follows that there existd’ € R such that
a —dB = d't, yielding d'tz = d'bt? = (d — 1)t + et?, so that(d — 1)t = d'bt? — et? € Rt?,
leading tod — 1 € M (xx). But (%) and(xx) give« — 3 € M, a contradiction. Them®, # Rg,
andR C R has not FIP in view of Lemma.13

It follows that whenR C R has FIP, we must have= 1.

Now assume that = 1. Then,z?t = at? = (tz)x = zbt? = (xt)bt9~1 = v?121~1, so that

— V12971 = ?(a — b?1?973) = 0. Butq > 2 implies 2, — 3 > 1, givinga — v*t%¢—3 is a unit
in R Then,t? = 0 andp = g = 2, withtz =

So, whenR C R has FIP, therk = 1 andp = ¢ = 2, which giveM? = MN = 0 and

=Rt =

Assume now thalv? = M andM N = M? = 0. Then,Rt = Rt> + Rt*, givingk = 1, and

=0, givingp = ¢ = 2. Observe thaR c R is an integral FCP extension by Theor@m 1
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Using notation and statement @&,[Theorem 5.18], seR; .= R+ TM = R. Then,T =
R[(0,z)], (0,2)® =0 € M, and, withT” := R[(0,z)?] = R[(0,t)] andT" := R+ T'M = R,
we haveT” = T"[(0,t)], with (0,¢) € T, and(0,¢)® = 0 € 7M. We can conclude that c R
has FIP. O

Corollary 2.16.Let R ¢ S be a non minimal subintegral FIP extension, whéfe M) is a
2PIR. Then,R Cc R x S has not FIP.

Proof. SinceR C S has FIP, there i$; € [R, S], such that? c S; is a minimal extension,
necessarily ramified. Assume th&tC R x S has FIP, then so ha® ¢ R x S;. Using the
notation of Lemma2.14 and Propositior2.15for R C S;, we haveM = Rz?, Sy = R + Rux,
N = Ra?+ Rz, whereN is the maximal ideal of; andz® = 0,22 # 0. There exists, € [Sy, 5]
such thatS; c S, is a minimal extension, necessarily ramified. Pdve the maximal ideal of..
In view of [8, Theorem 2.3(c)], there ig € S, such thatS, = S1 + S1y = R+ Rz + Ry + Ruxy
andP = N + S1y = Ra? + Rx + Ry + Rxy. Moreover,(S; : y) = N. But, NP C N gives
xzy € N andP? C N givesy? € N, so thatP = Ra? + Rz + Ry and there exist, c,d,e € R
such that? = ba? + cz (¥) andyx = da? + ex (xx). It follows thatyz? = z(dz? + ex) = ea?,
so that(y —e)z? = 0. If e ¢ M, thene ¢ P ande — y is a unit inS,, giving 22 = 0, a
contradiction. Bute € M implies thatez? € Raz* = 0, so thatyz? = 0. Now, (x) gives
xy? = br’x + cx® = dr’y + exy = cx®. Bute € M = Ra? entailsex € Rz® = 0, so that
zy? = dr’y = 0, whencecz? = 0, from which we infer that ¢ M = Rz?. Therefore, we
gety? = bx? sincexz® = 0. Let F be a set of representative elementsiof\l. Fora € F,
setR, := R+ R(0,z + ay) + R(0,2%). Then,R, € [R,R+ (R x S,)] since(z + ay)? =
(1+ 2ad + o?b)x?. Let 3 € F be such that # 3, so thatn — 3 ¢ M. Assume thal?, = Rg.
We get that0, z + ay) = (¢, c) + (0,dz + dBy) + (0, ex?), for somee,d, e € R, giving 0= ¢
andz + ay = ¢+ dx + dBy + ex? = dx + dBy + ex?. Since(a — dB)y = (d — 1)z + ex? € N,
we geta —dB € NN R = M (1). It follows that there existd’ € R such thatx — d3 = d'z?,
yielding 0= d'z?y = (d — 1)x + ex?, so that(d — 1)z € M, leading tod — 1 € M (11). But (%)
and(it) givea — 8 € M, a contradiction. Ther®, # Rz, andR C R x S has not FIP in view
of Lemma2.13 O

To shorten, a minimal ramified (subintegral) extens{éh M) — (S, N) between quasi-
local rings is calledspecialif M? = MN = 0 andN? = M, as in Propositior2.15 Such
extensions exist. Any minimal ramified extensiBnC S such thatR is a field is special. Here
is another example. Lek be a field andR := KI[T]/(T?). If t is the class off" in R, let
S = R[X]/(X?—t,Xt). The natural magk — S is injective. This follows from the fact that
R[X] is a freeK[X]-module with basif1,¢} and some easy calculations. Lebe the class
of X in S. Then,M := Rt is the only maximal ideal ok, so that(R, M) is a quasi-local
ring. Moreover,S = R[z], with 2 € S\ R satisfyingz? € M and Mz C M, so thatkR C S
is a minimal ramified extensior8] Theorem 2.3]. It follows that the only maximal ideal of
S'is N := Rz + Rt, and we have the following relationg? = 2t = 0 andx? = t, giving
N2 = Rx?> = Rt = M andMN = Rt? + Rtz = Rt?> = M? = 0. Then,R C S is a special
minimal ramified extension.

Theorem 2.17.LetR C S1, .5, be FIP extensiong,; := f,R fori =1,2andR := S;xS5. Then
R C R has FIP if and only ifr is an FMIR such thaBupX; / R)NSupg X,/ R)NZMax(R) = 0,
and, for eachV/ € SupfZ;/R)NZMax(R), i € {1, 2}, eitherR; C (Z;) s is a special minimal
ramified extension oR), is a field.

Proof. For a maximal idealM of R, we denote bys (M) the seminormalization ak,, in (S1 x
S2) M-

Assume thai? C S; x S5 has FIP. In view of PropositioR.2, R is an FMIR, and so is a finite
direct produc{{ ;" ; R; of fields, finite local rings and SPIRs that are localizatiorRcit some
maximal idealM of R by Propositior2.3. HenceR; C (S1 X S2)ar = (S1)am x (S2)ar has FIP
by Propositior2.7. Assume thaR?,, is not a finite ring. ThenR;, is either an infinite field or a
>PIR.

Let M € ZMax(R), so that|Ry;/M’'| = oo for M’ := MR, (see the remark before
Lemma2.13. For;j € {1,2}, we have thatr,, C (Z;) is a subintegral FIP extension with
(Rym, M’) a quasi-local ring. Assume first that,, is a ZPIR. Using Proposition2.12 2.15
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and Corollary2.16 we get thatRy, = (Z;) for somej € {1,2}, so thatM ¢ SupZ;/R)
and, forl € {1,2} \ {j}, eitherRy; = () Or Ry C (%) is @ special minimal rami-
fied extension. Assume now th&, is an infinite field. Using Propositio@.12 we get that
Ry = (Z;)m for somej € {1,2} and, forl € {1,2}\ {j}, there existsy € (3;)as which
satisfies(2;) s = Rar[a] anda® = 0 by [2, Theorem 3.8] sinc&,; C (%) has FIP. Then,
M ¢ SupfdZ;/R) N SupZ,/R) and SuppZ;/R) N SupfZz/R) N ZMax(R) = 0.

Conversely, assume thatis an FMIR, and so a finite direct produdt’ ; R; of fields, finite
local rings and SPIRs such that Sybp/R) N SupZ,/R) N ZMax(R) = @, with, for each
M € SupfZ;/R) N ZMax(R), i € {1,2}, eitherR,; C (%;) is a special minimal ramified
extension o), is an infinite field. Observe first that for eaghihere isM € Max(R) such that
R; = Ryy.

SinceR is a quasi-semilocal ring, MSup(®; x S»)/R) is finite. Then,R C S; x S, has FIP
if and only if Rys C (S1x S2) s has FIP for eaci € MSupp((S1 x S2)/R) by Propositior2.7.
Moreover, Ry, C (S;)a is an FIP extension fof = 1,2. Fix M € MSupp(S1 x S2)/R).
Proposition2.4tells us thatR y; = (S1)ar x (S2)a = (S1 x S2)ar € Rar has FIP, wher®R y,
(resp (S;) ) is the integral closure ARy in (S1) ar x (S2)amr = (S1x S2) s (resp (S;)ar). Then,
in view of [8, Theorem 3.13]Rys C (S1x S2)ar has FIP if and only iR, € (S1x.S3) s has FIP.
From Propositior2.10 we deduce thak,; C (S1 x S2)a has FIP if and only ifRy, C S(M)
has FIP. But,S(M) = (5,),,x(5,).n Dy Proposition2.6. Therefore,5(1/) is module finite
over the Artinian ringR,, by Propositior2.8.

(1) If Ry is an infinite field, then/ € XMax(R). We haveR,; = (Z;); for somel € {1,2}
since SupfX;/R) N SupXz/R) N ZMax(R) = (. Letj # I. SinceRy; C (Z;)a has FIP,
there iso; € (%) such that(Z;) s = Rar[ey], with o2 = 0 by [2, Theorem 3.8]. Moreover,
R [ey] is a quasi-local ring with maximal ideal; Ry, [c;]. Seto; := 0 anda = (a1, a2). In
view of Propositior2.8, we getS(M) = R[], with o® = 0, so thatR,, C S(M) has FIP by
[2, Theorem 38] IndeedS(M) =Ry + (OéjRM[Oéj} X 0) = Ry + aRyy.

(2) If Ry is @aZPIR, thenM € IMax(R), there is somg € {1,2} such thatZ;)», = R,
with, for i € {1,2} \ {j}, eitherRy; = (Z;)a Or Ry C (%)) IS @ special minimal ramified
extension. ThenRk,, C S(M) has FIP by either Propositich15or Corollary2.5.

(3) If Ry, is a finite ring, thenS (A1) is a finite ring since a finitely generatétl,-module,
andRy, C S(M) has FIP.

In every caseR,; C S(M) has FIP, and so hag C S x Ss. O

Corollary 2.18. Let R C S1, .S, be seminormal FIP extensions afd:= S; x S,. ThenR C R
has FIP if and only ifR is an FMIR.

Proof. SinceR = ¢ R fori = 1,2, we get Sup(®;/R) N SupfZ,/R) N ZMax(R) = (. Then,
use Theoren2.17. O

3 FCP or FIP extensions and the CRT

The aim of this section is to get an extension of the Chinese Remainderefin¢GRT) in the
following sense. LefR be aring,n > 1 an integer andy, ..., I,, ideals ofR distinct fromR,

but not necessarily distinct, such tiret_,I; = 0. Such a family{Iy, ..., I,} of ideals ofR is
called aseparating familya reference to Algebraic Geometry where a finite family of morphisms
{fitM — M;|j=1... n}of R-modules is called separating’if__, ker f; = 0. We intend

to study the ring extensioR C H;;l(R/Ij) =: R associated to a separating family, denoting
by C := (R : R) its conductor, also called theonductor of the separating familyWe set

Jj 1= Mji_1 yzili, Or more generallys := Np_, ;o 51, for any subset of {1,...,n}. We also
denote by, the element ok whoseith coordinate is 1 and the others are 0O andgall. . ., e, }

the “canonical basis". The above extension is an isomorphisih={ R (Chinese Remainder
Theorem). If not, eithef{R, R]| or ¢[R, R| measures in some sense ha\vis far fromR.

Proposition 3.1.Let R be aring and{ I3, ..., I,} a separating family of ideals @?. Then:

(1) R C R is an infra-integral extension.
(2) C=np_ (I +J5) = X701 ;.
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(3) R € R has FCP if and only iiR/C is Artinian.

Proof. (1) Clearly,R — H;’:l(R/Ij) is an integral ring extension (actually, module finite), that
is infra-integral because of the form of elements of $Fac

(2)is [21, Lemma 2.25].

(3) In view of [8, Theorem 4.2], we have th& C R has FCP if and only ifR/C is an
Artinian. O

An immediate consequence is the following. [febe a ring,» > 1 an integer andy, .. ., I,,
ideals of R distinct from R, but not necessarily distinct. Sét:= >-"_; J;. Then,R/(N}_,1;) C
[1j-1(R/I;) has FCP if and only if2/C'is an Artinian ring.

In the rest of the section, we examine the FIP property. The case paaasimg family with
two elements is easy to solve.

Proposition 3.2.Let R be a ring, with two ideald and J such that/,J # RandInJ = 0.
ThenR C R/I x R/J is al\g-extension, which has FIP if and only#f/(I + J) is an FMIR.

Proof. Forz € R, we denote byt its class inR/I and by its class inR/.J. Sete; := (1, 0),
ez := (0,1), so that{ey, e;} is a generating set of the-moduleR/I x R/.J. Frome? = ¢; and
eiez = Ofollow thatR/I x R/.J = R+ Rej. Hence there is a bijection between the set of ideals
of R containingl + J and[R, R/I x R/.J] by Propositionl.3andR C R/I x R/J has FIP if
and only ifR/(I + J) is an FMIR. o

Next lemma shows that we can reduce our study to a zero conductosixie

Lemma 3.3.Let R be aring and{ I3, ..., I,} a separating family of ideals df. ThenR C R
has FIP if and only if the zero conductor extensi®n(>_"_; J;) € [1;_,(R/(I; + J;)) has FIP.

Proof. By [8, Proposition 3.7]R C R, with conductoi, has FIP ifand only iR /C C R/C has
FIP. SinceC' is an ideal ofR, for eachj € {1,...,n}, there exists an idedl; of R containing!;
suchthaC = [[7_, C;/I;. Now, there is a natural isomorphisRy C' = [[}_, (R/C;). For each
j, we getthatC;/I; = (I; + J;)/I; becausd; + 77", J; = J;j+ (31 iy Ji) + Ij = I+ Jj.
Then,R/C; = (R/1,)/(C;/1;) = (R/1;)/((I; + J;)/I;) = R/(I; + J;) giving the wanted
result. O

Proposition 3.4.Let R be a ring and{1,...,I,} a separating family of ideals at with zero
conductor. Then:

(1) J; = Ofor eachj.

(2) If R C R has FIP, thenR/(Jp, + Jp,) is an FMIR for any partition{ P, P,} of {1,...,n}
as well asR/I; for eachj. In that caseR is an Artinian ring.
Proof. (1) By Propositior8.1, C = >""_, J;, so thatJ; = 0.

(2) SetK; := Jp, fori = 1,2. Then,K; N K, = 0, so that we have the extensioRsC
R/K1 x R/Kp and R/K; C [[;cp (R/I;) for 1 # i, I € {1,2} leading to the composite
RCR/Ki1xR/K, CR.If RCRhasFIP, thensohda C R/K;x R/K»,. By Propositior3.2
R/(K1+ K>) is an FMIR. The second statement follows from (2) aihd= 0. To complete the
proof, use PropositioB.1sinceC = 0. O

The following result shows that the case of a nonlocal Artinian #ng very different from
the local case.

Proposition 3.5.Let R be a ring containing a set gf > 2 orthogonal idempotentges, . . ., e, },
generating the ideakR. ThenR is an FMIR if R C R has FIP for each separating family
{I1,...,I,} of ideals ofR. In particular, an Artinian nonlocal ringr is an FMIR if R C R has
FIP for each separating family of ideals & The converse holds if no local ring &fis a SPIR.

Proof. Consider the faithfully flat extensiafl C [[%_, R/Re; =: S with zero conductor (Propo-
sition3.1). If R C S has FIP, then eacR/Re; is an FMIR by Propositio3.4and so isS. Then
observe that ifk — S is a faithfully flat ring morphism,R is an FMIR if so isS, because
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1SN R = I for each ideall of R. Now if R is Artinian nonlocal, therR hasp > 1 idempotents
generating the ideak by the Structure Theorem of Artinian rings.pgf> 2, use the first part of
the proof. Ifp = 2, then{(0), (0)} is a separating family of ideals @, so thatk ¢ R? has FIP
andR is a FMIR by Corollary2.5. O

Now let (R, M) be a local Artinian ring withR/M| < co. Then|R| < o (see the remark
before Lemm&.13), so thatk C R has FIP for each separating family, sinég < oc.

We know thafMSupp(S/R)| < oo if R C S has FIP (Propositio.7(1)). By Propositior2.7
and former results of the section, the FIP property study can be r@dodke next proposition
hypotheses.

If (R, M) is an Artinian local ring, we denote by R) the nilpotency index of\/.

Proposition 3.6.Let (R, M) be an Artinian local ring with R/M | = oo and a separating family
{I1,...,I,} of ideals, withC' = 0.

Wesetl .= R+ MR, C:=(R:T), n(R/C) = p,and foreachi > 0, M, := M +TM*® =
M+ RM*™*Y R, == R+ TM'= R+ RM"*L. Then,

(1) T = tRandR C R hasFIPif and only if R C T has FIP.
(2) c=(0:M).

(3) R C T has FIP if and only if eithetlR = T, or Ry = T, or Ry C T is minimal (ramified),
with, in the two last situations, eithée/ = (R : T'), or Lr(M;/M;41) = 1forall 1 < i <
p—1

The caseR = T corresponds to an extension of the foknC K™, whereK is a field, and
the case\/ = C to M? = 0.

Proof. Let {es,...,e,} be the canonical basis of tiemoduleR. Since(R:R) =0,J; =0
for eachj € {1,...,n} by Propositior3.4.

(1) T = 4R follows from [8, Theorem 5.18] since R&&) = MR andR C R has FCP by
Proposition3.1 SinceR C R is infra-integral,R C R has FIP if and only ifR C T has FIP by
Propositionl.5.

(2) is an easy calculation, because edgh= 0, N7_;/; = 0 and the unit element ot is
e1+---+ep.

(3) Sincer C R; C T is finite and subintegral,R;, M;) is local Artinian for each > 0.
We havel’' M = M +RM? = My C RM € Max(T), Ry = R+ RM?, R, = R+ RM?and
M, = M + RM?3. Becauser/M is infinite, [8, Theorem 5.18], applied with := R, gives that
R C T has FIP if and only if the next two properties hold:

() EitherR=T,orM = (R:T),0r Lg(M;/M;+1) =1forall 1<i <p-—1;

(i) If R # T, there existsx € T such thall’ = R;[a] anda® € TM, and, withT” := R;[a?]
and7” := R+ T'M, there exist® € T such that’” = T7"[5] and3® € T'M.

Assume thatl’ # R, R;, so thata ¢ R;. We first show that (ii) implies thak, C T
is minimal. Leta € T be such that® € TM = M; C RM, giving a € RM, so that
a?> € RM? C My andaM; € RMM; = RM(M + RM?) C RM? C M;. Then,R; C T'is
minimal (ramified) in view of 8, Theorem 2.3(c)].

Conversely, we show thak®; c T is minimal (ramified), with eithet = (R : T), or
Lr(M;/M;1) = 1forall 1 <: < p—1implies (ii). Actually, (i) already holds. Since; c T’
is minimal, there isx € T such thatl’ = R;[a] anda? € My C Ry, with aM; C M;. Then,
o® € My = TM. Now, we can rewrite (i) a§” = Ry[o?] = Ry andT” = R+ T'M =
R+ RiM = R+ RM® = R,. Assume thatV/ # (R : T) = (0 : M), so thatM? # 0.
Then,M? = (M + RM?)2 C M +RM?3 = M, C M; (because k(M;/M;) = 1) implies that
R, C Ry is minimal ramified by Theoreri.1 Arguing as fora, we obtain somed € T such
that7’ = 7"[B] and8® € 7'M and (ii) holds.

If T'= Ry, itis enough to taker = 8 = 0 to get (ii).

If R =T, thenl; = M for eachj entailsM = nN7_,I; = 0 andR is a field. Thenk? C R is
of the formK C K", whereK is a field, and has FIP (see Propositibfl). Assume thafi/ = C,
thenM? = 0. O
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By Proposition3.4, we know that wherR C R has FIP, ther/I; is an FMIR for eacty.
It is natural to ask if the converse holds, and if not, what conditions eeeled to get the FIP
property. We consider here a simple case which already gives a catimgdicated result.

Proposition 3.7.Let (R, M) be an Artinian local ring such that/? = 0 and |R/M| = co. Let
{I,...,1I,} be a separating family of ideals, with conductbandn > 3. Then,R C R has
FIP if and only ifR/I; is an FMIR andM = I; + Ny, 1x, for eachj,l € {1,...,n}, j # L.

Proof. SetT := R+ MR, C := (R : T), and for each > 0, M; :== M +TM" = M +
RM*L R, :=R+TM'= R+ RM”l SinceM? = 0, we get that?; = RandM; = M =
M. Then, applying Propositio8.6, we have thaR? C R has FIP if and only ifR C T has FIP,
if and only if eitherk = R; = T, or R C T is minimal (ramified), with\M/ = (R : T'). This
last condition is always satisfied sin€e= (0 : M). Then,R C R has FIP if and only if either
R=Ry=T,0rRcCTisminimal.

We begin to remark that/ = I}, for at least» — 1 idealsI; implies thatdM = 0, so thatR is
a field and we are in the situation of PropositA. Indeed, ifn, — 1 idealsI, are equal taV/,
for instancel, ..., I,,_1, we get that., [, = M = 0 since(R : R) = 0. In particular, we get
thatl, = 0. Hence the assertion of Propositi® holds.

So, in the following, we may assume that there exist sémé& # M, j # [. Consider the
following R-subextension ofR/1;) x R defined byR); := R + ((M/I;) x 0) = {(T + m,z) |
x € R, m € M}. Sincenyy;I, = 0, we have the ring extensioR C R + Hk M/ I
An easy calculation shows that we have a ring extengibrC 7'. Moreover,R # R’ since
(m,0) € R\ Rforanym € M\ I;. In particular,R # T'. The canonical map : R/ L Tis
defined byp(z +m, z) = (7, ...,7) + (m,0,...,0) (after reindexing the components).

Assume first that? C R has FIP, so thaiz C 7' is a minimal extension. Them # R’
implies thatR; = 7" andy is surjective. Lety € M andj’ € {1,...,n}, j° # j. Consider
©,...,7,..., 0) e T, where all the coordinates abeexcept possibly the’th which isy. Then,
there existr € R, m € M such that0,...,7,...,0) = (z,...,7) + (m,0,...,0). This gives
y—x € Iy, x+m € I; andz € I, foreachk # j, j'. Thenx € Nyyj 0 Iy andy € Ljr+Nkjjr Ik
giving M = I +ﬂk#j,j/fk foranyj’ # j. Since there is some#£ j such that\/ ;é I;, the same
reasoning gives that/ = I; + Ni»;,1x. Atlast, if there exisy’, !’ € {1,...,n}, j/ # I’ such
that M # I/, Iy, the same reasoning gives again= I, + Ny I;.. But, whenM = I;/, we
haveM = I, + Ny v 1) Whatever isly .

Conversely, assume thdt/[;; is an FMIR andM = I, + Nk Ix, for eachj’,l" e
{L,...,n}, j* # I, with M # I; for some;j. We are going to show that C R is mini-
mal ramified and thak’, = T.

SinceR/I; is an FMIR with|R/M| = oo and M # I, there exists some € M \ I; such
that M/I; = (R/I;)z, withz # 0 andz? = 0. Sett := (z,0) € R/ \ R. Using the properties
of R, we get thatR; = R[t], witht? =0 € M, tM = 0 C M, so thatR C R; is a minimal
ramified extension byg, Theorem 2.3].

Let;j’ # jandx € M. SinceM = I + Niyjr,;Ix, there exist € I;; andb € Nyjr 1k such
thatz = a+b. Thenz = bin M/I;. ItfoIIowsthatwe getO, .. .00 =(b,...,b,....0)+
(0,...,—b,...,0), wherez stands at thg'th component inthe flrst element, and stands at the
jth component in the last element. Indeed, #c¥ j, j/, we haveh = 0 sinceb € Ny ;1. We
have(b,...,b,...,b) € Rand(0,...,—b,...,0) € (M/I;) x 0, so that(0,....,z,...,0) € R},
This holds for any’ # j and obviously fox0, ..., 7, ..., 0) wherez stands at thgth component
by definition of R}. Then, T = R + [[,(M/Ix) = R+ ((M/I;) x 0) = R}, giving thatk c T
is minimal, so that? C R has FIP. m|

Remark 3.8.Whenn = 3, the condition of PropositioB.7 becomesM = I; + I;, for each
J.1 €{1,2,3}, j # l. Here is an example where ¢ I; for eachj,l € {1,2,3}, j # L.

Let & be an infinite field, and s&k := k[X,Y]/(X,Y)? = k[z,y], for some indeterminates
X,Y. Then,R is an Artinian local ring with maximal ideal/ := (z,) such that\/? = 0 and
|R/M| = co. Setl; := k(z + )\jy), whereAq, A, and\; are three distinct elements &f Then,
I, NI, = 0foreachj,l € {1,2,3}, j # . We haveR/I; = k[z], which is a SPIR, althougk
is not a SPIR, with\//I; = kz.

In the following, we are going to consider a kind of converse for Pritipns3.4, taking forR
a local FMIR. By Propositior2.3, eitherR is a field, or a finite ring, or ZPIR. The case where
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R is afield is Propositior2.1 If R is a finite ring,R being R-module finite,R is also a finite
ring, so thatk C R has FIP. The last case to consider SRR R.

Proposition 3.9.Let (R, M) be aXPIR and a separating familyIs,...,I,} of ideals, with
conductor0. Then,R C R has FIP if and only if eithen = 2, or I; = M for n — 2idealsI;.

Proof. Forn = 2, we getl; = I, = 0 and Corollary2.5gives thatR C R/I; x R/I, has FIP.

Assume that, > 2. The ideals of the SPIR are linearly ordered. Thus we can assume
L C---CI C---CI,. ByProposition3.4 we getthat/; = O for eachj € {1,...,n}.
Hence, forj = 1, we getl; = 0 andl; = 0 for j # 1. Moreover, there is somee M such
that M = Rt, with t» = 0, t»~1 = 0 for some positive integer > 1 sinceR is not a field, and,
for eachj € {1,...,n}, there is an integep; > O such thatl; = RtP7, with I; # Rt?~1. In
particular, we have = p1 =py > --- > p; > - > p,.

Assume thafs # M, whenceps > 1. Let{es,...,e,} be the canonical basis & over R and
F aset of representative elementsdfl/. For eachy € F, setR,, := R+R(tP " tep+atP3~Les),
which is anR-subalgebra ofR. Leta, € F, a # 8, so thata — 8 ¢ M. Assume that
R, = Rg. Then,t?~le; + atP~leg € Rg, so that there exist,b € R such thatt?~le; +
atP3leg = ay ijej+ b(tP~tep + BtP3~tez). This givesa = 0, *~1(1—b) = 0 () and
tr~Y(a — bB) € I3 (»+). Butwe get 1- b € M by (x) anda — b3 € M by (*x), so that
a — 8 € M, a contradiction; whencf&,, # Rg, andR C R has not FIP by Lemma.13

Now, assume that > 2 andI; = M for all j > 3. Using the notation of Propositidh6, we
getthatl' = R+ (M x M) C R? ButR C R? has FIP by Corollar.5, so thatk C T has FIP,
inducing thatk C R has FIP by Propositio8.6. O

Corollary 3.10. Let(R, M) be a quasi-local ring such thakz /M| = oo, and a separating family
{L,...,1I,} of ideals ofR. Assume thakz/(}_" ,J;) is a SPIR. Thenk C R has FIP if and
only if eithern = 2, or I; + J; = M for n — 2idealsI; + J;.

Proof. SetR’ := R/(>."" ,J;) = R/C, whereC := (R : R), so thatkR C R has FIP if and
only if R C J[7_;(R/(I; + J;)) has FIP (Lemma.3. Then, apply PropositioB.9 to this
extension. O

Remark 3.11.Let (R, M) be a local Artinian ring such thaR/M| = oo, and a separating
family I, ..., I,, of ideals ofRR different from A, with n > 2, associated extensidgh C R and
conductorC'. We give below such an extension having FIP wiil&C' is not an FMIR.

Let K be an infinite field,R := K[X,Y]/(X,Y)? with maximal ideald/. Then(R, M) is a
local Artinian ring withM? = 0 andR/M = K infinite. Letx,y be the classes of,Y in R,
Iy i= Rz, I := Ry, I := R(z +y) andR := [[>_,(R/I;). FromI; N I, = O for eachj #
k € {1,2,3}, we deduce thaf’ = 0 by Propositior8.1and also thaf{ 1, I, I3} is a separating
family. Leta be the class ofi € R in any R/I;. Observe that\//I, = (R/)y, M/, =
(R/L)z, M/I3 = (R/I3)T, because = (z + y) — x. Hence eachl//I; is a principal ideal
with (M/1I;)? = 0, so that eacl?/I; is a SPIR. Set; := (7,0,0), a := ez := (0,7,0), e3 ==
(0,0,7). Using the notation of PropositioB.6, we have(R : T) = M, T = R+ RM =
R+ ZleRei andR; = R+ RM? = R. Since(0,7,7) = = € R, we gete, + e3 = =,
whenceez = = — a. Atlast,e; = (7,0,0) = (z + 4,0,0) = (z + y,z + y,= + y) — (0,7,0) =
(r +y) — a. It follows thatT = R[a], with o> = 0 andMa = 0, sothatR = Ry C T
is a minimal ramified extensior8] Theorem 2.3]. ThenR ¢ T andR = R; C R have
FIP by Propositior3.6, although(R, M) is a local ring which is not a SPIR: the set of ideals
{R(z + ay) | a € F}isinfinite, if 7 is a set of representative elementsof\/ = K.

Corollary 3.12. Let(R, M) be a quasi-local ring withR /M| = cc. Let!, J be ideals ofR with
InJ = 0and such thatS := R/(I + J) is a SPIR with nilpotency index(S) = p > 0 if
I+J+#R.

(1) Assume thai + J = R. Then||[R,R/I x R/J]| = 1.
(2) Assumethat + J # R. Then||[R,R/I x R/J]| =p+ 1.

In particular, if (R, M) is a SPIR witm(R) = ¢ > 1, then|[R, R?]| = ¢ + 1 and [R, R?] =
{R+ M’Rz}izo ,,,,, a
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Proof. (1) If I + J = R, then|[R, R/I x R/J]| = 1 by the CRT.

(2) Assume now thaf + J # R. Since(S,N) is a SPIR withN := M/(I + J), R C
R/I x R/J has FIP by PropositioB.2 and its conductor i&’ := I + J by Proposition3.1
Moreover, the proof of PropositioB.2 shows that there is a bijection betwelgh R/I x R/ J]
and the set of ideals dt/C = S. Since(S, N) is a SPIR, there is somec S such thatV = St
and the ideals of are linearly ordered. Then, this set of ideald#&* | k € {0,...,p}} and
I[R,R/I x R/J]| =p+ 1.

Now if (R, M) is a SPIR, withn(R) = ¢ > 1, we deduce from (2) thaiRr, R?|| = ¢ + 1.
Since(R, M) is a SPIR, there exists € R such that\/ = Rz and the ideals of? are theRz?,
fori =0,...,q. Moreover, the bijectiorp between the set of ideals &fand[R, R?] is given by
o(Rx') = R+ ' R2. i

We next generalize some Ferrand-Olivier's resi@i Lemme 1.5].

Theorem 3.13Let R be aring,{I1,...,I,}, n > 2, a separating family of ideals d?. Then,
R C R is a minimal extension if and only if the following conditipin holds:

(t): There existjo, ko € {1,...,n}, jo # ko such thatl,, + I, € Max(R) andl; + I, = R
forany (5, k) # (jo, ko), j # k-

If (1) holds, then{I1, ..., I,,} satisfies a weak Chinese Remainder Theorgm: Ny; I, =
Nk (I; + Ir,) for eachj € {1,...,n}.

Proof. Assume first thatt) holds. There is no harm to suppose that= 1, ky = 2 and set
J :=nN"_,I;. Thenl; + I, = Rforanyj k > 2, j # k gives thatH?ZZ(R/Ij) >~ R/J. So, we
are reduced to the extensiéhC R/Iy x R/J. But,I1+1I; = Rforeachj > 2andl1 + 1, = M
give I; + J = M becausd; + J C M. For the reverse inclusion, consideriy I; the relations
1= T; (x;) for somez; € I;, foranyj > 2. Letm € M. Thereisz; € I withm =7, in R/I3.
Using (x;), we get thatn = T, - - - T,,, so thatn € I + J. Then, by 10, Lemme 1.5],R C R is
a minimal extension sincg N J = 0.

Conversely, ifR C R is minimal (integral), thenV/ := (R : R) € Max(R) is an ideal of
R. Moreover, there is som&; € Max(R) aboveM and possibly only another oné,. There
is no harm to suppose that, = M/ x [[;_, R/I; with Iy C M andN, = R/Iy x M /I, x
[1;_s R/Ii, with I, C M. Any otherM’ # M in Max(R), is lain over by a unique element of
Max(R), of the formM'R = [[_,((M' + I;)/I;) by [8, Lemma 2.4]. Then)M’ + I; = R for
all j but one, so that there is a uniqéigcontained inA/’. Then, for anyj,k > 2, j # k and
i =1,2, we havel; + I, = I, + I; = R, which givesH?zz(R/Ij) =~ R/J whereJ := N7 _pl;.
So, the minimal extensio®® C R/I; x R/.J is involved. By [LO, Lemme 1.5], we get that
L +J = M", for someM” € Max(R), whencely,J C M”. Actually, we haveM = M".
Deny, thenl; ¢ M" for all j > 2 givesJ Z M", a contradiction. A similar proof gives C M
sinceJ C M. FromM =1, +J C I + I, C M, we get thatl; + I, = M and the proof is
complete.

Assume thatt) holds, then easy calculations show that- M _y . Ty = M_y . (1; + Ik)
foreachj € {1,...,n}, sothat{Is, ..., I,} satisfies a weak Chinese Remainder Theorenm

4 The case of ring powers

In this section, we consider separating families whose ideals are zero.

Proposition 4.1.Let (R, M) be aZPIR and an integer, > 1. ThenRk C R" has FIP if and only
if n=2.

Proof. Use Propositior8.9with 7; = 0 for eachj. Since(R : R™) = 0 andM # 0, we get the
result. O

We are now in position to get a result in the general case.

Theorem 4.2.Let R be aring andn > 1 an integer. Therk C R™ has FIP if and only ifR is an
FMIR withn = 2whenR is aZFMIR.
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Proof. Assume thak C R™ has FIP. Using Propositiadh4with I; = O for eachj and sinceR :
R™) = 0, we get that? is an FMIR. MoreoverR,; C (Rr)™ has FIP for eacld/ € Max(R)
in view of Proposition2.7 since MSuppR”/R) = Max(R) by Proposition2.2. Assume that
there is somel/ € Max(R) such thatR,, is aZPIR. SinceM Ry, # 0, we get thats < 2 by
Propositiord.1, so thatn = 2.

Conversely, ifR is an FMIR, theriMax(R)| < coc andR C R™ has FIP if and only ifRy, C
(Rar)™ has FIP for eacti/ € Max(R). Let M € Max(R). If Ry, is afield, thenRy, C (Rar)"
has FIP by Propositio@.1 If R, is a finite ring, then so iR,;)" and Ry, C (R )™ has FIP.
Assume thatR,, is aZPIR, so thatR is aZFMIR andn = 2. Then, Propositiod.1 gives that
Ry C (Rpr)™ has FIP. Therefore? C R™ has FIP. O

We get now a generalization of Theoréni?.

Theorem 43LetR C S;, j = 1,...,n be finitely many FIP extensiong; := { R and
H ' 1S5;. ThenR C S has FIP |f and only ifR is an FMIR satisfying the foIIowmg

condltlons(Bl) and (By):

(B1) SupfZ,/R) NSupf%;/R) N ZXMax(R) = 0 for anyj,l € {1,...,n} such thatj # [.

(B.) Ifthere exists\/ € ZMax(R) such thatR,, is a~PIR, thenn = 2 and, for each such/ and

eachj € {1, 2}, eitherRy, C (Z;) is a special minimal ramified extension 8, = (Z;) ur.

Proof. The result can be written under the form (&) R is an FMIR satisfying condition&B;)
and(B,) where (A) is the statemenE C S has FIP.

Assume that (A) holds. Ther® C R™ has FIP. In view of Theorem.2, R is an FMIR and
n = 2 as soon a& is aZFMIR, in which case we can use Theor@m?7.

If there existj,l € {1,...,n}, j # l andM € SupfX;/R) N SupfX;/R) N ZMax(R),
thenRy # (Z5) v, (X1) v, With Ry infinite. Moreover,Ry; C (Z;)am and Ry C (Z;) s are
subintegral extensions. In view of Propositidri2 we get thatRy, C (Z;)am x (%) has not
FIP, and sa?;; C Sy has not FIP, a contradiction. The;) holds.

If there existsM € XMax(R) such thatR,, is aZPIR, thenR is aZFMIR andn = 2 by
Theorem4.2 Moreover, sincer,, is not a field, Theoren2.17 gives that for each € {1, 2},
eitherRy; C (Z;) i is a special minimal ramified extension B, = (Z,) ». Then(B,) holds.

Conversely, assume th&tis an FMIR and thatB;) and(B-) hold. Clearly, MSuppS/R)
is finite. Then,R C S has FIP if and only ifR,; C Sy, has FIP for eacti/ € MSupp(S/R) by
Proposition2.7.

The integral closure ok in S'is S = []_; S; by Propositior2.4andS C S has FIP. Hence,
Sar € Sy has FIP for eacti/ € MSupp(S/R). Then,R C S has FIP if and only if the module
finite extension?,; C Sy, has FIP for eacti/ € MSupp(S/R) [8, Theorem 3.13].

If Ry is finite, s0isSy, andRy, C Sy has FIP. Now ifR,, is an infinite field R C ¢ " R
as well ask,; C S, have FIP. To see this, mimic the proof of Theor2r?7, using the fact that
there is at most ong € {1,...,n} such thatR,; # (X;)um, S0 thatRy, = (Z;)um for each
l € {1,...,n}, L # j. Asin the proof of Theoren2.17, we get thatk,; C ¢' Ry has FIP,
because;’ Ry; = R, wherea is then-uple whose all components are 0, except ftie
which isa; defining(X;) v = Rar[ey]. Lastly, if Ry is aZPIR, thenn = 2 and Theoren2.17
gives thatR,; C Sy, has FIP.

To conclude,R C S has FIP. i

We can rephrase Theorefi?in the following way.

Corollary 4.4. Let R be aring andn > 1 an integer. ThenR C R™ has FIP if and only ifR is
Artinian and setting{ M3, ..., M,,} := Max(R) and«; := n(Ru, ), then for each, one of the
following conditions holds:

(1) o = 1.
(2) |IR/M;| < co.
(3) Ry, isa SPIR andh = 2 as soon as there exists sofrmich thaty; > 1and Ry, is aZPIR.

Proof. By Theorem4.2, R C R" has FIP if and only ifR is a finite direct producf]"; R, of
finite local rings, SPIRs, and fields, with= 2 as soon as there is somg;, which is a>PIR.
Note that 0= [];", M;** and setR; := Ry, so that 0= MR
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Assume that? C R™ has FIP and fix somé ThenR; is a field if and only ifoe; = 1, giving
(1). We know thatr,,, is a finite ring if and only iff R/M;| < oo, which gives (2). Assume that
a; > land|R/M;| = co. Then,R; is aZPIR, so that = 2 and we have (3).

Conversely, assume tha&tis an Artinian ring and that for eaghone of conditions (1), (2) or
(3) holds. It follows thatr is a finite direct producf]" ; R; of primary rings. We have just seen
that R; is a field whenw; = 1. If |R/M;| = |R;/M;R;| < oo, thenR; is a finite ring. At last,
if «; > 1 and|R/M;| = oo, thenRy,, is aZPIR andn = 2. Now, use Theorem.2to get that
R C R" has FIP. |

Extensions of the formrR? C R™, for some integers k< p < n generalize extensions
R C R™ For R’ and R™ endowed with their canonical structures Bfalgebras, we show
that Homak (R?, R™) has at leasiS(n,p) elements (theStirling number of the second kind
S(n,p) := |P(n,p)| where P(n,p) is the set of partitions of1,...,n} into p subsets). We
set Exak(RP, R") := {p € Homalz(R?, R™) | ¢ injective}.

Proposition 4.5.Let R be a ring andl < p < n two integers, then:
(1) [Exalg(R?, R")| > S(n,p).
(2) If Ris connectedExalz(R?, R™)| = S(n, p).

(3) If R C Tot(R) is t-closed andTot(R) is Artinian (for instance, ifR is Artinian), then
|Exalg(RP, R™)| < S(n, p)Min(R)l,

Proof. LetC :={fi1,..., f,} andB = {ey, ..., e, } be the canonical bases of tRealgebrask”
and R™, that are complete families of orthogonal idempotents.

Fory € Homalz(R?, R™), let \(y) := (a; ;) € M, ,(R) be its matrix in the basesandB
(with the rulep(f;) = Y"1, a; ; - ¢; for eachy). Then\ defines an injective map whose image
A\ we compute. Applying the ring morphisgto the relationgfj2 = f;, f;fr = 0 for eachj # k
ande:1 /i = 1re, we get the condition&e): afyj = a; j, (*2): a; ja;, = 0foreachj # kand
(¥3): 25 g a;; = 1, for eachi. Itis easily seen thah = {(a;,;) € My p(R) | (¥1), (x2), (x3)}
and that\ : Homalz (R?, R™) — A is bijective. Indeed, any element &fis the matrix of a ring
morphism by(x1), (x2), (x3).

(1) LetH := {¢ € Exalg(R?,R™) | MN(¢) € M, ,({0,1})}. Forp € H andA(y) = (ai,;),
we have q; ; € {1,0} for each(i, j) and thena; , = O as soon as; ; = 1 for somej # k
by (x2). Foreachy € {1,...,p}, setd; := {i € {1,...,n} | a;; = 1}. Sincey is injective,
o(f;) # 0 for all j implies that eachl; # (. Then(x,) impliesA; N A, = 0 for j # k and
(3) that{1,...,n} = UJ_A;, since eachi € {1,...,n} is in one (and only onej;, so that
{A1,...,A,} € P(n,p). Hence, thereisamap: H — P(n,p), whereu(yp) = {A41,..., Ay},
such thatp(f;) = ZieAJ e; for eachj. Theny is bijective because any elemei;, ..., A,}
of P(n,p) defines some € H by the relationsp(f;) = >, 4, ei for each;.

(2) If Ris connected(x;) implies thatd = Exalz(R?, R™).

(8) If T := Tot(R) is Artinian, thenT = [[*, Ry, where MiR) := {Mj,..., M,,}.
SinceR C T is t-closed, the idempotents & andT coincide. Then it is enough to use (2) o

We show that anything is possible whéris aZPIR.

Proposition 4.6.Let (R, M) be aZPIR andp,n two integers such that < p < nandy €
Exalg (RP, R™). The following statements hold:

Q) fn=p+1, ¢ has FIP.
(2) If p+2<n<2p,phas FIPin some cases and not FIP in some others.
(3) Ifn > 2p + 1, theny has not FIP.

Proof. We keep notation of Propositioh52). SinceR is connected, any extensignof R-
algebrar? C R" comes from some partitior_; A; of {1,...,n} with o(f;) = >Z,c 4 e In
view of [7, Lemma 111.3], we may identifys := R™ with H;’:l S;, whereS; == ¢(f;)Sis aring
extension ofR for eachj. Moreover,R? C R™ has FIP if and only if eacl® C S, has FIP T,
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Proposition I11.4]. ButS; is the R-algebra generated By; | i € A;}, and then isomorphic to
R!4il, Consider the following cases and use Theodegfor eachR C S;.

(1)n=p+ 1. Then,|4;| = 1 for all j, except ongj such thatA4;,| = 2. It follows thatS, is
isomorphic either taz, or R2. In both casesRk C S; has FIP and?? C R" has FIP.

(2) p+ 2 < n < 2p. We consider two subcases:

(a) If |A;| = 1 for all j, except ongp such thatA;,| =n — p+ 1> 3, thenk C S;, has not
FIP, whence als®&” C R™.

(b) Setk := n — p < p and consider a partitiofi4s, ..., A4,} such thafA,;| = 2 forj < k
and|A,| = 1forj > k. Then,R C S; has FIP for eachi and so hag? C R". We have proved
that R? C R™ has FIP or not according to the structuref¥talgebra considered faz™.

(3)n > 2p+1. Consider a partition as above | Hf;| < 2 for all j, thenn < 2pis a contradiction.
Hence, there igo such that A | > 2. It follows thatR C S}, has not FIP an&” c R" has not
FIP. i

Proposition 4.7.Let R be a (resp connected) ring and < p < n two integers. Theny €
Exalg(R?, R™) has FIP if (respand only if)R is an FMIR andn < 2p whenR is aZFMIR.

Proof. We use the notation of the proof of Propositiéré which holds for an arbitrary ring.
Then,R? C R™ has FIP if and only ifR C S; has FIP for eaclj. Fix a partition{ 41, ..., 4,} of
{1,...,n}, sothatS; = RI4il. Setk; = |A;| andk := sup(k;},-1. . It follows thatR C S;

has FIP for each if and only if R C R* has FIP, since there are extensidifs C R*. But
Theorem4.2 shows that?R C R* has FIP if and only ifR is an FMIR andk < 2 whenR is
>FMIR. Assume thal? is aZFMIR. An easy calculation using the discussion of the proof of
Proposition4.6 leads to a partitioq A1,...,A,} of {1,...n} such thatA,| < 2 for eachj if
and only ifn. < 2p, giving the wanted result.

If R is connected, Propositioh.5 tells us that Exal(R?, R™) is in bijection with the set
P(n,p) of partitions{As,...,A,} of {1,...,n}. Assume thatp : R? — R"™ has FIP, so that
R C S; has FIP for each € {1,...,p}. The first part of the proof shows that this holds if and
only if Ris an FMIR andk < 2 whenR is anZFMIR, whatever is its associated partition. o
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