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Abstract Using p-adic measure theory we give explicit representations of p-adic analogues
of the character Dedekind sums and their reciprocity laws.

1. Introduction

K. Rosen and W. Synder ([12]) showed that by p-adically interpolating certain partial zeta
functions, it is possible to interpolate the higher order Dedekind sums
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introduced by Apostol ([1]), thus obtain p-adic Dedekind sums. The authors then showed that
there is a reciprocity law for p-adic Dedekind sums, however they are not able to obtain an
explicit form for the reciprocity law for the arbitrary p-adic integers. C. Synder ([16]) obtained
such an explicit form for the reciprocity law for the arbitrary p-adic integers by the use of p-adic
measure theory. In a series papers A. Kudo ([8, 9, 10]) extended the results of Rosen and Synder
to higher order Dedekind sums
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for every h, k and r > 1. Kudo accomplished this by using an expression for kms(r)m+1 (h, k) in
terms of Euler numbers and a p-adic continuous function which interpolates these numbers.

B. Berndt ([2]) gave a character transformation formula similar to those for the Dedekind eta
function and defined Dedekind sums with character s (h, k;χ) by
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for (h, k) = 1, where χ is a primitive Dirichlet character of conductor f and Bm,χ (x) is the mth
character Bernoulli function. M. Cenkci, M. Can and V. Kurt ([5]) extended this definition as
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and established reciprocity law.
The purpose of this paper is to define p-adic character Dedekind sums which interpolate (1.1).

The basic idea is to use an expression for sm (h, k;χ) in terms of generalized Euler numbers and
a p-adic continuous function which interpolates these numbers. We also show that there is a
reciprocity law for these sums for m+ 1 ≡ 0 (modp− 1), where p is an odd prime number.

2. Preliminaries

For integers m, h and k such that m > 0 and k > 0 the higher order Dedekind sums are
defined as
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where Bm (x) denotes the mth periodic Bernoulli function defined by

∞∑
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for all real x and Bm (x) = Bm ({x}) with {x} denotes the fractional part of x. For x = 0,
Bm (0) = Bm is the mth Bernoulli number. For even m, the higher order Dedekind sums are
relatively uninteresting. However, for odd m, they possess a reciprocity formula.

There are other representations of Dedekind sums. LetEm (u) be the modified Euler numbers
belonging to a parameter u. Em (u) is defined by ([10])
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Note that mEm−1 (u) = Bm and 1−u
u Em (u) = Hm (u) for all m ∈ N, where Hm (u) is the

Eulerian number with parameter u ([4]). It is known that (see [4]) for any a ∈ Z, k,m ∈ N and
for any kth root of unity ζ, we have
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, we have from (2.1) that

kmsm (h, k) = m
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after a little reduction ((6.6) of [3]).
There are many generalizations of Bernoulli numbers and polynomials. One of them is via

a Dirichlet character. Let χ be a primitive Dirichlet character of conductor f . Then character
Bernoulli polynomials Bm,χ (x) are defined by
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This definition immediately leads the relation

Bm,χ (x) = fm−1
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Character Dedekind sums, which we are going to use for the definition of p-adic character
Dedekind sums, are defined by

sm (h, k;χ) =
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where Bm,χ (x) = Bm,χ ({x}). We note that for a principal character χ this definition reduces
to Apostol’s.

For a primitive Dirichlet character χ of conductor f let Em,χ (u) be the numbers defined by

f−1∑
a=0

χ (a)uf−aeat

eft − uf
=
∞∑
m=0

Em,χ (u)
tm

m!
.

Note that mEm−1,χ (1) = Bm,χ for all m ∈ N. Let ζ be an arbitrary primitive f th root of unity.
Then, if (k, f) = 1, we deduce that
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(Proposition 3.1 of [7]). From this relation we may write the character Dedekind sums in terms
of generalized Euler numbers as

χ (k) kmsm (h, k;χ) =
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Throughout this paper we use standard terminology from the p-adic theory. Let p denote a
fixed prime number which, for convenience, we assume to be odd. Let Zp and Qp denote the set
of p-adic integers and p-adic rational numbers, respectively. Let |·|p denote the p-adic absolute
value on Qp, normalized so that |p|p = p−1. Let Qp be the algebraic closure of Qp and Cp be
the completion of Qp with respect to p-adic absolute value. Note that two fields C and Cp are
algebraically isomorphic, and any one of the two can be embedded in the other.

The group of p-adic units is denoted by Z∗p. If V is the group
{
x ∈ Qp : xp−1 = 1

}
, then

Z∗p = V ×(1 + pZp). Thus, if a ∈ Z∗p then a = w (a) 〈a〉, where w (a) and 〈a〉 are the projections
of a onto V and 1 + pZp, respectively. Letting w (a) = 0 for a ∈ Z such that (a, p) 6= 1, we
see that w is actually a Dirichlet character, called Teichmüller character, having conductor p. We
note that the order of w is p− 1.

Let f be a positive integer. We set Xf = lim←−
N

(
Z/fpNZ

)
, the map from Z/fpMZ to Z/fpNZ

for M > N , to be reduction moddpN . In the special case f = 1, X1 = Zp. Let a + pNZp ={
x ∈ Qp : |x− a|p 6 p−N

}
for a ∈ Qp and N ∈ Z. Then the sets of the form a + pNZp

form a basis of open sets for the metric space Qp. This means that any open subset of Qp is
a union of open sets of this type. Note that a + fpNZp =

⋃
06b<p

(
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)
+ fpN+1Zp and
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⋃
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a+ fpZp (see [6, 13]).

Let UD (Zp,Cp) be the Banach algebra of all uniformly (or strictly) differentiable functions
f : Zp → Cp under the pointwise operations and valuation (see [11, 13, 18]). If ζ satisfies the
condition that ζp

n 6= 1 for al n > 0 we can define a finitely additive measure µζ on Xf by
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Then for a function f ∈ UD (Zp,Cp) we have
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using the p-adic limit of the N th Riemann sum of f . Main results for this formula can be given
as follows:

Proposition 2.1. (see [14, 15, 17]) Let |t|p 6 p1/(1−p), t ∈ Cp and t 6= 0, and let χ be a primitive
Dirichlet character with conductor f . Then we have
(1) Em (ζ) =

∫
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xmdµζ (x) .

(2) Em (ζ)− pmEm (ζp) =
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f
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3. p-adic Interpolation of Character Dedekind Sums and Their Reciprocity
Formula

In this section we define a p-adic continuous function that will be used to interpolate sm (h, k;χ).
Let ζ be a root of unity and ζp

n 6= 1 for all n > 0. Let
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for s ∈ Zp. Let exp and log denote the p-adic exponential and logarithm functions respectively.
Then, since 〈x〉 ≡ 1 (mod p) for x ∈ Z×p , log 〈x〉 ≡ 0 (mod p) and 〈x〉s = exp (log 〈x〉).
Furthermore, fixing an embedding of algebraic closure of Q, Q, into Cp, we may then consider
the values of a Dirichlet character χ as lying in Cp. Therefore Fp (s; ζ, χ) is an analytic function
of s in Zp with the expansion
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Now, since the order of w is p− 1, we have by (4) of Proposition 2.1 that

Fp (m, ζ, χ) =

∫
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f

χ (x)xm−1dµζ (x) = Em−1,χ (ζ)− χ (p) pm−1Em−1,χ (ζ
p)

for all integers m > 1 and m+ 1 ≡ 0 (mod p− 1).

Definition 3.1. Let χ be a Dirichlet character of conductor f and let h ∈ Z, k ∈ N with (k, f) =
1. Then

Sp (s;h, k;χ) = s
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is the p-adic character Dedekind sum for all s ∈ Zp.

We now show that the function Sp (s;h, k;χ) interpolates the character Dedekind sums.

Proposition 3.2. Let χ be a Dirichlet character of conductor f . For any integers m, h, k such
that m > 0, m+ 1 ≡ 0 (modp− 1), k > 0 and (k, f) = 1 we have

Sp (m;h, k;χ) = χ (k) km
{
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.

Proof. Proof follows from definitions of Sp (s;h, k;χ) and Fp (s; ζ, χ). In fact we have
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= χ (k) kmsm (h, k;χ)− χ (k) kmχ (p) pm−1sm (ph, k;χ) ,

which is the result.

Now we are going to interpolate the reciprocity law for sm (h, k;χ). For odd integer m,
coprime positive integers h and k, a non-principle primitive Dirichlet character χ of modulus f
and (f, hk) = 1 we have the reciprocity formula (see [5])
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Proposition 3.3. Letm be an odd integer, h and k coprime positive integers, χ be a non-principle
primitive Dirichlet character of modulus f , k ≡ 1 (mod f), h ≡ 1 (mod f) and p be an odd
prime number with (p, kf) = (p, hf) = 1, m+ 1 ≡ 0 (mod p− 1). Then we have

hSp (m;h, k;χ) + kSp (m; k, h;χ) =
(
1− pm−1) {hkmsm (h, k;χ) + khmsm (k, h;χ)} .

Proof. From Proposition 3.2 we have

Sp (m;h, k;χ) = χ (k) km
{
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}
,

Sp (m; k, h;χ) = χ (h)hm
{
sm (k, h;χ)− χ (p) pm−1sm (pk, h;χ)

}
.

Since k ≡ 1 (mod f) and h ≡ 1 (mod f) we have χ (k) = χ (h) = 1. Thus

hSp (m;h, k;χ) + kSp (m; k, h;χ)

= hkmsm (h, k;χ) + khmsm (k, h;χ)

−pm−1 {χ (p)hkmsm (ph, k;χ) + χ (p) khmsm (pk, h;χ)} .

Now
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Since (p, kf) = 1, we may write B1

(
a
kf

)
= B1

(
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)
, and the values pa run through the same

values of a. Therefore we have

χ (p) sm (ph, k;χ) = sm (h, k;χ) .

Similarly
χ (p) sm (pk, h;χ) = sm (k, h;χ) ,

which completes the proof.
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