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Abstract Using p-adic measure theory we give explicit representations of p-adic analogues
of the character Dedekind sums and their reciprocity laws.

1. Introduction

K. Rosen and W. Synder ([12]) showed that by p-adically interpolating certain partial zeta
functions, it is possible to interpolate the higher order Dedekind sums
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introduced by Apostol ([1]), thus obtain p-adic Dedekind sums. The authors then showed that
there is a reciprocity law for p-adic Dedekind sums, however they are not able to obtain an
explicit form for the reciprocity law for the arbitrary p-adic integers. C. Synder ([16]) obtained
such an explicit form for the reciprocity law for the arbitrary p-adic integers by the use of p-adic
measure theory. In a series papers A. Kudo ([8, 9, 10]) extended the results of Rosen and Synder
to higher order Dedekind sums
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for every h, k and » > 1. Kudo accomplished this by using an expression for ks ( ) , (h, k) in
terms of Euler numbers and a p-adic continuous function which interpolates these numbers.

B. Berndt ([2]) gave a character transformation formula similar to those for the Dedekind eta
function and defined Dedekind sums with character s (h, k; x) by
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for (h, k) = 1, where x is a primitive Dirichlet character of conductor f and B,,, , () is the mth
character Bernoulli function. M. Cenkci, M. Can and V. Kurt ([5]) extended this definition as

D faNw  (ha
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and established reciprocity law.

The purpose of this paper is to define p-adic character Dedekind sums which interpolate (1.1).
The basic idea is to use an expression for s,, (h, k; x) in terms of generalized Euler numbers and
a p-adic continuous function which interpolates these numbers. We also show that there is a
reciprocity law for these sums for m + 1 = 0 (modp — 1), where p is an odd prime number.

2. Preliminaries

For integers m, h and k such that m > 0 and £ > O the higher order Dedekind sums are

defined as .
a
:E = 2.1
Sm h k = k ( > ( )
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where B,, (z) denotes the mth periodic Bernoulli function defined by
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for all real  and B,, (r) = B,, ({«}) with {z} denotes the fractional part of z. For z = 0,
By, (0) = B, is the mth Bernoulli number. For even m, the higher order Dedekind sums are
relatively uninteresting. However, for odd m, they possess a reciprocity formula.

There are other representations of Dedekind sums. Let E,,, (u) be the modified Euler numbers
belonging to a parameter u. F,, (u) is defined by ([10])

Note that mE,,—; (u) = B,, and I_T"Em (u) = Hp, (u) for all m € N, where H,, (u) is the
Eulerian number with parameter u ([4]). It is known that (see [4]) for any a € Z, k,m € N and
for any kth root of unity {, we have

k—1 .
mEy,_y (¢) = k™! ]Z_;Bm (i) ¢

and

k"B, (—)—mZEm H(¢) ¢

Now, since ¢ = B; (%), we have from (2.1) that

K™ s (h, k) = Zgh—l
¢k=1

after a little reduction ((6.6) of [3]).

There are many generalizations of Bernoulli numbers and polynomials. One of them is via
a Dirichlet character. Let x be a primitive Dirichlet character of conductor f. Then character
Bernoulli polynomials B,, , (x) are defined by
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This definition immediately leads the relation

- (452).

Character Dedekind sums, which we are going to use for the definition of p-adic character
Dedekind sums, are defined by

sm (hy ks x) = kil X (a) By (é) Binx (T) :

a=0

where By, () = By, ({2}). We note that for a principal character y this definition reduces
to Apostol’s.
For a primitive Dirichlet character x of conductor f let E,, , (u) be the numbers defined by

f—a a 0
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Note that mFE,, 1, (1) = By, for all m € N. Let ¢ be an arbitrary primitive fth root of unity.
Then, if (k, f) = 1, we deduce that

XK K" By (5) =m D2 Buc1x ()

¢h=1
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(Proposition 3.1 of [7]). From this relation we may write the character Dedekind sums in terms
of generalized Euler numbers as

X(k)kmsm(h,k;x):kilx( ( ) Y B (€M) ¢

a=0 Ck=1

Throughout this paper we use standard terminology from the p-adic theory. Let p denote a
fixed prime number which, for convenience, we assume to be odd. Let Z,, and QQ,, denote the set
of p-adic integers and p-adic rational numbers, respectively. Let |-| , denote the p-adic absolute
value on Q,, normalized so that [p|, = p~'. Let Q, be the algebraic closure of Q, and C,, be
the completion of @p with respect to p-adic absolute value. Note that two fields C and C,, are
algebraically isomorphic, and any one of the two can be embedded in the other.

The group of p-adic units is denoted by Z3. If V' is the group {z € Q, : 2P~! = 1}, then
Zy =V x (1 + pZy). Thus, if a € Z; then a = w (a) (a), where w (a) and (a) are the projections
of a onto V and 1 + pZ,, respectively. Letting w (a) = 0 for a € Z such that (a,p) # 1, we
see that w is actually a Dirichlet character, called Teichmiiller character, having conductor p. We
note that the order of w is p — 1.

Let f be a positive integer. We set X = lim (z/fpNZ), the map from Z/ fp™ Z to Z/ fp™ Z

N
for M > N, to be reduction moddp™. In the special case f = 1, X| = Zy,. Let a + pN Z, =

{x €Qpi|z— a|p < p*N} fora € Q, and N € Z. Then the sets of the form a + p"Z,

form a basis of open sets for the metric space Q,. This means that any open subset of Q,, is
a union of open sets of this type. Note that a + fp"Z, = U (a+bfp") + fp"*'Z, and

0<b<p
X;=X/\pXy= U a+ fpZ, (see 6, 13]).

0<a<fp
(a,p)=1

Let UD (Z,,C,) be the Banach algebra of all uniformly (or strictly) differentiable functions
f : Z, — C, under the pointwise operations and valuation (see [11, 13, 18]). If ¢ satisfies the
condition that (*" # 1 for al n > 0 we can define a finitely additive measure ¢ on X ¢ by

1228 (a + prZp) =

Then for a function f € UD (Z,,C,) we have

V-1 oV Y-l

/f(x)duc = hm Z f(a)pe (a+ fp Z)— hm Cfp Z f(a

using the p-adic limit of the Nth Riemann sum of f. Main results for this formula can be given
as follows:

Proposition 2.1. (see [14, 15, 17]) Let |t| pl/(1-p) ¢ e C, and t # 0, and let x be a primitive
Dirichlet character with conductor f. Then we have

(D) Ey () = f a"dpc ().

(2) Em (€) = ’”E = [ a™duc (x).
ZX

B3) Emx (O) = f X () 2™ dpc () -

(4) Em,X (C) - X( ) " Em X Cp f X mduc (.’17) .

3. p-adic Interpolation of Character Dedekind Sums and Their Reciprocity
Formula

In this section we define a p-adic continuous function that will be used to interpolate s,,, (h, k; x).
Let ¢ be a root of unity and (" # 1 for all n > 0. Let

Fy(s:600 = [ x@) o (@) ()" Jduc (@

X7



ON p-ADIC CHARACTER DEDEKIND SUMS 505

for s € Z,. Let exp and log denote the p-adic exponential and logarithm functions respectively.
Then, since (z) = 1 (mod p) for z € Z, log(z) = 0 (mod p) and (z)* = exp (log (z)).
Furthermore, fixing an embedding of algebraic closure of Q, Q, into C,, we may then consider
the values of a Dirichlet character y as lying in C,,. Therefore F), (s; (, x) is an analytic function
of s in Z, with the expansion

FP (S;C’X) = Zcm (CaX) sm’
m=0

en (GX) = [ x(@)w™' ()
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Now, since the order of w is p — 1, we have by (4) of Proposition 2.1 that
By .60 = [ (@)™ i (1) = Bt (€) = X )" B €7)
X;
for all integers m > landm+ 1 =0 (mod p — 1).
Definition 3.1. Let x be a Dirichlet character of conductor f and let h € Z, k € N with (k, ) =

1. Then
kf—1

Sp(sih,kix) =5 Y X(a)k% > Fp(s:¢hx) ¢
a=0

¢r=1
is the p-adic character Dedekind sum for all s € Z,,.

We now show that the function S, (s; h, k; x) interpolates the character Dedekind sums.

Proposition 3.2. Let x be a Dirichlet character of conductor f. For any integers m, h, k such
thatm >0, m+ 1 =0 (modp — 1), k > 0and (k, f) = 1 we have

Sp (m3hy ks x) = x (k) ™ {sm (h, ks x) = x (p) ™ s (pho k3 X) } -

Proof. Proof follows from definitions of S, (s; h, k; x) and F, (s; ¢, x). In fact we have

kf—1
Sp(myh,ksx) = Z x (a) %m F, (m§Ch,X) e
a=0 Ck=1
kf—1 a
= 2 x@m D [Buoia (€)= x @)™ B (€M) €7
a=0 ch=1
kf—1 a
= > x(a) " D By ()¢
a=0 k=1
kf—1 u
—x@)p™" > x(a) " > Emoiy (€M) ¢
a=0 ¢k=1
= X (k) K™ sm (ha k»X) — X (k) E™x (p)p 715m (ph, k; X) )
which is the result. O

Now we are going to interpolate the reciprocity law for s,, (h, k; x). For odd integer m,
coprime positive integers i and k, a non-principle primitive Dirichlet character y of modulus f
and (f, hk) = 1 we have the reciprocity formula (see [5])

RE™ S (hy ks x) + ER i (B, B3 X))

m+1

1
- m—l—lz
7=0

m
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Proposition 3.3. Let m be an odd integer, h and k coprime positive integers, x be a non-principle
primitive Dirichlet character of modulus f, k = 1 (mod f), h = 1 (mod f) and p be an odd
prime number with (p,kf) = (p,hf) =1, m+1=0 (mod p — 1). Then we have

hSp (ms hy ks x) + kSp (ms k, by X) = (1 — ™) {hk™ s, (B k3 X) + KR ™ s (K, B3 X)) -
Proof. From Proposition 3.2 we have

Sp(mihokix) = X (k) K™ {sm (h kix) = x () p™ s (phs ki )},
Sp (mik, hix) = X (h) W™ {sm (k. h:X) = X () P 5 (Pk, hi %)}
Since k=1 (mod f) and h =1 (mod f) we have x (k) =\ (h) = 1. Thus

hSy (m; b, ks x) + kSp (ms k, by X)
= hk™sp (hykix) + kh™ s (k, hiX)
—p" X (p) RE™ 81, (Phy K5 X) + X () KR 81m (DK, B3 X))} -

Now

Since (p, kf) = 1, we may write B, (ﬁ) = B, (%), and the values pa run through the same
values of a. Therefore we have

X (P) sm (PR, k5 X) = sm (hy k3 x) -

Similarly
X () sm (pk, h;X) = sm (K, h;X) s

which completes the proof. O
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