ON p-ADIC CHARACTER DEDEKIND SUMS

Mehmet Cenkci

Communicated by Adnan Tercan

MSC 2010 Classification: 11F20.
Keywords and phrases: Dedekind sums, character Dedekind sums, p-adic measure theory.
Abstract Using p-adic measure theory we give explicit representations of p-adic analogues of the character Dedekind sums and their reciprocity laws.

1. Introduction

K. Rosen and W. Synder ([12]) showed that by p-adically interpolating certain partial zeta functions, it is possible to interpolate the higher order Dedekind sums

$$
s_{m}(h, k)=\sum_{a=0}^{k-1} \frac{a}{k} \bar{B}_{m}\left(\frac{h a}{k}\right)
$$

introduced by Apostol ([1]), thus obtain p-adic Dedekind sums. The authors then showed that there is a reciprocity law for p-adic Dedekind sums, however they are not able to obtain an explicit form for the reciprocity law for the arbitrary p-adic integers. C. Synder ([16]) obtained such an explicit form for the reciprocity law for the arbitrary p-adic integers by the use of p-adic measure theory. In a series papers A. Kudo ($[8,9,10]$) extended the results of Rosen and Synder to higher order Dedekind sums

$$
s_{m+1}^{(r)}(h, k)=\sum_{a=0}^{k-1} \bar{B}_{m+1-r}\left(\frac{a}{k}\right) \bar{B}_{r}\left(\frac{h a}{k}\right), 0 \leqslant r \leqslant m+1
$$

for every h, k and $r \geqslant 1$. Kudo accomplished this by using an expression for $k^{m} s_{m+1}^{(r)}(h, k)$ in terms of Euler numbers and a p-adic continuous function which interpolates these numbers.
B. Berndt ([2]) gave a character transformation formula similar to those for the Dedekind eta function and defined Dedekind sums with character $s(h, k ; \chi)$ by

$$
s(h, k ; \chi)=\sum_{a=0}^{k f-1} \chi(a) \bar{B}_{1}\left(\frac{a}{k f}\right) \bar{B}_{1, \chi}\left(\frac{h a}{k}\right)
$$

for $(h, k)=1$, where χ is a primitive Dirichlet character of conductor f and $\bar{B}_{m, \chi}(x)$ is the m th character Bernoulli function. M. Cenkci, M. Can and V. Kurt ([5]) extended this definition as

$$
\begin{equation*}
s_{m}(h, k ; \chi)=\sum_{a=0}^{k f-1} \chi(a) \bar{B}_{1}\left(\frac{a}{k f}\right) \bar{B}_{m, \chi}\left(\frac{h a}{k}\right) \tag{1.1}
\end{equation*}
$$

and established reciprocity law.
The purpose of this paper is to define p-adic character Dedekind sums which interpolate (1.1). The basic idea is to use an expression for $s_{m}(h, k ; \chi)$ in terms of generalized Euler numbers and a p-adic continuous function which interpolates these numbers. We also show that there is a reciprocity law for these sums for $m+1 \equiv 0(\bmod p-1)$, where p is an odd prime number.

2. Preliminaries

For integers m, h and k such that $m \geqslant 0$ and $k>0$ the higher order Dedekind sums are defined as

$$
\begin{equation*}
s_{m}(h, k)=\sum_{a=0}^{k-1} \frac{a}{k} \bar{B}_{m}\left(\frac{h a}{k}\right) \tag{2.1}
\end{equation*}
$$

where $\bar{B}_{m}(x)$ denotes the m th periodic Bernoulli function defined by

$$
\sum_{m=0}^{\infty} B_{m}(x) \frac{t^{n}}{n!}=\frac{t \mathrm{e}^{x t}}{\mathrm{e}^{t}-1}
$$

for all real x and $\bar{B}_{m}(x)=\bar{B}_{m}(\{x\})$ with $\{x\}$ denotes the fractional part of x. For $x=0$, $B_{m}(0)=B_{m}$ is the m th Bernoulli number. For even m, the higher order Dedekind sums are relatively uninteresting. However, for odd m, they possess a reciprocity formula.

There are other representations of Dedekind sums. Let $E_{m}(u)$ be the modified Euler numbers belonging to a parameter $u . E_{m}(u)$ is defined by ([10])

$$
\frac{u}{\mathrm{e}^{t}-u}=\sum_{m=0}^{\infty} E_{m}(u) \frac{t^{m}}{m!}
$$

Note that $m E_{m-1}(u)=B_{m}$ and $\frac{1-u}{u} E_{m}(u)=H_{m}(u)$ for all $m \in \mathbb{N}$, where $H_{m}(u)$ is the Eulerian number with parameter u ([4]). It is known that (see [4]) for any $a \in \mathbb{Z}, k, m \in \mathbb{N}$ and for any k th root of unity ζ, we have

$$
m E_{m-1}(\zeta)=k^{m-1} \sum_{j=0}^{k-1} \bar{B}_{m}\left(\frac{j}{k}\right) \zeta^{-j}
$$

and

$$
k^{m} \bar{B}_{m}\left(\frac{a}{k}\right)=m \sum_{\zeta^{k}=1} E_{m-1}(\zeta) \zeta^{-a} .
$$

Now, since $\frac{a}{k}=\bar{B}_{1}\left(\frac{a}{k}\right)$, we have from (2.1) that

$$
k^{m} s_{m}(h, k)=m \sum_{\zeta^{k}=1} \frac{E_{m-1}(\zeta)}{\zeta^{h}-1}
$$

after a little reduction ((6.6) of [3]).
There are many generalizations of Bernoulli numbers and polynomials. One of them is via a Dirichlet character. Let χ be a primitive Dirichlet character of conductor f. Then character Bernoulli polynomials $B_{m, \chi}(x)$ are defined by

$$
\sum_{a=0}^{f-1} \frac{\chi(a) t \mathrm{e}^{(a+x) t}}{\mathrm{e}^{f t}-1}=\sum_{m=0}^{\infty} B_{m, \chi}(x) \frac{t^{n}}{n!}
$$

This definition immediately leads the relation

$$
B_{m, \chi}(x)=f^{m-1} \sum_{a=0}^{f-1} \chi(a) B_{m}\left(\frac{a+x}{f}\right)
$$

Character Dedekind sums, which we are going to use for the definition of p-adic character Dedekind sums, are defined by

$$
s_{m}(h, k ; \chi)=\sum_{a=0}^{k f-1} \chi(a) \bar{B}_{1}\left(\frac{a}{k f}\right) \bar{B}_{m, \chi}\left(\frac{h a}{k}\right)
$$

where $\bar{B}_{m, \chi}(x)=B_{m, \chi}(\{x\})$. We note that for a principal character χ this definition reduces to Apostol's.

For a primitive Dirichlet character χ of conductor f let $E_{m, \chi}(u)$ be the numbers defined by

$$
\sum_{a=0}^{f-1} \frac{\chi(a) u^{f-a} \mathrm{e}^{a t}}{\mathrm{e}^{f t}-u^{f}}=\sum_{m=0}^{\infty} E_{m, \chi}(u) \frac{t^{m}}{m!}
$$

Note that $m E_{m-1, \chi}(1)=B_{m, \chi}$ for all $m \in \mathbb{N}$. Let ζ be an arbitrary primitive f th root of unity. Then, if $(k, f)=1$, we deduce that

$$
\chi(k) k^{m} \bar{B}_{m, \chi}\left(\frac{a}{k}\right)=m \sum_{\zeta^{k}=1} E_{m-1, \chi}(\zeta) \zeta^{a}
$$

(Proposition 3.1 of [7]). From this relation we may write the character Dedekind sums in terms of generalized Euler numbers as

$$
\chi(k) k^{m} s_{m}(h, k ; \chi)=\sum_{a=0}^{k f-1} \chi(a) \bar{B}_{1}\left(\frac{a}{k f}\right) m \sum_{\zeta^{k}=1} E_{m-1, \chi}\left(\zeta^{h}\right) \zeta^{a} .
$$

Throughout this paper we use standard terminology from the p-adic theory. Let p denote a fixed prime number which, for convenience, we assume to be odd. Let \mathbb{Z}_{p} and \mathbb{Q}_{p} denote the set of p-adic integers and p-adic rational numbers, respectively. Let $|\cdot|_{p}$ denote the p-adic absolute value on \mathbb{Q}_{p}, normalized so that $|p|_{p}=p^{-1}$. Let $\overline{\mathbb{Q}}_{p}$ be the algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} be the completion of $\overline{\mathbb{Q}}_{p}$ with respect to p-adic absolute value. Note that two fields \mathbb{C} and \mathbb{C}_{p} are algebraically isomorphic, and any one of the two can be embedded in the other.

The group of p-adic units is denoted by \mathbb{Z}_{p}^{*}. If V is the group $\left\{x \in \mathbb{Q}_{p}: x^{p-1}=1\right\}$, then $\mathbb{Z}_{p}^{*}=V \times\left(1+p \mathbb{Z}_{p}\right)$. Thus, if $a \in \mathbb{Z}_{p}^{*}$ then $a=w(a)\langle a\rangle$, where $w(a)$ and $\langle a\rangle$ are the projections of a onto V and $1+p \mathbb{Z}_{p}$, respectively. Letting $w(a)=0$ for $a \in \mathbb{Z}$ such that $(a, p) \neq 1$, we see that w is actually a Dirichlet character, called Teichmüller character, having conductor p. We note that the order of w is $p-1$.

Let f be a positive integer. We set $X_{f}={\underset{ڭ}{~}}_{\lim _{N}}\left(\mathbb{Z} / f p^{N} \mathbb{Z}\right)$, the map from $\mathbb{Z} / f p^{M} \mathbb{Z}$ to $\mathbb{Z} / f p^{N} \mathbb{Z}$ for $M \geqslant N$, to be reduction $\bmod d p^{N}$. In the special case $f=1, X_{1}=\mathbb{Z}_{p}$. Let $a+p^{N} \mathbb{Z}_{p}=$ $\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leqslant p^{-N}\right\}$ for $a \in \mathbb{Q}_{p}$ and $N \in \mathbb{Z}$. Then the sets of the form $a+p^{N} \mathbb{Z}_{p}$ form a basis of open sets for the metric space \mathbb{Q}_{p}. This means that any open subset of \mathbb{Q}_{p} is a union of open sets of this type. Note that $a+f p^{N} \mathbb{Z}_{p}=\bigcup_{0 \leqslant b<p}\left(a+b f p^{N}\right)+f p^{N+1} \mathbb{Z}_{p}$ and $X_{f}^{*}=X_{f} \backslash p X_{f}=\underset{\substack{0<a<f p \\(a, p)=1}}{\bigcup} a+f p \mathbb{Z}_{p}$ (see [6, 13]).

Let $U D\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ be the Banach algebra of all uniformly (or strictly) differentiable functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ under the pointwise operations and valuation (see [11, 13, 18]). If ζ satisfies the condition that $\zeta^{p^{n}} \neq 1$ for al $n \geqslant 0$ we can define a finitely additive measure μ_{ζ} on X_{f} by

$$
\mu_{\zeta}\left(a+f p^{N} \mathbb{Z}_{p}\right)=\frac{\zeta^{f p^{N}-a}}{1-\zeta^{f p^{N}}}, 0 \leqslant a<f p^{N}, N \geqslant 0
$$

Then for a function $f \in U D\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ we have

$$
\int_{X_{f}} f(x) \mathrm{d} \mu_{\zeta}(x)=\lim _{N \rightarrow \infty} \sum_{a=0}^{f p^{N}-1} f(a) \mu_{\zeta}\left(a+f p^{N} \mathbb{Z}_{p}\right)=\lim _{N \rightarrow \infty} \frac{\zeta^{f p^{N}}}{1-\zeta^{f p^{N}}} \sum_{a=0}^{f p^{N}-1} f(a) \zeta^{-a}
$$

using the p-adic limit of the N th Riemann sum of f. Main results for this formula can be given as follows:

Proposition 2.1. (see $[14,15,17])$ Let $|t|_{p} \leqslant p^{1 /(1-p)}, t \in \mathbb{C}_{p}$ and $t \neq 0$, and let χ be a primitive Dirichlet character with conductor f. Then we have
(1) $E_{m}(\zeta)=\int_{\mathbb{Z}_{p}} x^{m} \mathrm{~d} \mu_{\zeta}(x)$.
(2) $E_{m}(\zeta)-p^{m} E_{m}\left(\zeta^{p}\right)=\int_{\mathbb{Z}_{p}^{\times}} x^{m} \mathrm{~d} \mu_{\zeta}(x)$.
(3) $E_{m, \chi}(\zeta)=\int_{X_{f}} \chi(x) x^{m} \mathrm{~d} \mu_{\zeta}(x)$.
(4) $E_{m, \chi}(\zeta)-\chi(p) p^{m} E_{m, \chi}\left(\zeta^{p}\right)=\int_{X_{f}^{*}} \chi(x) x^{m} \mathrm{~d} \mu_{\zeta}(x)$.

3. p-adic Interpolation of Character Dedekind Sums and Their Reciprocity Formula

In this section we define a p-adic continuous function that will be used to interpolate $s_{m}(h, k ; \chi)$. Let ζ be a root of unity and $\zeta^{p^{n}} \neq 1$ for all $n \geqslant 0$. Let

$$
F_{p}(s ; \zeta, \chi)=\int_{X_{f}^{*}} \chi(x) w^{-1}(x)\langle x\rangle^{s} \frac{1}{x} \mathrm{~d} \mu_{\zeta}(x)
$$

for $s \in \mathbb{Z}_{p}$. Let exp and log denote the p-adic exponential and logarithm functions respectively. Then, since $\langle x\rangle \equiv 1(\bmod p)$ for $x \in \mathbb{Z}_{p}^{\times}, \log \langle x\rangle \equiv 0(\bmod p)$ and $\langle x\rangle^{s}=\exp (\log \langle x\rangle)$. Furthermore, fixing an embedding of algebraic closure of $\mathbb{Q}, \overline{\mathbb{Q}}$, into \mathbb{C}_{p}, we may then consider the values of a Dirichlet character χ as lying in \mathbb{C}_{p}. Therefore $F_{p}(s ; \zeta, \chi)$ is an analytic function of s in \mathbb{Z}_{p} with the expansion

$$
\begin{aligned}
F_{p}(s ; \zeta, \chi) & =\sum_{m=0}^{\infty} c_{m}(\zeta, \chi) s^{m} \\
c_{m}(\zeta, \chi) & =\int_{X_{f}^{*}} \chi(x) w^{-1}(x) \frac{(\log \langle x\rangle)^{m}}{m!} \frac{1}{x} \mathrm{~d} \mu_{\zeta}(x) \\
\left|c_{m}(\zeta, \chi)\right|_{p} & \leqslant\left|\frac{p^{m}}{m!}\right|_{p} \leqslant p^{-m} p^{\frac{m}{p-1}}
\end{aligned}
$$

Now, since the order of w is $p-1$, we have by (4) of Proposition 2.1 that

$$
F_{p}(m, \zeta, \chi)=\int_{X_{f}^{*}} \chi(x) x^{m-1} \mathrm{~d} \mu_{\zeta}(x)=E_{m-1, \chi}(\zeta)-\chi(p) p^{m-1} E_{m-1, \chi}\left(\zeta^{p}\right)
$$

for all integers $m \geqslant 1$ and $m+1 \equiv 0(\bmod p-1)$.
Definition 3.1. Let χ be a Dirichlet character of conductor f and let $h \in \mathbb{Z}, k \in \mathbb{N}$ with $(k, f)=$ 1. Then

$$
S_{p}(s ; h, k ; \chi)=s \sum_{a=0}^{k f-1} \chi(a) \frac{a}{k f} \sum_{\zeta^{k}=1} F_{p}\left(s ; \zeta^{h}, \chi\right) \zeta^{a}
$$

is the p-adic character Dedekind sum for all $s \in \mathbb{Z}_{p}$.
We now show that the function $S_{p}(s ; h, k ; \chi)$ interpolates the character Dedekind sums.
Proposition 3.2. Let χ be a Dirichlet character of conductor f. For any integers m, h, k such that $m \geqslant 0, m+1 \equiv 0(\bmod p-1), k>0$ and $(k, f)=1$ we have

$$
S_{p}(m ; h, k ; \chi)=\chi(k) k^{m}\left\{s_{m}(h, k ; \chi)-\chi(p) p^{m-1} s_{m}(p h, k ; \chi)\right\}
$$

Proof. Proof follows from definitions of $S_{p}(s ; h, k ; \chi)$ and $F_{p}(s ; \zeta, \chi)$. In fact we have

$$
\begin{aligned}
S_{p}(m ; h, k ; \chi)= & \sum_{a=0}^{k f-1} \chi(a) \frac{a}{k f} m \sum_{\zeta^{k}=1} F_{p}\left(m ; \zeta^{h}, \chi\right) \zeta^{a} \\
= & \sum_{a=0}^{k f-1} \chi(a) \frac{a}{k f} m \sum_{\zeta^{k}=1}\left[E_{m-1, \chi}\left(\zeta^{h}\right)-\chi(p) p^{m-1} E_{m-1, \chi}\left(\zeta^{h p}\right)\right] \zeta^{a} \\
= & \sum_{a=0}^{k f-1} \chi(a) \frac{a}{k f} m \sum_{\zeta^{k}=1} E_{m-1, \chi}\left(\zeta^{h}\right) \zeta^{a} \\
& -\chi(p) p^{m-1} \sum_{a=0}^{k f-1} \chi(a) \frac{a}{k f} m \sum_{\zeta^{k}=1} E_{m-1, \chi}\left(\zeta^{h p}\right) \zeta^{a} \\
= & \chi(k) k^{m} s_{m}(h, k ; \chi)-\chi(k) k^{m} \chi(p) p^{m-1} s_{m}(p h, k ; \chi)
\end{aligned}
$$

which is the result.
Now we are going to interpolate the reciprocity law for $s_{m}(h, k ; \chi)$. For odd integer m, coprime positive integers h and k, a non-principle primitive Dirichlet character χ of modulus f and $(f, h k)=1$ we have the reciprocity formula (see [5])

$$
\begin{aligned}
& h k^{m} s_{m}(h, k ; \chi)+k h^{m} s_{m}(k, h ; \bar{\chi}) \\
= & \frac{1}{m+1} \sum_{j=0}^{m+1}\binom{m+1}{j} h^{j} k^{m+1-j} B_{j, \bar{\chi}} B_{m+1-j, \chi}+\frac{m}{f} \chi(k) \bar{\chi}(-h)\left(f^{m+1}-1\right) B_{m+1} .
\end{aligned}
$$

Proposition 3.3. Let m be an odd integer, h and k coprime positive integers, χ be a non-principle primitive Dirichlet character of modulus $f, k \equiv 1(\bmod f), h \equiv 1(\bmod f)$ and p be an odd prime number with $(p, k f)=(p, h f)=1, m+1 \equiv 0(\bmod p-1)$. Then we have

$$
h S_{p}(m ; h, k ; \chi)+k S_{p}(m ; k, h ; \bar{\chi})=\left(1-p^{m-1}\right)\left\{h k^{m} s_{m}(h, k ; \chi)+k h^{m} s_{m}(k, h ; \bar{\chi})\right\}
$$

Proof. From Proposition 3.2 we have

$$
\begin{aligned}
& S_{p}(m ; h, k ; \chi)=\chi(k) k^{m}\left\{s_{m}(h, k ; \chi)-\chi(p) p^{m-1} s_{m}(p h, k ; \chi)\right\} \\
& S_{p}(m ; k, h ; \bar{\chi})=\bar{\chi}(h) h^{m}\left\{s_{m}(k, h ; \bar{\chi})-\bar{\chi}(p) p^{m-1} s_{m}(p k, h ; \bar{\chi})\right\}
\end{aligned}
$$

Since $k \equiv 1(\bmod f)$ and $h \equiv 1(\bmod f)$ we have $\chi(k)=\bar{\chi}(h)=1$. Thus

$$
\begin{aligned}
h S_{p}(m ; h, k ; \chi)+ & k S_{p}(m ; k, h ; \bar{\chi}) \\
= & h k^{m} s_{m}(h, k ; \chi)+k h^{m} s_{m}(k, h ; \bar{\chi}) \\
& -p^{m-1}\left\{\chi(p) h k^{m} s_{m}(p h, k ; \chi)+\bar{\chi}(p) k h^{m} s_{m}(p k, h ; \bar{\chi})\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
\chi(p) s_{m}(p h, k ; \chi) & =\chi(p) \sum_{a=1}^{k f} \chi(a) \bar{B}_{1}\left(\frac{a}{k f}\right) \bar{B}_{m, \chi}\left(\frac{p h a}{k}\right) \\
& =\sum_{a=1}^{k f} \chi(p a) \bar{B}_{1}\left(\frac{a}{k f}\right) \bar{B}_{m, \chi}\left(\frac{h p a}{k}\right)
\end{aligned}
$$

Since $(p, k f)=1$, we may write $\bar{B}_{1}\left(\frac{a}{k f}\right)=\bar{B}_{1}\left(\frac{p a}{k f}\right)$, and the values $p a$ run through the same values of a. Therefore we have

$$
\chi(p) s_{m}(p h, k ; \chi)=s_{m}(h, k ; \chi)
$$

Similarly

$$
\bar{\chi}(p) s_{m}(p k, h ; \bar{\chi})=s_{m}(k, h ; \bar{\chi})
$$

which completes the proof.

References

[1] T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17, 147-157 (1950).
[2] B. C. Berndt, Character transformation formulae similar to those for the Dedekind Eta-function, in 'Analytic Number Theory', Proc. Sym. Pure Math. XXIV, Amer. Math. Soc., Providence R. I., 9-30 (1973).
[3] L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3, 513-522 (1953).
[4] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32, 247-260 (1959).
[5] M. Cenkci, M. Can, V. Kurt, Degenerate and character Dedekind sums, J. Number Theory 124, 346-363 (2007).
[6] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Graduate Texts in Mathematics, 58, Springer-Verlag, Berlin, Heidelberg, New York, (1984).
[7] K. Kozuka, Dedekind type sums attached to Dirichlet characters, Kyushu J. Math. 58, 1-24 (2004).
[8] A. Kudo, On p-adic Dedekind sums (II), Mem. Fac. Sci. Kyushu Univ. 45, 245-284 (1991).
[9] A. Kudo, Reciprocity formulas for p-adic Dedekind sums, Bull. Fac. Lib. Arts Nagasaki Univ. Nat. Sci. 34, 97-101 (1994).
[10] A. Kudo, On p-adic Dedekind sums, Nagoya Math. J. 144, 155-170 (1996).
[11] A. M. Robert, A Course in p-Adic Analysis, Springer-Verlag, New York, (2000).
[12] K. Rosen, W. Synder, p-adic Dedekind sums, J. Reine Angew. Math. 361, 23-26 (1985).
[13] W. H. Schikhof, Ultrametric Calculus, An introduction to p-adic analysis, Cambridge Studies in Adv. Math. 4, Cambridge University Press, Cambridge, New York, (1984).
[14] K. Shiratani, On Euler numbers, Mem. Fac. Sci. Kyushu Univ. 27, 1-5 (1973).
[15] K. Shiratani, S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. 39, 113-125 (1985).
[16] C. Synder, p-adic interpolation of Dedekind sums, Bull. Austral. Math. Soc. 38, 293-301 (1988).
[17] H. Tsumura, On a p-adic interpolation of the generalized Euler numbers and its applications, Tokyo J. Math. 10, 281-293 (1987).
[18] C. F. Woodcock, An invariant p-adic integral on \mathbb{Z}_{p}, J. London Math. Soc., 8, 731-734 (1974).

Author information

Mehmet Cenkci, Akdeniz University, Department of Mathematics, Antalya, 07058, Turkey.
E-mail: cenkci@akdeniz.edu.tr
Received: March 13, 2015.
Accepted: May 20, 2015.

