Approach to Square Roots Applying Square Matrices

H. Méndez-Delgadillo, P. Lam-Estrada and M. R. Maldonado-Ramírez

Communicated by Jose Luis López-Bonilla

MSC 2010 Classifications: Primary 15B36; Secondary 97I30, 13G05.

Keywords and phrases: sequences of rational numbers, 2×2 matrices, integral domain.

All the authors wish to thanks SNI, México, and COFAA-IPN, México.

Abstract. Let *m* be a square free positive integer. If $a + b\sqrt{m}$ is a unit of the integral domain $\mathbb{Z}[\sqrt{m}]$ and *A* is the 2 × 2 matrix corresponding to $a + b\sqrt{m}$, then we obtain two sequences of rational numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} \frac{a_n}{b_n} = \sqrt{m}$, where a_n and b_n are the entries of the first column of A^n .

1 Introduction

Let *m* be a square free integer. We consider the integral domain $\mathbb{Z}[\sqrt{m}] = \{a+b\sqrt{m} \mid a, b \in \mathbb{Z}\}$. The **norm** function of $\mathbb{Z}[\sqrt{m}]$ is the function $N : \mathbb{Z}[\sqrt{m}] \longrightarrow \mathbb{Z}$ given by $N(a+b\sqrt{m}) := (a+b\sqrt{m})(a-b\sqrt{m}) = a^2 - b^2m$, for each $a+b\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$. We have the following properties for the norm:

For each $a + b\sqrt{m}$, $c + d\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

(i)
$$N((a + b\sqrt{m})(c + d\sqrt{m})) = N(a + b\sqrt{m})N(c + d\sqrt{m})$$
 (The norm is multiplicative)

(*ii*) $a + b\sqrt{m}$ is a unit if and only if $N(a + b\sqrt{m}) = \pm 1$, that is, $a^2 - b^2m = \pm 1$.

When m < -1, the multiplicative group of units $\mathbb{Z}[\sqrt{m}]^*$ consists only of 1 and -1; if m = -1, the units are 1, -1, i and -i, in this case $\mathbb{Z}[i]$ is the integral domain of **Gaussian** integers. If m > 1, then $\mathbb{Z}[\sqrt{m}]$ has an infinity of units, because $X^2 - mY^2 = \pm 1$ is the Pell's equation which has an infinity of integer solutions (see [5]). Further, if $a + b\sqrt{m}$ is a unit, then $(a + b\sqrt{m})^n$ is also a unit.

We denote by $\mathfrak{M}_{2\times 2}(\mathbb{Z})$ the set of all 2×2 matrices with integer entries. Let $GL_2(\mathbb{Q})$ be the multiplicative group of invertible 2×2 matrices with rational entries, which is called the **general lineal group of degree 2 over** \mathbb{Q} . The subset of all matrices of $GL_2(\mathbb{Q})$ with determinant 1 is a normal subgroup of $GL_2(\mathbb{Q})$ called the **special lineal group of degree 2 over** \mathbb{Q} and denoted by $SL_2(\mathbb{Q})$.

For each $\lambda \in \mathbb{Q}$, let

$$G_{\lambda} = \left\{ A \in GL_2(\mathbb{Q}) \middle| A = \left[\begin{array}{cc} a & b\lambda \\ b & a \end{array} \right] \right\}$$

and let

$$L_{\lambda} = \{ A \in G_{\lambda} \mid \det(A) = \pm 1 \}.$$

On the other hand, let m be a square free integer and let

$$T_m = \left\{ A \in \mathfrak{M}_{2 \times 2}(\mathbb{Z}) \middle| A = \left[\begin{array}{cc} a & bm \\ b & a \end{array} \right] \right\}.$$

In this paper we study some of the properties of G_{λ} , L_{λ} and T_m . We obtain the field of quotients of T_m . Finally, if m is a square free positive integer and $a + b\sqrt{m}$ is a unit of $\mathbb{Z}[\sqrt{m}]$, then we obtain two sequences of rational numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} \frac{a_n}{b_n} =$

 \sqrt{m} , where a_n and b_n are the entries of the first column of A^n , with $A = \begin{bmatrix} a & bm \\ b & a \end{bmatrix}$.

2 Square matrices corresponding to units of the integral domain $\mathbb{Z}[\sqrt{m}]$

With the previous notation, we have the following results.

Theorem 2.1. *If* $\lambda \in \mathbb{Q}$ *, then*

- (i) G_{λ} is an abelian subgroup of $GL_2(\mathbb{Q})$;
- (*ii*) $G_{\lambda} \cap SL_2(\mathbb{Q})$ is a subgroup of G_{λ} ;
- (*iii*) L_{λ} is a subgroup of G_{λ} containing to subgroup $G_{\lambda} \cap SL_2(\mathbb{Q})$;
- (iv) $G_{\lambda} \cap SL_2(\mathbb{Q})$ is a subgroup of L_{λ} of index 2.

Proof. (*i*): Since the determinant function is multiplicative, it is sufficient to note that for each A and B elements of G_{λ} , with

$$A = \begin{bmatrix} a & b\lambda \\ b & a \end{bmatrix} \text{ and } B = \begin{bmatrix} c & d\lambda \\ d & c \end{bmatrix}.$$

we have

$$AB = \begin{bmatrix} ac + bd\lambda & (ad + bc)\lambda \\ ad + bc & ac + bd\lambda \end{bmatrix} = BA \text{ and } A^{-1} = \frac{1}{a^2 - b^2\lambda} \begin{bmatrix} a & -b\lambda \\ -b & a \end{bmatrix}.$$

(*ii*) and (*iii*): They are obvious.

(*iv*): Applying the determinant function, we have det : $L_{\lambda} \longrightarrow \{-1, 1\}$ is an epimorphism whose kernel is the subgroup $G_{\lambda} \cap SL_2(\mathbb{Q})$ of L_{λ} . Then the affirmation follows from First Isomorphism Theorem.

Theorem 2.2. *If* $\lambda \in \mathbb{Z}$ *, then*

- (*i*) $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is an abelian monoid;
- (*ii*) $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is a submonoid of $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$;
- (*iii*) The elements of $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ are the invertible elements of the monoid $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$;
- (iv) $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is a multiplicative group.

Proof. (i) and (ii) are immediate. (iv) follows from (ii) and (iii). Therefore, we will prove (iii). Let $A \in G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ be an invertible element. We write

$$A = \left[\begin{array}{cc} a & b\lambda \\ b & a \end{array} \right] \;,$$

where $a, b \in \mathbb{Z}$. Then, since $A^{-1} \in G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$, we have $a/\det(A)$ and $b/\det(A)$ are integers. Let $t_1, t_2 \in \mathbb{Z}$ be such that $a = \det(A)t_1$ and $b = \det(A)t_2$. Hence,

$$det(A) = a^2 - b^2 \lambda = det(A)^2 t_1^2 - det(A)^2 t_2^2 \lambda$$

= $det(A)^2 (t_1^2 - t_2^2 \lambda).$

This implies that $\det(A)(t_1^2 - t_2^2\lambda) = 1$; accordingly, $\det(A) = \pm 1$. Therefore, $A \in L_{\lambda} \cap \mathfrak{M}_{2\times 2}(\mathbb{Z})$. Finally, since each element of $L_{\lambda} \cap \mathfrak{M}_{2\times 2}(\mathbb{Z})$ is an invertible element of $G_{\lambda} \cap \mathfrak{M}_{2\times 2}(\mathbb{Z})$, theorem is proved.

Theorem 2.3. If *m* is a square free integer, then

- (i) T_m is a commutative subring with identity of $\mathfrak{M}_{2\times 2}(\mathbb{Z})$;
- (ii) If T_m^* is the multiplicative group of units of T_m , then $T_m^* = L_m \cap \mathfrak{M}_{2\times 2}(\mathbb{Z})$. In particular, T_m^* is a subgroup of L_m .
- (*iii*) the rings T_m and $\mathbb{Z}[\sqrt{m}]$ are isomorphic. In particular, T_m is an integral domain;
- (*iv*) the isomorphism in (*iii*) induces an isomorphism between the multiplicative groups T_m^* and $(\mathbb{Z}[\sqrt{m}])^*$;

(v) $T_m/(T_m \cap SL_2(\mathbb{Q})) \cong \{-1, 1\}.$

Proof. (i): It is clear.

- (*ii*): It follows from Theorem 2.2, (*iii*).
- *(iii)*: The isomorphism is given as follows:

$$\begin{bmatrix} a & bm \\ b & a \end{bmatrix} \longmapsto a + b\sqrt{m}$$

- (iv): It follows from (iii).
- (v): It is a consequence of Theorem 2.1, (iv).

We can expand the field of quotients $\mathbb{Q}(\sqrt{m})$ of $\mathbb{Z}[\sqrt{m}]$ as following.

Theorem 2.4. Let Q_m be the set of all matrices of the form

$$A = \left[\begin{array}{cc} a & bm \\ b & a \end{array} \right]$$

with $a, b \in \mathbb{Q}$. Then,

- (i) Q_m is a field isomorphic $\mathbb{Q}(\sqrt{m})$. This is, Q_m is the field of quotients of T_m ;
- (*ii*) there exists a monomorphism of the multiplicative group $\mathbb{Q}(\sqrt{m})^*$ in $GL_2(\mathbb{Q})$.
- (iii) The group $GL_2(\mathbb{Q})$ has the chain of subgroups

$$Q_m^* \cap SL_2(\mathbb{Q}) < L_m < G_m = Q_m^* < GL_2(\mathbb{Q}).$$

Proof. (i): It is straightforward to verify that Q_m is a field with the usual operations, and that the correspondence

$$\left[\begin{array}{cc} a & bm \\ b & a \end{array}\right] \longrightarrow a + b\sqrt{m}$$

determines an isomorphism between the fields Q_m and $\mathbb{Q}(\sqrt{m})$.

(*ii*): The inverse correspondence in (*i*) induces the monomorphism of the multiplicative group $\mathbb{Q}(\sqrt{m})^*$ in $GL_2(\mathbb{Q})$.

(*iii*): It is immediately.

3 The Main Results

Theorem 3.1. If λ is a positive rational number, and $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ are two sequences of positive rational numbers such that $|a_n^2 - b_n^2 \lambda| = 1$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \infty = \lim_{n \to \infty} b_n$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{\lambda} = \lim_{n \to \infty} \frac{b_n}{a_n} \,\lambda.$$

Proof. Since for all $n \in \mathbb{N}$

$$\left|\frac{a_n^2}{b_n^2} - \lambda\right| = \frac{1}{b_n^2}$$
 and $\left|1 - \frac{b_n^2}{a_n^2} \lambda\right| = \frac{1}{a_n^2}$,

we have

$$\lim_{n \to \infty} \left| \frac{a_n^2}{b_n^2} - \lambda \right| = \lim_{n \to \infty} \frac{1}{b_n^2} = 0 \quad \text{and} \quad \lim_{n \to \infty} \left| 1 - \frac{b_n^2}{a_n^2} \lambda \right| = \lim_{n \to \infty} \frac{1}{a_n^2} = 0.$$

Hence

$$\lim_{n\to\infty} \left(\frac{a_n^2}{b_n^2} - \lambda\right) = 0 \quad \text{and} \quad \lim_{n\to\infty} \left(1 - \frac{b_n^2}{a_n^2} \; \lambda\right) = 0 \; ,$$

equivalently

$$\lim_{n\to\infty} \frac{a_n^2}{b_n^2} = \lambda = \lim_{n\to\infty} \frac{b_n^2}{a_n^2} \; \lambda^2 \; .$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{\lambda} = \lim_{n \to \infty} \frac{b_n}{a_n} \ \lambda \ .$$

Let x be an arbitrary real number. The **integral part** of x is the greatest integer n such that $n \le x < n+1$ and is denoted by $\lfloor x \rfloor$, this is $\lfloor x \rfloor$ is the integer number so that $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$.

Theorem 3.2. *Let m be a square free integer, and*

$$A = \left[\begin{array}{cc} a & bm \\ b & a \end{array} \right] \in Q_m$$

where a, b are two rational numbers. Then the powers of A, A^n with $n \in \mathbb{N}$, are given as follows:

$$A^n = \left[\begin{array}{cc} a_n & b_n m \\ b_n & a_n \end{array} \right]$$

where

$$a_{n} = \begin{cases} \sum_{0 \le t \le \frac{n}{2}} {\binom{n}{2t}} a^{2t} b^{n-2t} m^{\frac{n}{2}-t} & \text{if } n \text{ even} \\ \\ \sum_{0 \le t \le \frac{n-1}{2}} {\binom{n}{2t+1}} a^{2t+1} b^{n-2t-1} m^{\frac{n-1}{2}-t} & \text{if } n \text{ odd} \end{cases}$$
(3.1)

and

$$b_{n} = \begin{cases} \sum_{0 \le t \le \frac{n-2}{2}} \binom{n}{2t+1} a^{2t+1} b^{n-2t-1} m^{\frac{n-2}{2}-t} & \text{if } n \text{ even} \\ \\ \sum_{0 \le t \le \frac{n-1}{2}} \binom{n}{2t} a^{2t} b^{n-2t} m^{\frac{n-1}{2}-t} & \text{if } n \text{ odd} \end{cases}$$
(3.2)

Proof. By induction, it has that the powers of A are of the form

$$A^n = \left[\begin{array}{cc} a_n & b_n m \\ b_n & a_n \end{array}\right] \in Q_m$$

for all $n \in \mathbb{N}$. On the other hand, if $n \in \mathbb{N}$, then we have

$$(a+b\sqrt{m})^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k} (\sqrt{m})^{n-k}$$

$$= \sum_{0 \le t \le \lfloor \frac{n}{2} \rfloor} {n \choose 2t} a^{2t} b^{n-2t} (\sqrt{m})^{n-2t}$$

$$+ \sum_{0 \le t \le \lfloor \frac{n-1}{2} \rfloor} {n \choose 2t+1} a^{2t+1} b^{n-2t-1} (\sqrt{m})^{n-2t-1}$$
(3.3)

More precisely, if n is even number, then

$$(a+b\sqrt{m})^{n} = \sum_{0 \le t \le \frac{n}{2}} {\binom{n}{2t}} a^{2t} b^{n-2t} m^{\frac{n}{2}-t} + \left(\sum_{0 \le t \le \frac{n-2}{2}} {\binom{n}{2t+1}} a^{2t+1} b^{n-2t-1} m^{\frac{n-2}{2}-t}\right) \sqrt{m}$$
(3.4)

and if n is odd number now it has

$$(a+b\sqrt{m})^{n} = \sum_{0 \le t \le \frac{n-1}{2}} {n \choose 2t+1} a^{2t+1} b^{n-2t-1} m^{\frac{n-1}{2}-t} + \left(\sum_{0 \le t \le \frac{n-1}{2}} {n \choose 2t} a^{2t} b^{n-2t} m^{\frac{n-1}{2}-t}\right) \sqrt{m}$$
(3.5)

If ψ is the isomorphism of the Theorem 2.4, (i), between the fields Q_m and $\mathbb{Q}(\sqrt{m})$, then

$$(a + b\sqrt{m})^n = \psi(A)^n = \psi(A^n) = \psi\left(\begin{bmatrix} a_n & b_n m \\ b_n & a_n \end{bmatrix}\right)$$
$$= a_n + b_n\sqrt{m}.$$

Therefore the theorem holds of the equations (3.4) and (3.5).

Theorem 3.3. Let m be a square free positive integer and

$$A = \left[\begin{array}{cc} a & bm \\ b & a \end{array} \right] \in Q_m$$

where a, b are two positive rational numbers and the powers of A are given as follows:

$$A^n = \left[\begin{array}{cc} a_n & b_n m \\ b_n & a_n \end{array} \right]$$

for all $n \in \mathbb{N}$. If $det(A) = \pm 1$, then

- (i) $\det(A^n) = \pm 1$ for each $n \in \mathbb{N}$. This is, $|a_n^2 b_n^2 m| = 1$ for each $n \in \mathbb{N}$;
- (*ii*) $\lim_{n \to \infty} a_n = \infty = \lim_{n \to \infty} b_n$;

(*iii*)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{m} = \lim_{n \to \infty} \frac{b_n m}{a_n}.$$

Proof. (i): Applying induction, it is sufficient to observe that the determinant function is multiplicative.

(ii): It follows of Theorem 3.2, because a y b are positive rational numbers.

(*iii*): It is a consequence of Theorem 3.1.

4 Example

Taking m = 2, we have $1 + \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ is a unit with $N(1 + \sqrt{2}) = -1$. The matrix corresponding to $1 + \sqrt{2}$ is

$$A = \left[\begin{array}{rrr} 1 & 2 \\ 1 & 1 \end{array} \right]$$

where

$$A^{2} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}, A^{3} = \begin{bmatrix} 7 & 10 \\ 5 & 7 \end{bmatrix}, A^{4} = \begin{bmatrix} 17 & 24 \\ 12 & 17 \end{bmatrix}, \dots, A^{n} = \begin{bmatrix} a_{n} & 2b_{n} \\ b_{n} & a_{n} \end{bmatrix}, \dots$$

Thus, the sequences whose terms are

1, 3/2, 7/5, 17/12, ..., a_n/b_n , ... and 2, 4/3, 10/7, 24/17, ..., $2b_n/a_n$, ...,

they are converging to $\sqrt{2}$.

References

- [1] D.M. Burton, A first course in rings and ideals, Addison-Wesley, 1970.
- [2] T.W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer-Verlag New York, Inc., 1974.
- [3] G. Karpilovsky, *Topics in field theory*, Mathematics Studies 155, Notas de Matemática (124), North-Holland, 1989.
- [4] S. Lang, Algebra, Graduate Texts in Mathematics 211, Springer-Verlag New York, Inc., 2002.
- [5] I.M. Niven, H.S. Zukermann and H.L. Montgomery, An introduction to the theory of numbers, John Wiley & Sons, Inc., 1991.

Author information

H. Méndez-Delgadillo, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional; Academia de Matemáticas, Instituto de la Educación Media Superior, México, D. F., E-mail:

P. Lam-Estrada, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México, D. F..

E-mail: plam@esfm.ipn.mx

M. R. Maldonado-Ramírez, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México, D. F.. E-mail: rosalia@esfm.ipn.mx

Received: May 4, 2014.

Accepted: July 11, 2014.