Approach to Square Roots Applying Square Matrices

H. Méndez-Delgadillo, P. Lam-Estrada and M. R. Maldonado-Ramírez
Communicated by Jose Luis López-Bonilla

MSC 2010 Classifications: Primary 15B36; Secondary 97I30, 13G05.
Keywords and phrases: sequences of rational numbers, 2×2 matrices, integral domain.
All the authors wish to thanks SNI, México, and COFAA-IPN, México.

Abstract

Let m be a square free positive integer. If $a+b \sqrt{m}$ is a unit of the integral domain $\mathbb{Z}[\sqrt{m}]$ and A is the 2×2 matrix corresponding to $a+b \sqrt{m}$, then we obtain two sequences of rational numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\sqrt{m}$, where a_{n} and b_{n} are the entries of the first column of A^{n}.

1 Introduction

Let m be a square free integer. We consider the integral domain $\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m} \mid a, b \in \mathbb{Z}\}$. The norm function of $\mathbb{Z}[\sqrt{m}]$ is the function $N: \mathbb{Z}[\sqrt{m}] \longrightarrow \mathbb{Z}$ given by $N(a+b \sqrt{m}):=$ $(a+b \sqrt{m})(a-b \sqrt{m})=a^{2}-b^{2} m$, for each $a+b \sqrt{m} \in \mathbb{Z}[\sqrt{m}]$. We have the following properties for the norm:

For each $a+b \sqrt{m}, c+d \sqrt{m} \in \mathbb{Z}[\sqrt{m}]$
(i) $N((a+b \sqrt{m})(c+d \sqrt{m}))=N(a+b \sqrt{m}) N(c+d \sqrt{m})$ (The norm is multiplicative).
(ii) $a+b \sqrt{m}$ is a unit if and only if $N(a+b \sqrt{m})= \pm 1$, that is, $a^{2}-b^{2} m= \pm 1$.

When $m<-1$, the multiplicative group of units $\mathbb{Z}[\sqrt{m}]^{*}$ consists only of 1 and -1 ; if $m=-1$, the units are $1,-1, i$ and $-i$, in this case $\mathbb{Z}[i]$ is the integral domain of Gaussian integers. If $m>1$, then $\mathbb{Z}[\sqrt{m}]$ has an infinity of units, because $X^{2}-m Y^{2}= \pm 1$ is the Pell's equation which has an infinity of integer solutions (see [5]). Further, if $a+b \sqrt{m}$ is a unit, then $(a+b \sqrt{m})^{n}$ is also a unit.

We denote by $\mathfrak{M}_{2 \times 2}(\mathbb{Z})$ the set of all 2×2 matrices with integer entries. Let $G L_{2}(\mathbb{Q})$ be the multiplicative group of invertible 2×2 matrices with rational entries, which is called the general lineal group of degree 2 over \mathbb{Q}. The subset of all matrices of $G L_{2}(\mathbb{Q})$ with determinant 1 is a normal subgroup of $G L_{2}(\mathbb{Q})$ called the special lineal group of degree 2 over \mathbb{Q} and denoted by $S L_{2}(\mathbb{Q})$.

For each $\lambda \in \mathbb{Q}$, let

$$
G_{\lambda}=\left\{A \in G L_{2}(\mathbb{Q}) \left\lvert\, A=\left[\begin{array}{cc}
a & b \lambda \\
b & a
\end{array}\right]\right.\right\}
$$

and let

$$
L_{\lambda}=\left\{A \in G_{\lambda} \mid \operatorname{det}(A)= \pm 1\right\}
$$

On the other hand, let m be a square free integer and let

$$
T_{m}=\left\{A \in \mathfrak{M}_{2 \times 2}(\mathbb{Z}) \left\lvert\, A=\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right]\right.\right\}
$$

In this paper we study some of the properties of G_{λ}, L_{λ} and T_{m}. We obtain the field of quotients of T_{m}. Finally, if m is a square free positive integer and $a+b \sqrt{m}$ is a unit of $\mathbb{Z}[\sqrt{m}]$, then we obtain two sequences of rational numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ \sqrt{m}, where a_{n} and b_{n} are the entries of the first column of A^{n}, with $A=\left[\begin{array}{cc}a & b m \\ b & a\end{array}\right]$.

2 Square matrices corresponding to units of the integral domain $\mathbb{Z}[\sqrt{m}]$

With the previous notation, we have the following results.
Theorem 2.1. If $\lambda \in \mathbb{Q}$, then
(i) G_{λ} is an abelian subgroup of $G L_{2}(\mathbb{Q})$;
(ii) $G_{\lambda} \cap S L_{2}(\mathbb{Q})$ is a subgroup of G_{λ};
(iii) L_{λ} is a subgroup of G_{λ} containing to subgroup $G_{\lambda} \cap S L_{2}(\mathbb{Q})$;
(iv) $G_{\lambda} \cap S L_{2}(\mathbb{Q})$ is a subgroup of L_{λ} of index 2 .

Proof. (i): Since the determinant function is multiplicative, it is sufficient to note that for each A and B elements of G_{λ}, with

$$
A=\left[\begin{array}{cc}
a & b \lambda \\
b & a
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
c & d \lambda \\
d & c
\end{array}\right]
$$

we have

$$
A B=\left[\begin{array}{cc}
a c+b d \lambda & (a d+b c) \lambda \\
a d+b c & a c+b d \lambda
\end{array}\right]=B A \text { and } A^{-1}=\frac{1}{a^{2}-b^{2} \lambda}\left[\begin{array}{cc}
a & -b \lambda \\
-b & a
\end{array}\right] .
$$

(ii) and (iii): They are obvious.
(iv): Applying the determinant function, we have det : $L_{\lambda} \longrightarrow\{-1,1\}$ is an epimorphism whose kernel is the subgroup $G_{\lambda} \cap S L_{2}(\mathbb{Q})$ of L_{λ}. Then the affirmation follows from First Isomorphism Theorem.

Theorem 2.2. If $\lambda \in \mathbb{Z}$, then
(i) $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is an abelian monoid;
(ii) $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is a submonoid of $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$;
(iii) The elements of $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ are the invertible elements of the monoid $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$;
(iv) $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is a multiplicative group.

Proof. (i) and (ii) are immediate. (iv) follows from (ii) and (iii). Therefore, we will prove (iii). Let $A \in G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ be an invertible element. We write

$$
A=\left[\begin{array}{cc}
a & b \lambda \\
b & a
\end{array}\right],
$$

where $a, b \in \mathbb{Z}$. Then, since $A^{-1} \in G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$, we have $a / \operatorname{det}(A)$ and $b / \operatorname{det}(A)$ are integers. Let $t_{1}, t_{2} \in \mathbb{Z}$ be such that $a=\operatorname{det}(A) t_{1}$ and $b=\operatorname{det}(A) t_{2}$. Hence,

$$
\begin{aligned}
\operatorname{det}(A) & =a^{2}-b^{2} \lambda=\operatorname{det}(A)^{2} t_{1}^{2}-\operatorname{det}(A)^{2} t_{2}^{2} \lambda \\
& =\operatorname{det}(A)^{2}\left(t_{1}^{2}-t_{2}^{2} \lambda\right) .
\end{aligned}
$$

This implies that $\operatorname{det}(A)\left(t_{1}^{2}-t_{2}^{2} \lambda\right)=1$; accordingly, $\operatorname{det}(A)= \pm 1$. Therefore, $A \in$ $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$. Finally, since each element of $L_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$ is an invertible element of $G_{\lambda} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$, theorem is proved.
Theorem 2.3. If m is a square free integer, then
(i) T_{m} is a commutative subring with identity of $\mathfrak{M}_{2 \times 2}(\mathbb{Z})$;
(ii) If T_{m}^{*} is the multiplicative group of units of T_{m}, then $T_{m}^{*}=L_{m} \cap \mathfrak{M}_{2 \times 2}(\mathbb{Z})$. In particular, T_{m}^{*} is a subgroup of L_{m}.
(iii) the rings T_{m} and $\mathbb{Z}[\sqrt{m}]$ are isomorphic. In particular, T_{m} is an integral domain;
(iv) the isomorphism in (iii) induces an isomorphism between the multiplicative groups T_{m}^{*} and $(\mathbb{Z}[\sqrt{m}])^{*}$;
$(v) T_{m} /\left(T_{m} \cap S L_{2}(\mathbb{Q})\right) \cong\{-1,1\}$.
Proof. (i): It is clear.
(ii): It follows from Theorem 2.2, (iii).
(iii): The isomorphism is given as follows:

$$
\begin{aligned}
\phi: \begin{array}{cc}
T_{m} & \longrightarrow \mathbb{Z}[\sqrt{m}] \\
{\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right]} & \longmapsto a+b \sqrt{m}
\end{array} .
\end{aligned}
$$

(iv): It follows from (iii).
(v) : It is a consequence of Theorem 2.1, (iv).
We can expand the field of quotients $\mathbb{Q}(\sqrt{m})$ of $\mathbb{Z}[\sqrt{m}]$ as following.
Theorem 2.4. Let Q_{m} be the set of all matrices of the form

$$
A=\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right]
$$

with $a, b \in \mathbb{Q}$. Then,
(i) Q_{m} is a field isomorphic $\mathbb{Q}(\sqrt{m})$. This is, Q_{m} is the field of quotients of T_{m};
(ii) there exists a monomorphism of the multiplicative group $\mathbb{Q}(\sqrt{m})^{*}$ in $G L_{2}(\mathbb{Q})$.
(iii) The group $G L_{2}(\mathbb{Q})$ has the chain of subgroups

$$
Q_{m}^{*} \cap S L_{2}(\mathbb{Q})<L_{m}<G_{m}=Q_{m}^{*}<G L_{2}(\mathbb{Q})
$$

Proof. (i): It is straightforward to verify that Q_{m} is a field with the usual operations, and that the correspondence

$$
\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right] \longrightarrow a+b \sqrt{m}
$$

determines an isomorphism between the fields Q_{m} and $\mathbb{Q}(\sqrt{m})$.
(ii): The inverse correspondence in (i) induces the monomorphism of the multiplicative group $\mathbb{Q}(\sqrt{m})^{*}$ in $G L_{2}(\mathbb{Q})$.
(iii): It is immediately.

3 The Main Results

Theorem 3.1. If λ is a positive rational number, and $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are two sequences of positive rational numbers such that $\left|a_{n}^{2}-b_{n}^{2} \lambda\right|=1$ for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\infty=\lim _{n \rightarrow \infty} b_{n}$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\sqrt{\lambda}=\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}} \lambda
$$

Proof. Since for all $n \in \mathbb{N}$

$$
\left|\frac{a_{n}^{2}}{b_{n}^{2}}-\lambda\right|=\frac{1}{b_{n}^{2}} \quad \text { and } \quad\left|1-\frac{b_{n}^{2}}{a_{n}^{2}} \lambda\right|=\frac{1}{a_{n}^{2}}
$$

we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}^{2}}{b_{n}^{2}}-\lambda\right|=\lim _{n \rightarrow \infty} \frac{1}{b_{n}^{2}}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|1-\frac{b_{n}^{2}}{a_{n}^{2}} \lambda\right|=\lim _{n \rightarrow \infty} \frac{1}{a_{n}^{2}}=0
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}^{2}}{b_{n}^{2}}-\lambda\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(1-\frac{b_{n}^{2}}{a_{n}^{2}} \lambda\right)=0
$$

equivalently

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{2}}{b_{n}^{2}}=\lambda=\lim _{n \rightarrow \infty} \frac{b_{n}^{2}}{a_{n}^{2}} \lambda^{2}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\sqrt{\lambda}=\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}} \lambda
$$

Let x be an arbitrary real number. The integral part of x is the greatest integer n such that $n \leq x<n+1$ and is denoted by $\lfloor x\rfloor$, this is $\lfloor x\rfloor$ is the integer number so that $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$.

Theorem 3.2. Let m be a square free integer, and

$$
A=\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right] \in Q_{m}
$$

where a, b are two rational numbers. Then the powers of A, A^{n} with $n \in \mathbb{N}$, are given as follows:

$$
A^{n}=\left[\begin{array}{cc}
a_{n} & b_{n} m \\
b_{n} & a_{n}
\end{array}\right]
$$

where

$$
a_{n}= \begin{cases}\sum_{0 \leq t \leq \frac{n}{2}}\binom{n}{2 t} a^{2 t} b^{n-2 t} m^{\frac{n}{2}-t} & \text { if } n \text { even } \tag{3.1}\\ \sum_{0 \leq t \leq \frac{n-1}{2}}\binom{n}{2 t+1} a^{2 t+1} b^{n-2 t-1} m^{\frac{n-1}{2}-t} & \text { if } n \text { odd }\end{cases}
$$

and

$$
b_{n}= \begin{cases}\sum_{0 \leq t \leq \frac{n-2}{2}}\binom{n}{2 t+1} a^{2 t+1} b^{n-2 t-1} m^{\frac{n-2}{2}-t} & \text { if } n \text { even } \tag{3.2}\\ \sum_{0 \leq t \leq \frac{n-1}{2}}\binom{n}{2 t} a^{2 t} b^{n-2 t} m^{\frac{n-1}{2}-t} & \text { if } n \text { odd }\end{cases}
$$

Proof. By induction, it has that the powers of A are of the form

$$
A^{n}=\left[\begin{array}{cc}
a_{n} & b_{n} m \\
b_{n} & a_{n}
\end{array}\right] \in Q_{m}
$$

for all $n \in \mathbb{N}$. On the other hand, if $n \in \mathbb{N}$, then we have

$$
\begin{align*}
(a+b \sqrt{m})^{n}= & \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}(\sqrt{m})^{n-k} \\
= & \sum_{0 \leq t \leq\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 t} a^{2 t} b^{n-2 t}(\sqrt{m})^{n-2 t} \tag{3.3}\\
& +\sum_{0 \leq t \leq\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 t+1} a^{2 t+1} b^{n-2 t-1}(\sqrt{m})^{n-2 t-1}
\end{align*}
$$

More precisely, if n is even number, then

$$
\begin{align*}
(a+b \sqrt{m})^{n}= & \sum_{0 \leq t \leq \frac{n}{2}}\binom{n}{2 t} a^{2 t} b^{n-2 t} m^{\frac{n}{2}-t} \\
& +\left(\sum_{0 \leq t \leq \frac{n-2}{2}}\binom{n}{2 t+1} a^{2 t+1} b^{n-2 t-1} m^{\frac{n-2}{2}-t}\right) \sqrt{m} \tag{3.4}
\end{align*}
$$

and if n is odd number now it has

$$
\begin{align*}
(a+b \sqrt{m})^{n}= & \sum_{0 \leq t \leq \frac{n-1}{2}}\binom{n}{2 t+1} a^{2 t+1} b^{n-2 t-1} m^{\frac{n-1}{2}-t} \\
& +\left(\sum_{0 \leq t \leq \frac{n-1}{2}}\binom{n}{2 t} a^{2 t} b^{n-2 t} m^{\frac{n-1}{2}-t}\right) \sqrt{m} \tag{3.5}
\end{align*}
$$

If ψ is the isomorphism of the Theorem 2.4, (i), between the fields Q_{m} and $\mathbb{Q}(\sqrt{m})$, then

$$
\begin{aligned}
(a+b \sqrt{m})^{n} & =\psi(A)^{n}=\psi\left(A^{n}\right)=\psi\left(\left[\begin{array}{cc}
a_{n} & b_{n} m \\
b_{n} & a_{n}
\end{array}\right]\right) \\
& =a_{n}+b_{n} \sqrt{m}
\end{aligned}
$$

Therefore the theorem holds of the equations (3.4) and (3.5).
Theorem 3.3. Let m be a square free positive integer and

$$
A=\left[\begin{array}{cc}
a & b m \\
b & a
\end{array}\right] \in Q_{m}
$$

where a, b are two positive rational numbers and the powers of A are given as follows:

$$
A^{n}=\left[\begin{array}{cc}
a_{n} & b_{n} m \\
b_{n} & a_{n}
\end{array}\right]
$$

for all $n \in \mathbb{N}$. If $\operatorname{det}(A)= \pm 1$, then
(i) $\operatorname{det}\left(A^{n}\right)= \pm 1$ for each $n \in \mathbb{N}$. This is, $\left|a_{n}^{2}-b_{n}^{2} m\right|=1$ for each $n \in \mathbb{N}$;
(ii) $\lim _{n \rightarrow \infty} a_{n}=\infty=\lim _{n \rightarrow \infty} b_{n}$;
(iii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\sqrt{m}=\lim _{n \rightarrow \infty} \frac{b_{n} m}{a_{n}}$.

Proof. (i): Applying induction, it is sufficient to observe that the determinant function is multiplicative.
(ii): It follows of Theorem 3.2, because $a y b$ are positive rational numbers.
(iii): It is a consequence of Theorem 3.1.

4 Example

Taking $m=2$, we have $1+\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ is a unit with $N(1+\sqrt{2})=-1$. The matrix corresponding to $1+\sqrt{2}$ is

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

where

$$
A^{2}=\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right], A^{3}=\left[\begin{array}{cc}
7 & 10 \\
5 & 7
\end{array}\right], A^{4}=\left[\begin{array}{cc}
17 & 24 \\
12 & 17
\end{array}\right], \ldots, A^{n}=\left[\begin{array}{cc}
a_{n} & 2 b_{n} \\
b_{n} & a_{n}
\end{array}\right], \ldots
$$

Thus, the sequences whose terms are

$$
1,3 / 2,7 / 5,17 / 12, \ldots, a_{n} / b_{n}, \ldots \text { and } 2,4 / 3,10 / 7,24 / 17, \ldots, 2 b_{n} / a_{n}, \ldots
$$

they are converging to $\sqrt{2}$.

References

[1] D.M. Burton, A first course in rings and ideals, Addison-Wesley, 1970.
[2] T.W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer-Verlag New York, Inc., 1974.
[3] G. Karpilovsky, Topics in field theory, Mathematics Studies 155, Notas de Matemática (124), NorthHolland, 1989.
[4] S. Lang, Algebra, Graduate Texts in Mathematics 211, Springer-Verlag New York, Inc., 2002.
[5] I.M. Niven, H.S. Zukermann and H.L. Montgomery, An introduction to the theory of numbers, John Wiley \& Sons, Inc., 1991.

Author information

H. Méndez-Delgadillo, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional; Academia de Matemáticas, Instituto de la Educación Media Superior, México, D. F.. E-mail:
P. Lam-Estrada, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México, D. F..
E-mail: plam@esfm.ipn.mx
M. R. Maldonado-Ramírez, Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México, D. F..
E-mail: rosalia@esfm.ipn.mx
Received: May 4, 2014.
Accepted: July 11, 2014.

