ON A CLASS OF TWO-INDEX REAL HERMITE POLYNOMIALS ${ }^{\dagger}$

Naïma Aït Jedda and Allal Ghanmi
Communicated by Som Prakash Goyal

MSC 2010 Classifications: 33E20, 33C47.
Keywords and phrases: Two-index Hermite polynomials, Runge's addition formula, Generating function, Nielsen's identity.

Abstract We discuss some basic properties of a class of doubly indexed real Hermite polynomials including recurrence formulae, Runge's addition formula, generating function and Nielsen's identity.

1 Introduction

The Burchnall's operational formula ([2])

$$
\begin{equation*}
\left(-\frac{d}{d x}+2 x\right)^{m}(f)=m!\sum_{k=0}^{m} \frac{(-1)^{k}}{k!} \frac{H_{m-k}(x)}{(m-k)!} \frac{d^{k}}{d x^{k}}(f) \tag{1.1}
\end{equation*}
$$

where $H_{m}(x)$ denotes the usual Hermite polynomial $([5,10])$

$$
\begin{equation*}
H_{m}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}}\left(e^{-x^{2}}\right) \tag{1.2}
\end{equation*}
$$

enjoy a number of remarkable properties. It is used by Burchnall [2] to give a direct proof of Nielsen's identity ([8])

$$
\begin{equation*}
H_{m+n}(x)=m!n!\sum_{k=0}^{\min (m, n)} \frac{(-2)^{k}}{k!} \frac{H_{m-k}(x)}{(m-n)!} \frac{H_{n-k}(x)}{(n-k)!} \tag{1.3}
\end{equation*}
$$

The special case of (1.1) where $f=1$, i.e.,

$$
\begin{equation*}
H_{m}(x)=\left(-\frac{d}{d x}+2 x\right)^{m} \cdot(1) \tag{1.4}
\end{equation*}
$$

can be employed to recover in a easier way the generating function

$$
\begin{equation*}
\sum_{m=0}^{+\infty} H_{m}(x) \frac{t^{m}}{m!}=\exp \left(2 x t-t^{2}\right) \tag{1.5}
\end{equation*}
$$

as well as the Runge addition formula $([9,7])$

$$
\begin{equation*}
H_{m}(x+y)=\left(\frac{1}{2}\right)^{m / 2} m!\sum_{k=0}^{n} \frac{H_{k}(\sqrt{2} x)}{k!} \frac{H_{m-k}(\sqrt{2} y)}{(m-k)!} \tag{1.6}
\end{equation*}
$$

Many generalizations of such Hermite polynomials can be found in the literature including multi-index ones [11, 6, 1, 3]. In this paper, we consider the following class of two-index Hermite polynomials of single real variable:

$$
\begin{equation*}
H_{m, n}(x)=\left(-\frac{d}{d x}+2 x\right)^{m} \cdot\left(x^{n}\right) \tag{1.7}
\end{equation*}
$$

and we derive some of their useful properties. More essentially, we discuss the associated recurrence formulae, Runge's addition formula, generating function and Nielsen's identity.

[^0]
2 Doubly indexed real Hermite polynomials $\boldsymbol{H}_{m, n}(x)$

By taking $f(x)=x^{n}$ in (1.1), we obtain

$$
\begin{align*}
H_{m, n}(x) & :=\left(-\frac{d}{d x}+2 x\right)^{m}\left(x^{n}\right) \tag{2.1}\\
& =m!n!\sum_{k=0}^{\min (m, n)} \frac{(-1)^{k}}{k!} \frac{x^{n-k}}{(n-k)!} \frac{H_{m-k}(x)}{(m-k)!} \tag{2.2}
\end{align*}
$$

It follows that $H_{m, n}(x)$ is a polynomial of degree $m+n$, since

$$
Q(x):=H_{m, n}(x)-x^{n} H_{m}(x)
$$

is a polynomial of degree $\operatorname{deg}(Q) \leq n+m-2$. For the unity of the formulations, we shall define trivially

$$
H_{m, n}(x)=0
$$

whenever $m<0$ or $n<0$. We call them doubly indexed real Hermite polynomials. Note that $H_{m, 0}(x)=H_{m}(x), H_{0, n}(x)=x^{n}$ and

$$
H_{m, n}(0)= \begin{cases}0 & m<n \tag{2.3}\\ (-1)^{n} \frac{m!}{(m-n)!} H_{m-n}(0) & m \geq n\end{cases}
$$

A direct computation using (2.1) gives rise to

$$
H_{1, n}(x)=-n x^{n-1}+2 x^{n+1}
$$

for every integer $n \geq 1$. Note also that, since $H_{1}(x)=2 x$, it follows

$$
\begin{equation*}
H_{m+1}(x)=\left(-\frac{d}{d x}+2 x\right)^{m}\left(H_{1}(x)\right)=\left(-\frac{d}{d x}+2 x\right)^{m}(2 x)=2 H_{m, 1}(x) \tag{2.4}
\end{equation*}
$$

The first few values of $H_{m, n}$ are given by

$H_{m, n}$	$n=1$	$n=2$	$n=3$
$m=1$	$-1+2 x^{2}=H_{2}(x)$	$-2 x+2 x^{3}$	$-3 x^{2}+2 x^{4}$
$m=2$	$-6 x+4 x^{3}=H_{3}(x)$	$2-10 x^{2}+4 x^{4}$	$6 x-14 x^{3}+4 x^{5}$
$m=3$	$6-24 x^{2}+8 x^{4}=H_{4}(x)$	$24 x-36 x^{3}+8 x^{5}$	$-6+54 x^{2}-48 x^{4}+8 x^{6}$

From (2.2), one can deduce easily the symmetry formula

$$
\begin{equation*}
H_{m, n}(-x)=(-1)^{n+m} H_{m, n}(x) \tag{2.5}
\end{equation*}
$$

so that the $H_{m, n}(x)$ is odd (rep. even) if and only if $n+m$ is odd (resp. even). Furthermore, the Rodrigues formula for $H_{m, n}(x)$ is

$$
\begin{equation*}
H_{m, n}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}}\left(x^{n} e^{-x^{2}}\right) \tag{2.6}
\end{equation*}
$$

Indeed, this can be proved easily making use of

$$
\begin{equation*}
\left(-\frac{d}{d x}+2 x\right)^{m} \cdot(f)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}}\left(e^{-x^{2}} f\right) \tag{2.7}
\end{equation*}
$$

Therefore, these polynomials constitute a subclass of the generalized Hermite polynomials

$$
\begin{equation*}
H_{m}^{\gamma}(x, \alpha, p):=(-1)^{m} x^{-\alpha} e^{p x^{\gamma}} \frac{d^{m}}{d x^{m}}\left(x^{\alpha} e^{-p x^{\gamma}}\right) \tag{2.8}
\end{equation*}
$$

considered by Gould and Hopper in [4]. In fact, we have $H_{m, n}(x)=x^{n} H_{m}^{2}(x, n, 1)$.
Proposition 2.1. The polynomials $H_{m, n} ; m, n \geq 1$, satisfy the following recurrence formulae

$$
\begin{align*}
& H_{m, n}^{\prime}(x)+H_{m+1, n}(x)-2 x H_{m, n}(x)=0 \tag{2.9}\\
& H_{m, n}(x)+n H_{m-1, n-1}(x)-2 H_{m-1, n+1}(x)=0 \tag{2.10}\\
& H_{m, n}(x)+m H_{m-1, n-1}(x)-x H_{m, n-1}(x)=0 \tag{2.11}\\
& (m-n) H_{m-1, n-1}(x)+2 H_{m-1, n+1}(x)+x H_{m, n-1}(x)=0 \tag{2.12}
\end{align*}
$$

Proof. The first one follows by writing the derivation operator as

$$
\frac{d}{d x}=-\left(-\frac{d}{d x}+2 x\right)+2 x
$$

Indeed, we get

$$
\begin{aligned}
\frac{d}{d x}\left(H_{m, n}(x)\right) & =-\left(-\frac{d}{d x}+2 x\right) H_{m, n}(x)+2 x H_{m, n}(x) \\
& =-H_{m+1, n}(x)+2 x H_{m, n}(x)
\end{aligned}
$$

For the second one, write $H_{m, n}(x)$ as

$$
\begin{aligned}
H_{m, n}(x) & =\left(-\frac{d}{d x}+2 x\right)^{m-1}\left(H_{1, n}(x)\right) \\
& =\left(-\frac{d}{d x}+2 x\right)^{m-1}\left(-n x^{n-1}+2 x^{n+1}\right) \\
& =-n H_{m-1, n-1}(x)+2 H_{m-1, n+1}(x)
\end{aligned}
$$

To prove (2.11), we use (2.6) combined with Leibnitz formula. Indeed,

$$
\begin{aligned}
H_{m, n}(x) & =(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}}\left(x \cdot x^{n-1} e^{-x^{2}}\right) \\
& =(-1)^{m} e^{x^{2}}\left[x \frac{d^{m}}{d x^{m}}\left(x^{n-1} e^{-x^{2}}\right)+m \frac{d^{m-1}}{d x^{m-1}}\left(x^{n-1} e^{-x^{2}}\right)\right] \\
& =x H_{m, n-1}(x)-m H_{m-1, n-1}(x)
\end{aligned}
$$

Finally, (2.12) follows from (2.10) and (2.11) by substraction.
Remark 2.2. According to (2.4), the (2.11) (corresponding to $n=1$) leads to the well known recurrence formula $H_{m+1}(x)=2 x H_{m}(x)-2 m H_{m-1}(x)$ for $H_{m}(x)$. Note also that (2.9) reduces further to $H_{m}^{\prime}(x)+H_{m+1}(x)-2 x H_{m}(x)=0$ by taking $n=0$, so that we recover the known result that $H_{m}^{\prime}(x)=2 m H_{m-1}(x)$.
Proposition 2.3. We have the following addition formula

$$
\begin{equation*}
H_{m, n}(x+y)=m!n!\left(\frac{1}{\sqrt{2}}\right)^{m+n} \sum_{k=0}^{m} \sum_{j=0}^{n} \frac{H_{k, j}(\sqrt{2} x)}{k!j!} \frac{H_{m-k, n-j}(\sqrt{2} y)}{(m-k)!(n-j)!} \tag{2.13}
\end{equation*}
$$

Proof. We begin by writing have $H_{m, n}(x+y)$ as

$$
\begin{aligned}
H_{m, n}(x+y) & =\left(-\frac{d}{d(x+y)}+2(x+y)\right)^{m} \cdot\left((x+y)^{n}\right) \\
& =\left(-\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)+2(x+y)\right)^{m} \cdot\left((x+y)^{n}\right) \\
& =\left(\frac{1}{\sqrt{2}}\right)^{m}\left(A_{x}+A_{y}\right)^{m} \cdot\left((x+y)^{n}\right) \\
& =\left(\frac{1}{\sqrt{2}}\right)^{m} \sum_{j=0}^{n}\binom{n}{j}\left(A_{x}+A_{y}\right)^{m} \cdot\left(x^{j} y^{n-j}\right)
\end{aligned}
$$

where A_{t} stands for $A_{t}=-\partial /(\partial \sqrt{2} t)+2 \sqrt{2} t$. Thus, since A_{x} and A_{y} commute, we can make use of the binomial formula to get

$$
H_{m, n}(x+y)=\left(\frac{1}{\sqrt{2}}\right)^{m} \sum_{k=0}^{m} \sum_{j=0}^{n}\binom{m}{k}\binom{n}{j} A_{x}^{k} \cdot\left(x^{j}\right) A_{y}^{m-k} \cdot\left(y^{n-j}\right)
$$

whence, we obtain the asserted result according to the fact that

$$
A_{t}^{r}\left(t^{s}\right)=2^{-s / 2} H_{r, s}(\sqrt{2} t)
$$

Remark 2.4. We recover the Runge addition formula (1.6) for the classical real Hermite polynomials $H_{m}(x)=H_{m, 0}(x)$ by taking $n=0$ in (2.13).

The following identities are immediate consequence of the previous proposition.
Corollary 2.5. The identity

$$
H_{m, n}(t)=m!n!\left(\frac{1}{\sqrt{2}}\right)^{m+n} \sum_{j=0}^{n} \sum_{k=j}^{m} \frac{(-1)^{j}}{j!(k-j)!} H_{k-j}(0) \frac{H_{m-k, n-j}(\sqrt{2} t)}{(m-k)!(n-j)!}
$$

holds by taking $x=0$ and setting $t=y$ in (2.13), keeping in mind (2.3). We get also

$$
H_{m, n}(t)=m!n!\left(\frac{1}{\sqrt{2}}\right)^{m+n} \sum_{k=0}^{m} \sum_{j=0}^{n} \frac{H_{k, j}(t / \sqrt{2})}{k!j!} \frac{H_{m-k, n-j}(t / \sqrt{2})}{(m-k)!(n-j)!}
$$

by setting $x=y=t / 2$ in (2.13). While for $t=-\sqrt{2} x=\sqrt{2} y$, we obtain

$$
\sum_{k=0}^{m} \sum_{j=0}^{n}(-1)^{k+j} \frac{H_{k, j}(t)}{k!j!} \frac{H_{m-k, n-j}(t)}{(m-k)!(n-j)!}=0
$$

whenever $m+n$ is odd or $m>n$.
Next, we state the following
Proposition 2.6. The generating function of $H_{m, n}$ is given by

$$
\begin{equation*}
\sum_{m, n=0}^{+\infty} H_{m, n}(x) \frac{u^{m}}{m!} \frac{v^{n}}{n!}=\exp \left(-u^{2}+(2 u+v) x-u v\right) \tag{2.14}
\end{equation*}
$$

Proof. According to the definition of $H_{m, n}$, we can write

$$
\begin{aligned}
\sum_{m, n=0}^{+\infty} H_{m, n}(x) \frac{u^{m}}{m!} \frac{v^{n}}{n!} & =\left[\sum_{m=0}^{+\infty} \frac{1}{m!}\left(-u \frac{d}{d x}+2 u x\right)^{m}\right] \cdot\left(\sum_{n=0}^{+\infty} \frac{v^{n}}{n!} x^{n}\right) \\
& =\exp \left(-u \frac{d}{d x}+2 u x\right)\left(e^{v x}\right)
\end{aligned}
$$

Making use of the Weyl identity which reads for the operators $A=2 x I d$ et $B=-d / d x$ as

$$
\exp (u A+u B)=\exp (u A) \exp (u B) \exp \left(-u^{2} I d\right) ; \quad u \in \mathbb{R}
$$

we get

$$
\sum_{m, n=0}^{+\infty} H_{m, n}(x) \frac{u^{m}}{m!} \frac{v^{n}}{n!}=e^{2 u x-u^{2}} \exp \left(-u \frac{d}{d x}\right)\left(e^{v x}\right)
$$

Therefore, the desired result follows since

$$
\exp \left(-u \frac{d}{d x}\right)\left(e^{v x}\right)=\sum_{k=0}^{\infty} \frac{(-u)^{k}}{k!}\left(\frac{d}{d x}\right)^{k}\left(e^{v x}\right)=e^{-u v} e^{v x}
$$

Remark 2.7. The special case of $v=0$ (in (2.14)) infers the generating function (1.5) of the standard real Hermite polynomials H_{m}. Furthermore, for $y=u=-v$, we get

$$
\begin{equation*}
e^{x y}=\sum_{m, n=0}^{+\infty}(-1)^{n} H_{m, n}(x) \frac{y^{m+n}}{m!n!} \tag{2.15}
\end{equation*}
$$

Proposition 2.8. We have the recurrence formula

$$
\begin{equation*}
H_{m, n}^{\prime}(x)=2 m H_{m-1, n}(x)+n H_{m, n-1}(x) \tag{2.16}
\end{equation*}
$$

Proof. Differentiating the both sides of (2.14) and making appropriate changes of indices yield (2.16).

Corollary 2.9. We have

$$
\begin{equation*}
\frac{d^{\nu}}{d x^{\nu}}\left(H_{r, n}(x)\right)=r!n!\sum_{j=0}^{\nu} \alpha_{j, \nu} \frac{H_{r-\nu+j, n-j}(x)}{(r-\nu+j)!(n-j)!} \tag{2.17}
\end{equation*}
$$

where

$$
\alpha_{j, \nu}= \begin{cases}2^{\nu} & \text { for } j=0 \\ 2 \alpha_{j, \nu-1}+\alpha_{j-1, \nu-1} & \text { for } 1 \leq j<\nu \\ 1 & \text { for } j=\nu\end{cases}
$$

Proof. This can be handled by mathematical induction using (2.16).
Remark 2.10. The $\alpha_{j, \nu}$ are even positive numbers and their first values are

$$
\begin{array}{c||cccccc}
\alpha_{j, \nu} & j=0 & j=1 & j=2 & j=3 & j=4 & j=5 \\
\hline \hline \nu=0 & 1 & & & & & \\
\nu=1 & 2 & 1 & & & & \\
\nu=2 & 2^{2} & 4 & 1 & & & \\
\nu=3 & 2^{3} & 12 & 6 & 1 & & \\
\nu=4 & 2^{4} & 32 & 24 & 8 & 1 & \\
\nu=5 & 2^{5} & 80 & 80 & 40 & 10 & 1
\end{array} .
$$

We conclude this paper by giving a formula for the two-index Hermite polynomial $H_{m, n}(x)$ expressing it as a weighted sum of a product of the same polynomials. Namely, we state the following

Proposition 2.11. Keep notation as above. Then the Nielsen identity for $H_{m, n} ; n \geq 1$, reads

$$
H_{m+r, n}(x)=m!r!n n!\sum_{k, \nu, j=0}^{m, k, \nu} \alpha_{j, \nu} \frac{\Gamma(n+k-\nu)}{(k-\nu)!\nu!} \frac{(-x)^{\nu}}{x^{n+k}} \frac{H_{m-k, n}(x)}{(m-k)!n!} \frac{H_{r-\nu+j, n-j}(x)}{(r-\nu+j)!(n-j)!}
$$

Proof. Recall first that $H_{m}^{\gamma}(x, \alpha, p)$, the polynomials given through (2.8), can be rewritten in the following equivalent form ([4])

$$
\begin{equation*}
H_{m}^{\gamma}(x, \alpha, p):=\left(-\frac{d}{d x}+p \gamma x^{\gamma-1}-\frac{\alpha}{x}\right)^{m} \tag{1}
\end{equation*}
$$

Now, since for the special values $p=1, \gamma=2$ and $\alpha=n$, we have

$$
\begin{aligned}
H_{m+r, n}(x) & =x^{n} H_{m+r}^{2}(x, n, 1) \\
& =x^{n}\left(-\frac{d}{d x}+2 x-\frac{n}{x}\right)^{m}\left(H_{r}^{2}(x, n, 1)\right) \\
& =x^{n}\left(-\frac{d}{d x}+2 x-\frac{n}{x}\right)^{m}\left(x^{-n} H_{r, n}(x)\right)
\end{aligned}
$$

we can make use of the Burchnall's formula extension proved by Gould and Hopper [4], to wit

$$
\left(-\frac{d}{d x}+p \gamma x^{\gamma-1}-\frac{\alpha}{x}\right)^{m}(f)=m!\sum_{k=0}^{m} \frac{(-1)^{k}}{k!} \frac{H_{m-k}^{\gamma}(x, \alpha, p)}{(m-k)!} \frac{d^{k}}{d x^{k}}(f)
$$

Thus, for $f=x^{-n} H_{r, n}$, we obtain

$$
\begin{equation*}
H_{m+r, n}(x)=m!\sum_{k=0}^{m} \frac{(-1)^{k}}{k!} \frac{H_{m-k, n}(x)}{(m-k)!} \frac{d^{k}}{d x^{k}}\left(x^{-n} H_{r, n}(x)\right) \tag{2.18}
\end{equation*}
$$

Therefore, by applying the Leibnitz formula and appealing the result of Corollary 2.9, we get

$$
\begin{aligned}
H_{m+r, n}(x) & =m!\sum_{k=0}^{m} \frac{(-1)^{k}}{k!} \frac{H_{m-k, n}(x)}{(m-k)!} \sum_{\nu=0}^{k}\binom{k}{\nu} \frac{d^{k-\nu}}{d x^{k-\nu}}\left(x^{-n}\right) \frac{d^{\nu}}{d x^{\nu}}\left(H_{r, n}(x)\right) \\
& =m!r!n n!\sum_{k, \nu, j=0}^{m, k, \nu} \alpha_{j, \nu} \frac{\Gamma(n+k-\nu)}{(k-\nu)!\nu!} \frac{(-x)^{\nu}}{x^{n+k}} \frac{H_{m-k, n}(x)}{(m-k)!n!} \frac{H_{r-\nu+j, n-j}(x)}{(r-\nu+j)!(n-j)!}
\end{aligned}
$$

for every integer $n \geq 1$. Note that for $n=0$, (2.18) reads simply

$$
H_{m+r}(x)=m!\sum_{k=0}^{m} \frac{(-1)^{k}}{k!} \frac{H_{m-k}(x)}{(m-k)!} \frac{d^{k}}{d x^{k}}\left(H_{r}(x)\right)
$$

In this case, we recover the usual Nielsen formula (1.3) for the real Hermite polynomials H_{m}.

References

[1] C. Belingeri, G. Dattoli, S. Khan, P.E. Ricci, Monomiality and multi-index multi-variable special polynomials. Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 449-458.
[2] J.L. Burchnall, A note on the polynomials of Hermite. Quart. J. Math., Oxford Ser. 12 (1941). 9-11.
[3] G. Dattoli, S. Khan, P.E. Ricci, On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integral Transforms Spec. Funct. 19 no. 1-2 (2008) 1-9.
[4] H.W. Gould, A.T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29 1962 51-63.
[5] C. Hermite, Sur un nouveau développement en série des fonctions. Compt. Rend. Acad. Sci. Paris 58, p. 94-100 et 266-273, t. LVIII (1864) ou Oeuvres complètes, tome 2. Paris, p. 293-308, 1908.
[6] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005.
[7] J. Kampé de Fériet, Sur une formule d'addition des polynômes d'Hermite. Volume 2 de Mathematiskfysiske Meddelelser. 10 pages, Det Kgl. Danske Videnskabernes Selskab, Lunos, 1923
[8] N. Nielsen, Recherches sur les polynômes d'Hermite. Volume 1 de Mathematisk-fysiske meddelelser. 79 pages, Det Kgl. Danske Videnskabernes Selskab, 1918.
[9] C. Runge, Über eine besondere Art von Intergralgleichungen. Math. Ann. 75 (1914) 130-132.
[10] E.D. Rainville, Special functions. Chelsea Publishing Co., Bronx, N.Y., 1971.
[11] H.S.P. Shrivastava, Some generating function relations of multi-index Hermite polynomials. Math. Comput. Appl. 6 no. 3 (2001) 189-194.

Author information

Naïma Aït Jedda and Allal Ghanmi, Laboratory of Analysis and Applications-URAC/03, Department of Mathematics, P.O. Box 1014, Faculty of Sciences, Mohammed V-Agdal University, Rabat, Morocco.
E-mail: ag@fsr.ac.ma

Received: May 22, 2013
Accepted: June 12, 2013

[^0]: ${ }^{\dagger}$ The research is partially supported by Hassan II Academy of Science and Technology, Morocco

