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Abstract We discuss some basic properties of a class of doubly indexed real Hermite polyno-
mials including recurrence formulae, Runge’s addition formula, generating function and Nielsen’s
identity.

1 Introduction

The Burchnall’s operational formula ([2])(
− d

dx
+ 2x

)m
(f) = m!

m∑
k=0

(−1)k

k!
Hm−k(x)

(m− k)!
dk

dxk
(f), (1.1)

where Hm(x) denotes the usual Hermite polynomial ([5, 10])

Hm(x) = (−1)mex
2 dm

dxm

(
e−x

2
)
, (1.2)

enjoy a number of remarkable properties. It is used by Burchnall [2] to give a direct proof of
Nielsen’s identity ([8])

Hm+n(x) = m!n!
min(m,n)∑

k=0

(−2)k

k!
Hm−k(x)

(m− n)!
Hn−k(x)

(n− k)!
. (1.3)

The special case of (1.1) where f = 1, i.e.,

Hm(x) =

(
− d

dx
+ 2x

)m
· (1). (1.4)

can be employed to recover in a easier way the generating function

+∞∑
m=0

Hm(x)
tm

m!
= exp(2xt− t2) (1.5)

as well as the Runge addition formula ([9, 7])

Hm(x+ y) =

(
1
2

)m/2

m!
n∑
k=0

Hk(
√

2x)
k!

Hm−k(
√

2y)
(m− k)!

. (1.6)

Many generalizations of such Hermite polynomials can be found in the literature including
multi-index ones [11, 6, 1, 3]. In this paper, we consider the following class of two-index Hermite
polynomials of single real variable:

Hm,n(x) =

(
− d

dx
+ 2x

)m
· (xn), (1.7)

and we derive some of their useful properties. More essentially, we discuss the associated recur-
rence formulae, Runge’s addition formula, generating function and Nielsen’s identity.
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2 Doubly indexed real Hermite polynomials Hm,n(x)

By taking f(x) = xn in (1.1), we obtain

Hm,n(x) :=
(
− d

dx
+ 2x

)m
(xn) (2.1)

= m!n!
min(m,n)∑

k=0

(−1)k

k!
xn−k

(n− k)!
Hm−k(x)

(m− k)!
. (2.2)

It follows that Hm,n(x) is a polynomial of degree m+ n, since

Q(x) := Hm,n(x)− xnHm(x)

is a polynomial of degree deg(Q) ≤ n+m−2. For the unity of the formulations, we shall define
trivially

Hm,n(x) = 0

whenever m < 0 or n < 0. We call them doubly indexed real Hermite polynomials. Note that
Hm,0(x) = Hm(x), H0,n(x) = xn and

Hm,n(0) =

{
0 m < n

(−1)n m!
(m−n)!Hm−n(0) m ≥ n

. (2.3)

A direct computation using (2.1) gives rise to

H1,n(x) = −nxn−1 + 2xn+1

for every integer n ≥ 1. Note also that, since H1(x) = 2x, it follows

Hm+1(x) =

(
− d

dx
+ 2x

)m
(H1(x)) =

(
− d

dx
+ 2x

)m
(2x) = 2Hm,1(x). (2.4)

The first few values of Hm,n are given by

Hm,n n = 1 n = 2 n = 3

m = 1 −1 + 2x2 = H2(x) −2x+ 2x3 −3x2 + 2x4

m = 2 −6x+ 4x3 = H3(x) 2− 10x2 + 4x4 6x− 14x3 + 4x5

m = 3 6− 24x2 + 8x4 = H4(x) 24x− 36x3 + 8x5 −6 + 54x2 − 48x4 + 8x6

From (2.2), one can deduce easily the symmetry formula

Hm,n(−x) = (−1)n+mHm,n(x), (2.5)

so that the Hm,n(x) is odd (rep. even) if and only if n+m is odd (resp. even). Furthermore, the
Rodrigues formula for Hm,n(x) is

Hm,n(x) = (−1)mex
2 dm

dxm

(
xne−x

2
)
. (2.6)

Indeed, this can be proved easily making use of(
− d

dx
+ 2x

)m
· (f) = (−1)mex

2 dm

dxm

(
e−x

2
f
)
. (2.7)

Therefore, these polynomials constitute a subclass of the generalized Hermite polynomials

Hγ
m(x, α, p) := (−1)mx−αepx

γ dm

dxm

(
xαe−px

γ
)
. (2.8)

considered by Gould and Hopper in [4]. In fact, we have Hm,n(x) = xnH2
m(x, n, 1).

Proposition 2.1. The polynomials Hm,n; m,n ≥ 1, satisfy the following recurrence formulae

H ′m,n(x) +Hm+1,n(x)− 2xHm,n(x) = 0, (2.9)

Hm,n(x) + nHm−1,n−1(x)− 2Hm−1,n+1(x) = 0, (2.10)

Hm,n(x) +mHm−1,n−1(x)− xHm,n−1(x) = 0, (2.11)

(m− n)Hm−1,n−1(x) + 2Hm−1,n+1(x) + xHm,n−1(x) = 0. (2.12)
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Proof. The first one follows by writing the derivation operator as

d

dx
= −

(
− d

dx
+ 2x

)
+ 2x.

Indeed, we get

d

dx
(Hm,n(x)) = −

(
− d

dx
+ 2x

)
Hm,n(x) + 2xHm,n(x)

= −Hm+1,n(x) + 2xHm,n(x).

For the second one, write Hm,n(x) as

Hm,n(x) =

(
− d

dx
+ 2x

)m−1

(H1,n(x))

=

(
− d

dx
+ 2x

)m−1 (
−nxn−1 + 2xn+1)

= −nHm−1,n−1(x) + 2Hm−1,n+1(x).

To prove (2.11), we use (2.6) combined with Leibnitz formula. Indeed,

Hm,n(x) = (−1)mex
2 dm

dxm

(
x · xn−1e−x

2
)

= (−1)mex
2
[
x
dm

dxm

(
xn−1e−x

2
)
+m

dm−1

dxm−1

(
xn−1e−x

2
)]

= xHm,n−1(x)−mHm−1,n−1(x).

Finally, (2.12) follows from (2.10) and (2.11) by substraction.

Remark 2.2. According to (2.4), the (2.11) (corresponding to n = 1) leads to the well known re-
currence formula Hm+1(x) = 2xHm(x)− 2mHm−1(x) for Hm(x). Note also that (2.9) reduces
further to H ′m(x) +Hm+1(x) − 2xHm(x) = 0 by taking n = 0, so that we recover the known
result that H ′m(x) = 2mHm−1(x).

Proposition 2.3. We have the following addition formula

Hm,n(x+ y) = m!n!
(

1√
2

)m+n m∑
k=0

n∑
j=0

Hk,j(
√

2x)
k!j!

Hm−k,n−j(
√

2y)
(m− k)!(n− j)!

. (2.13)

Proof. We begin by writing have Hm,n(x+ y) as

Hm,n (x+ y) =

(
− d

d(x+ y)
+ 2(x+ y)

)m
.((x+ y)n)

=

(
−1

2

(
∂

∂x
+

∂

∂y

)
+ 2(x+ y)

)m
.((x+ y)n)

=

(
1√
2

)m
(Ax +Ay)

m
.((x+ y)n)

=

(
1√
2

)m n∑
j=0

(
n

j

)
(Ax +Ay)

m
.(xjyn−j),

where At stands for At = −∂/(∂
√

2t) + 2
√

2t. Thus, since Ax and Ay commute, we can make
use of the binomial formula to get

Hm,n (x+ y) =

(
1√
2

)m m∑
k=0

n∑
j=0

(
m

k

)(
n

j

)
Akx.(x

j)Am−ky .(yn−j),

whence, we obtain the asserted result according to the fact that

Art (t
s) = 2−s/2Hr,s(

√
2t).
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Remark 2.4. We recover the Runge addition formula (1.6) for the classical real Hermite poly-
nomials Hm(x) = Hm,0(x) by taking n = 0 in (2.13).

The following identities are immediate consequence of the previous proposition.

Corollary 2.5. The identity

Hm,n(t) = m!n!
(

1√
2

)m+n n∑
j=0

m∑
k=j

(−1)j

j!(k − j)!
Hk−j(0)

Hm−k,n−j(
√

2t)
(m− k)!(n− j)!

holds by taking x = 0 and setting t = y in (2.13), keeping in mind (2.3). We get also

Hm,n(t) = m!n!
(

1√
2

)m+n m∑
k=0

n∑
j=0

Hk,j(t/
√

2)
k!j!

Hm−k,n−j(t/
√

2)
(m− k)!(n− j)!

by setting x = y = t/2 in (2.13). While for t = −
√

2x =
√

2y, we obtain

m∑
k=0

n∑
j=0

(−1)k+j
Hk,j(t)

k!j!
Hm−k,n−j(t)

(m− k)!(n− j)!
= 0

whenever m+ n is odd or m > n.

Next, we state the following

Proposition 2.6. The generating function of Hm,n is given by

+∞∑
m,n=0

Hm,n(x)
um

m!
vn

n!
= exp

(
−u2 + (2u+ v)x− uv

)
. (2.14)

Proof. According to the definition of Hm,n, we can write

+∞∑
m,n=0

Hm,n(x)
um

m!
vn

n!
=

[
+∞∑
m=0

1
m!

(
−u d

dx
+ 2ux

)m]
·

(
+∞∑
n=0

vn

n!
xn

)

= exp
(
−u d

dx
+ 2ux

)
(evx) .

Making use of the Weyl identity which reads for the operators A = 2xId et B = −d/dx as

exp(uA+ uB) = exp(uA) exp(uB) exp
(
−u2Id

)
; u ∈ R,

we get

+∞∑
m,n=0

Hm,n(x)
um

m!
vn

n!
= e2ux−u2

exp
(
−u d

dx

)
(evx) .

Therefore, the desired result follows since

exp
(
−u d

dx

)
(evx) =

∞∑
k=0

(−u)k

k!

(
d

dx

)k
(evx) = e−uvevx.

Remark 2.7. The special case of v = 0 (in (2.14)) infers the generating function (1.5) of the
standard real Hermite polynomials Hm. Furthermore, for y = u = −v, we get

exy =
+∞∑
m,n=0

(−1)nHm,n(x)
ym+n

m!n!
. (2.15)

Proposition 2.8. We have the recurrence formula

H ′m,n(x) = 2mHm−1,n(x) + nHm,n−1(x). (2.16)



ON A CLASS OF TWO-INDEX REAL HERMITE POLYNOMIALS 189

Proof. Differentiating the both sides of (2.14) and making appropriate changes of indices yield
(2.16).

Corollary 2.9. We have

dν

dxν
(Hr,n(x)) = r!n!

ν∑
j=0

αj,ν
Hr−ν+j,n−j(x)

(r − ν + j)!(n− j)!
, (2.17)

where

αj,ν =


2ν for j = 0
2αj,ν−1 + αj−1,ν−1 for 1 ≤ j < ν

1 for j = ν

.

Proof. This can be handled by mathematical induction using (2.16).

Remark 2.10. The αj,ν are even positive numbers and their first values are

αj,ν j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

ν = 0 1
ν = 1 2 1
ν = 2 22 4 1
ν = 3 23 12 6 1
ν = 4 24 32 24 8 1
ν = 5 25 80 80 40 10 1

.

We conclude this paper by giving a formula for the two-index Hermite polynomial Hm,n(x)
expressing it as a weighted sum of a product of the same polynomials. Namely, we state the
following

Proposition 2.11. Keep notation as above. Then the Nielsen identity for Hm,n; n ≥ 1, reads

Hm+r,n(x) = m!r!nn!
m,k,ν∑
k,ν,j=0

αj,ν
Γ(n+ k − ν)
(k − ν)!ν!

(−x)ν

xn+k
Hm−k,n(x)

(m− k)!n!
Hr−ν+j,n−j(x)

(r − ν + j)!(n− j)!
.

Proof. Recall first that Hγ
m(x, α, p), the polynomials given through (2.8), can be rewritten in the

following equivalent form ([4])

Hγ
m(x, α, p) :=

(
− d

dx
+ pγxγ−1 − α

x

)m
(1).

Now, since for the special values p = 1, γ = 2 and α = n, we have

Hm+r,n(x) = xnH2
m+r(x, n, 1)

= xn
(
− d

dx
+ 2x− n

x

)m (
H2
r (x, n, 1)

)
= xn

(
− d

dx
+ 2x− n

x

)m (
x−nHr,n(x)

)
,

we can make use of the Burchnall’s formula extension proved by Gould and Hopper [4], to wit(
− d

dx
+ pγxγ−1 − α

x

)m
(f) = m!

m∑
k=0

(−1)k

k!
Hγ
m−k(x, α, p)

(m− k)!
dk

dxk
(f).

Thus, for f = x−nHr,n, we obtain

Hm+r,n(x) = m!
m∑
k=0

(−1)k

k!
Hm−k,n(x)

(m− k)!
dk

dxk
(x−nHr,n(x)). (2.18)
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Therefore, by applying the Leibnitz formula and appealing the result of Corollary 2.9, we get

Hm+r,n(x) = m!
m∑
k=0

(−1)k

k!
Hm−k,n(x)

(m− k)!

k∑
ν=0

(
k

ν

)
dk−ν

dxk−ν
(x−n)

dν

dxν
(Hr,n(x))

=m!r!nn!
m,k,ν∑
k,ν,j=0

αj,ν
Γ(n+ k − ν)
(k − ν)!ν!

(−x)ν

xn+k
Hm−k,n(x)

(m− k)!n!
Hr−ν+j,n−j(x)

(r − ν + j)!(n− j)!

for every integer n ≥ 1. Note that for n = 0, (2.18) reads simply

Hm+r(x) = m!
m∑
k=0

(−1)k

k!
Hm−k(x)

(m− k)!
dk

dxk
(Hr(x)).

In this case, we recover the usual Nielsen formula (1.3) for the real Hermite polynomialsHm.
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