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Abstract. We show that a ring R is right perfect if and only if every right R-module
has a semi-projective cover. We characterize (semi)hereditary and semisimple rings via semi-
projective modules. Finally we investigate the relative projectivity of modules over a formal

triangular matrix ring T =

[
A 0
M B

]
. We also prove that if a right T -module (X ⊕ Y )T is

lifting, then (X/YM)A and YB are lifting.

1 Introduction

In what follows R will always denote an associative ring with identity and modules will always
be taken as unitary right R-modules. A module M has a projective cover P , if there is an
epimorphism f : P −→ M such that P is projective and Kerf is small in P . A ring R is called
right perfect if every right R-module has a projective cover. Perfect rings were characterized by
H. Bass in [1]. In 1967, Wu and Jans introduced the quasi-projective cover as follows in [23]:
The module P is called a quasi-projective cover of a module M if, there exists an epimorphism
f : P −→M such that (1) P is quasi-projective (2) Kerf is small in P (3) if 0 6= B ⊆ Kerf , then
P/B is not quasi-projective. Note that as projective covers, quasi-projective covers of a module
need not exist. For example, the Z-module M = ⊕kZ/pkZ does not have a quasi-projective
cover (see [6, Example 4]). Also, it is not known whether quasi-projective cover of a module (if
it exists) is unique up to isomorphism. Wu and Jans proved in [23, Proposition 2.6] that when the
projective cover f : P −→ M exists, then the quasi-projective cover of M exists and is unique.
This quasi-projective cover is given by the induced map f ′ : P/T −→M , where T is the largest
fully invariant submodule of P contained in Kerf .

In 1970; K.R. Fuller and D.A. Hill [5, Theorem 4.1], J. Golan [7, Theorem 3.1] and A.
Koehler [19, Corollary 1.2] proved that (the condition (3) is not needed) a ring R is right perfect
if every right R-module has a quasi-projective cover and they also investigated semiperfect rings
via quasi-projective covers of finitely generated modules. After that, in 1983, T.G. Faticoni
studied quasi-projective covers in [6] and in 1996, W. Xue defined the locally projective cover
(without the condition (3)) and proved that a ring R is right perfect if and only if every right
R-module has a locally projective cover in [25, Theorem 3.10]; he also investigated semiperfect
rings via locally projective covers.

In this paper firstly we define semi-projective covers and investigate right perfect rings. Let
M be a module. M is called semi-projective if, for all endomorphisms α and β of M with
β(M) ⊆ α(M) there exists an endomorphism γ of M such that β = αγ (see, [2], [18], [21] and
[22]). An R-module M is called direct projective if for every direct summand K of M every
epimorphism from M to K splits. Note that we have the following hierarchy:

projective⇒ quasi-projective⇒ semi-projective⇒ direct projective.

We say that a module P is a semi-projective cover of any module M if, there exists an
epimorphism f : P −→ M such that P is semi-projective and Kerf is small in P . According
to our definition, there may be a nonzero submodule B of P contained in Kerf with P/B semi-
projective, where f : P −→M is a semi-projective cover. Then P/B is another semi-projective
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cover of M . Clearly P/B and P are not isomorphic to each other. Therefore semi-projective
covers may not be unique up to isomorphism in the sense of our definition. Clearly, every (quasi-
)projective cover is a semi-projective cover. On the other hand, since the Z-module Q is semi-
projective (see, for example, [18, Corollary 2.6]), QZ is a semi-projective cover of itself and of
the Z-moduleQ/Z. In this paper we obtain that a ring R is right perfect if and only if every right
R-module has a semi-projective cover andR is semiperfect if and only if every finitely generated
right (left) R-module has a semi-projective cover. We also observe that a ring R is semisimple
if and only if every (finitely generated) right R-module is semi-projective. As a last work, we
study lifting modules and the relative projectivity of modules over a formal triangular matrix

ring T =

[
A 0
M B

]
. We prove that if a right T -module (X ⊕ Y )T is lifting, then (X/YM)A

and YB are lifting. We also prove that if a right T -module (X ⊕ Y )T is quasi-projective, then
(X/YM)A and YB are quasi-projective and if a right T -module (X⊕Y )T has a quasi-projective
cover, then (X/YM)A and YB have semi-projective covers.

2 Semi-projective Modules and Semi-projective Covers

In this part of the paper, we give some characterizations of semiperfect, perfect, semihereditary,
hereditary and semisimple rings using semi-projective modules and semi-projective covers. This
characterizations have been completely inspired by the earlier related studies from [1], [5]-[9],
[19] and [23]-[25].

The following theorem is an analogue of [8, Theorem 2.2] and the proof follows the same
pattern. We give it here for the convenience of the readers.

Theorem 2.1. Let M be a module and let f : P −→ M be an epimorphism with P projective.
Then

(i) M is projective if and only if P ⊕M is semi-projective.

(ii) M has a projective cover if and only if P ⊕M has a semi-projective cover.

Proof. (1) Assume M is projective. Then clearly P ⊕M is semi-projective. Conversely assume
that P ⊕M is semi-projective. Then the epimorphism f splits (see [18, Lemma 2.8]). Thus M
is projective.

(2) The necessity is clear. For the sufficiency we will use the Koehler’s technique in [19,
Theorem 1.1]. Consider the right R-module X = P ⊕ M . By hypothesis, there exists an
epimorphism g : Q −→ X such that Q is semi-projective and Kerg is small in Q. Let π be the
projection map from X to P . Since P is projective, there is a monomorphism α : P −→ Q such
that πgα = 1P and Q = Imα⊕Ker(πg). Let M = Ker(πg) and g1 = g |M . Then we can assume
Q = P ⊕M . Note that g1(M) = g(M) = g(g−1(M)) = M implies that g1 is an epimorphism
from M to M . Now we will prove that M is the projective cover of M with the epimorphism
g1. Since Kerg = Kerg1, Kerg1 is small in M . Since P is projective, there is a homomorphism
f ′ : P −→M such that g1f

′ = f , namely the following diagram is commutative:

P
f ′

~~
f

��
M

g1

// M // 0

Since Kerg1 is small in M and f is epic, f ′ is epic. Therefore by (1), M is projective.

Corollary 2.2. If every (finitely generated) module has a semi-projective cover, then every (finitely
generated) module has a projective cover.

Proof. Take into account that every (finitely generated) module is an epimorphic image of a
(finitely generated) free, and so projective module.

Corollary 2.3. (i) A ring R is semiperfect if and only if every finitely generated right (left)
R-module has a semi-projective cover.

(ii) A ring R is right perfect if and only if every right R-module has a semi-projective cover.

Now applying the same proof of [8, Theorem 3.1], we get the following, where Rn is the ring
of n by n matrices over R:
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Theorem 2.4. The following conditions are equivalent for a ring R:

(i) R is semiperfect.

(ii) For all n ≥ 1, every cyclic right (left) Rn-module has a semi-projective cover.

(iii) There exists an n > 1 such that every cyclic right (left) Rn-module has a semi-projective
cover.

Golan in [8] proved that a ring R is right hereditary if and only if every submodule of a pro-
jective right R-module is quasi-projective if and only if every principal right ideal of End(F )
is quasi-projective for any free right R-module F ([8, Theorem 4.4]) and R is right semihered-
itary if and only if every finitely generated submodule of a projective right R-module is quasi-
projective if and only if every principal right ideal of Rn is quasi-projective, for all n ≥ 1 ([8,
Theorem 4.3]). Combining these facts and Theorems 4 and 5 in [24] we have the following two
theorems:

Theorem 2.5. The following conditions are equivalent for a ring R:

(i) R is right hereditary.

(ii) Every submodule of a projective right R-module is semi-projective.

(iii) Every principal right ideal of End(F ) is semi-projective for any free right R-module F .

Theorem 2.6. The following conditions are equivalent for a ring R:

(i) R is right semihereditary.

(ii) Every finitely generated submodule of a (finitely generated) projective right R-module is
semi-projective.

(iii) Every finitely generated (principal) right ideal of Rn is semi-projective for all n ≥ 1.

Submodules of semi-projective modules need not be semi-projective as the following exam-
ple shows.

Example 2.7. Let M be the semi-projective Z-module Z/p3Z ⊕ Z/p3Z, where p is any prime
integer. Let N be the submodule pZ/p3Z ⊕ Z/p3Z. Since the epimorphism f : Z/p3Z −→
pZ/p3Z defined by f(x+ p3Z) = px+ p3Z does not split, N is not semi-projective.

Using Theorems 2.5 and 2.6, we can give the following theorem which is an analogue of [8,
Theorem 5.1].

Theorem 2.8. Let R be a ring. If every (finitely generated) submodule of a semi-projective right
R-module is semi-projective, then every factor ring of R is right (semi)hereditary.

The arguments in [9, Proposition 2.2, Theorem C, Corollary 2.4, Lemma 2.5, Corollary 2.6
and Theorem D] may be adapted to obtain the following useful results.

Proposition 2.9. Let R be a ring. If every submodule of a semi-projective right R-module is
semi-projective and H is a right T -nilpotent two-sided ideal of R, then H2 = 0.

Recall that the singular submodule Z(M) of a module M is given by Z(M) = {m ∈ M |
annR(m) is an essential right ideal of R}. M is called singular if Z(M) = M and nonsingular
if Z(M) = 0.

Theorem 2.10. If R is right perfect and every submodule of a semi-projective right R-module is
semi-projective, then every singular right R-module is injective.

Corollary 2.11. If R is right perfect and every submodule of a semi-projective right R-modules
is semi-projective, then Z(M) is a direct summand of M for every right R-module M .

Lemma 2.12. Let R be a left perfect ring. Assume that every finitely generated submodule of a
semi-projective right R-module is semi-projective. If e and f are idempotents of R with eR and
fR indecomposables, and eRf and fRe nonzero, then eR ∼= fR and in fact this isomorphism is
given by left multiplication by any nonzero element of eRf or fRe.

Corollary 2.13. Let R be a left perfect ring. Assume that every finitely generated submodule
of a semi-projective right R-module is semi-projective and e is an idempotent of R with eR
indecomposable. Then eRe is a division ring.
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Theorem 2.14. If R is left perfect and every finitely generated submodule of a semi-projective
right R-module is semi-projective, then R has a decomposition R = S ⊕ J(R) over Z, where S
is a semisimple subring of R containing 1.

Finally, using the same proof of Theorem 7 in [24], we can give the following result which
generalizes Theorem 7 in [24].

Theorem 2.15. If R is a ring over which submodules of Σ-semi-projective modules are direct-
projective, then every factor ring of R is right hereditary.

Theorem 2.16. The following conditions are equivalent for a ring R:

(i) R is semisimple.

(ii) Every (finitely generated) right R-module is semi-projective.

(iii) Every 2-generated right R-module is semi-projective.

(iv) The direct sum of two semi-projective right R-modules is semi-projective.

(v) The direct sum of two quasi-projective right R-modules is semi-projective.

(vi) For all n ≥ 1, every cyclic right Rn-module is semi-projective.

(vii) There exists some n > 1 such that every cyclic right Rn-module is semi-projective.

Proof. By [24, Theorem 9].

3 Some study of modules over formal triangular matrix rings

This section is devoted to the study of modules over formal triangular matrix rings and the results
focus on relative projectivity and lifting properties of modules. This part has been partly inspired
by the earlier related studies of modules over formal triangular matrix rings in [3] and [10]-[17].

Given a formal triangular matrix T =

[
A 0
M B

]
it is well known that ([10]) the category

Mod-T and a category Ω of triples (X,Y )f are equivalent where X ∈ Mod-A, Y ∈ Mod-B and
f : Y ⊗M −→ X is a homomorphism in Mod-A. If (X,Y )f and (U, V )g are two objects in
Ω, then the morphisms from (X,Y )f to (U, V )g in Ω are pairs (ϕ1, ϕ2) where ϕ1 : X −→ U
is an A-homomorphism, ϕ2 : Y −→ V is a B-homomorphism satisfying the condition ϕ1f =
g(ϕ2⊗1M ). The right T -module corresponding to the triple (X,Y )f is the additive groupX⊕Y
with the right action given by

(x, y)

[
a 0
m b

]
= (xa+ f(y ⊗m), yb).

Then we write (X⊕Y )T for this right T -module. Furthermore, if (ϕ1, ϕ2) : (X,Y )f −→ (U, V )g
is a map in Ω, the associated T -homomorphism ϕ : (X ⊕ Y )T −→ (U ⊕ V )T is given by
ϕ(x, y) = (ϕ1(x), ϕ2(y)) for any x ∈ X and y ∈ Y . It is clear that ϕ is injective (resp. surjective)
if and only if ϕ1 : X −→ U , ϕ2 : Y −→ V are injective (resp. surjective). It is convenient to view
such triples as T -modules and the morphisms between them as T -homomorphisms. Here we
should note that the T -module TT corresponds to (A⊕M,B)f , where f is theA-homomorphism
B ⊗M −→ A⊕M given by f(b⊗m) = (0, bm).

Let (X,Y )f ∈ Obj(Ω) and (X ⊕ Y )T be the associated right T -module. Under the right

T -action on X ⊕ Y we have (0 ⊕ Y )

[
0 0
M 0

]
= (f(Y ⊗M), 0). In general the submodule

f(Y ⊗M) of XA is denoted by YM . Now consider Y ′ ≤ YB and let j2 : Y ′ −→ Y denote the

inclusion map. Then (0⊕Y ′)

[
0 0
M 0

]
= (f(j2⊗1M )(Y ′⊗M), 0). In general, the submodule

f(j2 ⊗ 1M )(Y ′ ⊗M) of XA is denoted by Y ′M . Let X ′ ≤ XA satisfy Y ′M ⊆ X ′. Writing f ′
for f(j2 ⊗ 1M ) and denoting the inclusion X ′ −→ X by j1 we see that (X ′, Y ′)f ′ ∈ Obj(Ω)
and (j1, j2) : (X ′, Y ′)f ′ −→ (X,Y )f is a map in Ω realizing (X ′ ⊕ Y ′)T as a T -submodule of
(X ⊕ Y )T . Therefore when we take a submodule (X ′ ⊕ Y ′)T of (X ⊕ Y )T we have X ′ ≤ XA,
Y ′ ≤ YB , f(j2 ⊗ 1M )(Y ′ ⊗M) ≤ X ′. The map f ′ : Y ′ ⊗M −→ X ′ is completely determined;
it has to be f(j2 ⊗ 1M ). Let X ′′ (resp. Y ′′) be a quotient of XA (resp. YB) with η1 : X −→ X ′′
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(resp. η2 : Y −→ Y ′′) the canonical maps. Let Kerη1 = X ′ and Kerη2 = Y ′. Assume that
Y ′M ⊆ X ′. Let j1 : X ′ −→ X , j2 : Y ′ −→ Y be the inclusion maps. Clearly we have the
A-homomorphism f ′′ : Y ′′ ⊗M −→ X ′′ rendering the following diagram commutative

Y ′ ⊗M

f ′

��

j2⊗1M // Y ⊗M

f

��

η2⊗1M // Y ′′ ⊗M

f ′′

��

// 0

X ′
j1 // X

η1 // X ′′ // 0

In this diagram f ′ = f(j2⊗1M ) and the rows are exact. Also it is clear that (η1, η2) : (X,Y )f −→
(X ′′, Y ′′)f ′′ is a map in Ω realizing (X ′′ ⊕ Y ′′)T as a quotient of (X ⊕ Y )T . The kernel of the
associated T -homomorphism η : (X⊕Y )T −→ (X ′′⊕Y ′′)T is precisely (X ′⊕Y ′)T . Now when
we deal with a quotient (X ′′ ⊕ Y ′′)T of (X ⊕ Y )T the A-homomorphism f ′′ : Y ′′ ⊗M −→ X ′′

is completely determined. The above backgrounds were taken from [11] and [13]. For more
details on formal triangular matrix rings we refer to [11]-[17].

As an easy observation we can give the following:

Proposition 3.1. (X ′ ⊕ Y ′)T is a direct summand of (X ⊕ Y )T if and only if XA = X ′ ⊕X ′′,
YB = Y ′⊕Y ′′ with f(j′2⊗1M ) = f ′, f(Y ′⊗M) ⊆ X ′ and f(j′′2 ⊗1M ) = f ′′, f(Y ′′⊗M) ⊆ X ′′
where j′2 : Y ′ −→ Y , j′′2 : Y ′′ −→ Y are the inclusion maps.

Any module N is called lifting if for any submodule H of N , there exists a decomposition
N = N1⊕N2 such that N1 ⊆ H and N2∩H is small in N2. Now we will give a characterization
of lifting modules over the ring T :

Theorem 3.2. If the right T -module (X⊕Y )T determined by (X,Y )f is lifting, then (X/YM)A
and YB are lifting.

Proof. Assume that (X ⊕ Y )T is lifting. Let Y ′ ≤ YB . Consider the submodule (X ⊕ Y ′)T of
(X ⊕ Y )T with the A-homomorphism f ′ = f(j2 ⊗ 1M ) such that j2 : Y ′ −→ Y is the inclusion
map. Since (X ⊕Y )T is lifting, there exists a decomposition (X ⊕Y )T = (H ′⊕K ′)T ⊕ (H ′′⊕
K ′′)T such that (H ′⊕K ′)T ⊆ (X⊕Y ′)T and (H ′′⊕K ′′)T ∩(X⊕Y ′)T = (H ′′⊕(K ′′∩Y ′))T �
(H ′′⊕K ′′)T . Assume that (H ′′⊕K ′′)T and (H ′⊕K ′)T associate with the objects (H ′′,K ′′)f ′′

and (H ′,K ′)f ′ in Ω such that f ′ = f(j′2 ⊗ 1M ), f ′′ = f(j′′2 ⊗ 1M ), where j′2 : K ′ −→ Y and
j′′2 : K ′′ −→ Y are the inclusion maps and f(K ′ ⊗M) ⊆ H ′ and f(K ′′ ⊗M) ⊆ H ′′. Now we
have that X = H ′⊕H ′′, Y = K ′⊕K ′′, K ′ ≤ Y ′. By [11, Proposition 1.3], K ′′ ∩Y ′ � K ′′ and
H ′′ = f(K ′′ ⊗M). Thus YB is lifting.

Now let X ′/YM be an A-submodule of X/YM . Then (X ′ ⊕ Y )T is a submodule of (X ⊕
Y )T . Then there is a decomposition (X ⊕ Y )T = (L1 ⊕K1)T ⊕ (L2 ⊕K2)T such that (L1 ⊕
K1)T ⊆ (X ′ ⊕ Y )T , (L2 ⊕ K2)T ∩ (X ′ ⊕ Y )T = ((L2 ∩ X ′) ⊕ K2)T � (L2 ⊕ K2)T . Now
X = L1 ⊕ L2 and Y = K1 ⊕ K2. By [11, Proposition 1.3], K2 = 0 and L2 ∩ X ′ � L2
(f(K2 ⊗M) = 0). Then X/YM = L1/YM ⊕ (L2 ⊕ YM)/YM , L1/YM ⊆ X ′/YM and
[X ′ ∩ (L2 ⊕ YM)]/YM = [YM ⊕ (X ′ ∩ L2)]/YM � (L2 ⊕ YM)/YM . Thus (X/YM)A is
lifting.

Now we can give a part of a well-known fact in the following:

Corollary 3.3. If T is a generalized uniserial ring with J(T )2 = 0, then B is a generalized
uniserial ring with J(B)2 = 0.

Proof. By Theorem 3.2 and [20, Corollary 2.5].

Example 3.4. Let R be a ring and M a right R-module. Let T =

[
R 0
M Z

]
. Consider the right

T -module VT = (M ⊕Z)T associated to the triple (M,Z)f where f : Z⊗M −→M defined by
n⊗m 7→ nm for all n ∈ Z and m ∈M . Since Z is not lifting, VT is not lifting.

Let VT = (X ⊕ Y )T be a right T -module corresponds to (X,Y )f in Ω. Then we can define
the following B-homomorphism:
f̃ : Y −→ Hom(M,X) given by f̃(y)(m) = f(y ⊗m) for y ∈ Y , m ∈M .
If the right T -module VT = (X ⊕ Y )T corresponds to (X,Y )f in Ω and (X ′ ⊕ Y ′)T is a
submodule of (X ⊕ Y )T with the homomorphism f ′ = f(j2 ⊗ 1M ) such that j2 : Y ′ −→ Y is
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the inclusion map and Y ′M ⊆ X ′, then we will have the B-homomorphism:
f̃|Y ′ : Y ′ −→ Hom(M,X ′) given by f̃|Y ′(y′)(m) = f(y′ ⊗m) for y′ ∈ Y ′, m ∈M .

Haghany and Varadarajan give the complete description of the projective right T -modules in
[11, Theorem 3.1]. Also in [12] Haghany and in [3] Chen and Zang investigate the relatively
injectivity of right T -modules. Now we investigate the relatively projectivity of right T -modules
in the following two theorems.

Theorem 3.5. Let V1 and V2 be two right T -modules with (X1, Y1)f1 , (X2, Y2)f2 the correspond-
ing triples. If X2 is X1-projective in Mod-A and f̃1|Y ′

1
is an isomorphism for every submodule

(X ′1 ⊕ Y ′1 )T of V1, then V2 is V1-projective in Mod-T .

Proof. Take a quotient V ′′1 = (X ′′1 , Y
′′

1 )f ′′
1

of V1. Then X ′′1 = X1/X
′
1, Y

′′
1 = Y1/Y

′
1 , η1 : X1 −→

X ′′1 and η2 : Y1 −→ Y ′′1 are the natural epimorphisms, (X ′1, Y
′

1 )f ′
1

is a submodule of V1 with the
homomorphism f ′1 = f1(j′2⊗1M ) (j′2 : Y ′1 −→ Y is the inclusion map) and f ′′1 : Y ′′1 ⊗M −→ X ′′1
is the A-homomorphism which makes the following diagram commutative:

Y ′1 ⊗M

f ′
1

��

j′2⊗1M
// Y1 ⊗M

f1

��

η2⊗1M // Y ′′1 ⊗M

f ′′
1

��

// 0

X ′1
j′1 // X1

η1 // X ′′1
// 0

where j′1 : X ′1 −→ X1 is the inclusion map. Now the corresponding natural T -homomorphism
η from V1 to V ′′1 is the map (η1, η2). Let σ : V2 −→ V ′′1 be any T -homomorphism . Then σ
corresponds to the pair (σ1, σ2) such that σ1 : X2 −→ X ′′1 is an A-homomorphism, σ2 : Y2 −→
Y ′′1 is a B-homomorphism and σ1f2 = f ′′1 (σ2 ⊗ 1M ) and σ(x2, y2) = (σ1(x2), σ2(y2)). Since
X2 is X1-projective, there exists an A-homomorphism σ1 : X2 −→ X1 such that η1σ1 = σ1.
Now we want to define a B-homomorphism σ2 : Y2 −→ Y1 such that the pair (σ1, σ2) lifts σ
with the corresponding T -homomorphism σ. Take any element y2 ∈ Y2. Then we can define
a homomorphism θ : M −→ X1 with θ(m) = σ1f2(y2 ⊗ m). Since f̃1 is an isomorphism,
there exists a unique y1 ∈ Y1 such that f̃1(y1) = θ. Now let σ2(y2) = y1. Clearly σ2 is a B-
homomorphism. Let y2 ∈ Y2 and m ∈ M . Then f1(σ2 ⊗ 1M )(y2 ⊗ m) = f1(σ2(y2) ⊗ m) =
f1(y1 ⊗ m) = f̃1(y1)(m) = θ(m) = σ1f2(y2 ⊗ m), where σ2(y2) = y1 and f̃1(y1) = θ.
Therefore f1(σ2 ⊗ 1M ) = σ1f2. Thus (σ1, σ2) : (X2, Y2)f2 −→ (X1, Y1)f1 is a morphism in Ω

which corresponds to a T -homomorphism σ : V2 −→ V1, namely σ(x2, y2) = (σ1(x2), σ2(y2)).
Now we should see that ησ = σ. It is enough to show that η2σ2 = σ2. Let y2 ∈ Y2. Since
σ1f2 = f ′′1 (σ2 ⊗ 1M ), for all m ∈ M , (σ1f2)(y2 ⊗m) = σ1(f2(y2 ⊗m)) = f ′′1 (σ2(y2) ⊗m),
hence η1σ1(f2(y2⊗m)) = f ′′1 (σ2(y2)⊗m). Let σ2(y2) = z1 + Y ′1 (z1 ∈ Y1). On the other hand,
f ′′1 (η2⊗1M ) = η1f1. Thus, f ′′1 ((η2⊗1M )(z1⊗m)) = η1f1(z1⊗m) = η1f̃1(z1)(m) = η1σ1f2(y2⊗
m), for all m ∈ M . Since f1(σ2 ⊗ 1M ) = σ1f2, η1σ1f2(y2 ⊗m) = η1f1(σ2 ⊗ 1M )(y2 ⊗m) =
η1f1(σ2(y2) ⊗m) = η1f̃1(σ2(y2))(m), for all m ∈ M . Now η1f̃1(z1)(m) = η1f̃1(σ2(y2))(m),
for all m ∈ M . This means that f̃1(z1 − σ2(y2)) is an A-homomorphism from M to X ′1. Since
f̃1|Y ′

1
is an isomorphism, there exists an element y′1 ∈ Y ′1 such that f̃1|Y ′

1
(y′1) = f̃1(z1 − σ2(y2))

and so y′1 = z1 − σ2(y2). Thus σ2(y2) = η2σ2(y2), namely σ2 = η2σ2.

Note that in [4, 4.1.1], it is proven that if Y1 is Y2-projective and f1 : Y1 ⊗M −→ X1 is an
A-isomorphism, then V1 is V2-projective. Therefore we deduce that the converse of Theorem 3.5
may not be true. Namely there exist right T -modules V1 and V2 such that V2 is V1-projective but
X2 is not X1-projective:

Example 3.6. Let R be a ring and M a right R-module such that ZM is torsion-free which is not

quasi-projective. Again let T =

[
R 0
M Z

]
and consider the right T -module VT = (M ⊕ Z)T

associated to the triple (M,Z)f where f : Z⊗M −→M defined by n⊗m 7→ nm for all n ∈ Z
and m ∈ M . Clearly, f is an R-isomorphism. Therefore by [4, 4.1.1], VT is quasi-projective.
On the other hand, M is not quasi-projective.

Theorem 3.7. Let V1 and V2 be two right T -modules with (X1, Y1)f1 , (X2, Y2)f2 the correspond-
ing triples. If V2 is V1-projective, then Y2 is Y1-projective andX2/f2(Y2⊗M) isX1/f1(Y1⊗M)-
projective.
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Proof. Let η1 : Y1 −→ Y1/K1 be the natural epimorphism and α1 : Y2 −→ Y1/K1 be any B-
homomorphism, whereK1 ≤ Y1. Then we can construct the quotient (0⊕Y1/K1)T of (X1⊕Y1)T
with the following commutative diagram:

K1 ⊗M

f ′
1

��

j1⊗1M // Y1 ⊗M

f1

��

η1⊗1M // Y1/K1 ⊗M

0
��

// 0

X1
1 // X1

0 // 0 // 0

Now we can construct those morphisms in Ω:

(0, α1) : (X2, Y2)f2 −→ (0, Y1/K1)0

and

(0, η1) : (X1, Y1)f1 −→ (0, Y1/K1)0.

Thus we have the T -homomorphisms

α : (X2 ⊕ Y2)T −→ (0⊕ Y1/K1)T with α(x2, y2) = (0, α1(y2))

and

η : (X1 ⊕ Y1)T −→ (0⊕ Y1/K1)T with η(x1, y1) = (0, η1(y1)).

Note that η is the natural epimorphism from (X1 ⊕ Y1)T to its quotient (0 ⊕ Y1/K1)T . Since
V2 is V1-projective, there is a T -homomorphism β : V2 −→ V1 such that ηβ = α. Namely,
there exists a B-homomorphism β2 : Y2 −→ Y1 and an A-homomorphism β1 : X2 −→ X1
such that β1f2 = f1(β2 ⊗ 1M ) and β(x2, y2) = (β1(x2), β2(y2)). Thus η1β2 = α1. Hence Y2 is
Y1-projective.

Now consider the following diagram:

X2/f2(Y2 ⊗M)

µ

��

X1/f1(Y1 ⊗M)
ν

// X1/f1(Y1⊗M)
X′

1/f1(Y1⊗M)
// 0

where ν is the natural epimorphism, µ is any A-homomorphism and X ′1/f1(Y1 ⊗M) is a sub-
module of X1/f1(Y1⊗M). Let γ be the isomorphism from (X1/f1(Y1⊗M))/(X ′1/f1(Y1⊗M))
to X1/X

′
1, π1 : X1 −→ X1/f1(Y1 ⊗M) and π2 : X2 −→ X2/f2(Y2 ⊗M) be the natural epimor-

phisms. It is clear that (X ′1 ⊕ Y1)T is a submodule of V1 with f ′1 = f1 and ((X1/X
′
1)⊕ 0)T is a

factor module of V1 with f ′′1 = 0, namely we have the following commutative diagram:

Y1 ⊗M

f ′
1=f1

��

1Y1⊗1M

// Y1 ⊗M

f1

��

0 // 0⊗M

f ′′
1 =0
��

// 0

X ′1
j1 // X1

η1 // X1/X
′
1

// 0

Now (γµπ2, 0) : (X2, Y2)f2 −→ (X1/X
′
1, 0)0 is a T -homomorphism and (γνπ1, 0) : (X1, Y1)f1 −→

(X1/X
′
1, 0)0 is a T -epimorphism. Since V2 is V1-projective, we have a T -homomorphism with

the pair (µ1, µ2) : (X2, Y2)f2 −→ (X1, Y1)f1 which makes the following diagram commutative:

(X2, Y2)f2

(µ1,µ2)

xx
(γµπ2,0)
��

(X1, Y1)f1
(γνπ1,0)

// (X1/X
′
1, 0)0 // 0

Note that we have the compositions µ1f2 = f1(µ2 ⊗ 1M ) and νπ1µ1 = µπ2. Let us define the
A-homomorphism µ : X2/f2(Y2 ⊗M) −→ X1/f1(Y1 ⊗M) by x2 + f2(Y2 ⊗M) 7→ µ1(x2) +
f1(Y1 ⊗M). Since µ1f2 = f1(µ2 ⊗ 1M ), µ is well-defined and since νπ1µ1 = µπ2, νµ = µ.
Therefore the following diagram is commutative:
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X2/f2(Y2 ⊗M)

µ

vv
µ

��

X1/f1(Y1 ⊗M)
ν

// X1/f1(Y1⊗M)
X′

1/f1(Y1⊗M)
// 0

Therefore X2/f2(Y2 ⊗M) is X1/f1(Y1 ⊗M)-projective.

Let V1 and V2 be two right T -modules with (X1, Y1)f1 and (X2, Y2)f2 the corresponding
triples, respectively. If V1 is V2-projective, the relative projectivity of Y1 with respect to Y2 is
also proven in [4, 4.1.3] and under the assumption that f1(Y1 ⊗M) is a direct summand of X1,
the relative projectivity of X1/f1(Y1⊗M) with respect to X2/f2(Y2⊗M) is proven in [4, 4.1.4].

Corollary 3.8. If (X ⊕ Y )T is quasi-projective, then (X/YM)A and YB are quasi-projective.

Example 3.9. Let R be a ring and M be a right R-module. Consider the ring T =

[
R 0
M Z

]
.

Let K be a nonzero submodule of QZ with K � Z and K � QZ. By [18, Corollary 4.4], K ⊕ Z
is not semi-projective hence not quasi-projective over Z. Then by Corollary 3.8, none of the right
T -modules in the form (X ⊕ (K ⊕ Z))T is quasi-projective, where X is any right R-module.

Corollary 3.10. If (X ⊕ Y )T has a quasi-projective cover, then (X/YM)A and YB have semi-
projective covers.

Proof. Let ϕ : (U ⊕ V )T −→ (X ⊕ Y )T be a quasi-projective cover of (X ⊕ Y )T . As-
sume that the objects (U, V )g and (X,Y )f in Ω determine the right T -modules (U ⊕ V )T and
(X ⊕ Y )T , respectively. Then there exist homomorphisms ϕ1 : UA −→ XA, ϕ2 : VB −→ YB
such that (ϕ1, ϕ2) : (U, V )g −→ (X,Y )f is a morphism in Ω with ϕ1g = f(ϕ2 ⊗ 1M ) and
(ϕ1(u), ϕ2(v)) = ϕ(u, v). By [3, Theorem 2.4], the epimorphism ϕ2 : VB −→ YB has small ker-
nel and we have the epimorphism ϕ1 : U/VM −→ X/YM with small kernel. Thus (X/YM)A
and YB have semi-projective covers with the epimorphisms ϕ1 and ϕ2, respectively by Corollary
3.8.
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