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Abstract. Uniform stability of finite energy solutions to a nonlinear fluid-structure interac-
tion model in a bounded domain Ω ∈ R2 is considered. Boundary interface and interior viscous
feedback controls are selected to stabilize the energy of the overall system. It will be shown that
the energy decays to zero at a uniform rate. If appropriate geometric condition is imposed on the
interface, then the decay rate could be improved to an exponential rate.

1 Introduction

1.1 Description of the problem

We consider fluid-structure interaction (FSI) described by a coupled system of partial differential
equations (PDEs) comprising of the nonlinear Navier-Stokes equation and a system of elasticity
of wave equation. The coupling between two systems occurs on the boundary-interface between
two environments: fluid and a solid. The FSI model is well established in the literature and
has numerous engineering applications that range from naval and aerospace engineering to cell
biology and biomedical engineering [36, 15, 21, 18, 17] and references therein.

However, due to mismatch of regularity between the particular hyperbolic component (dy-
namic system of elasticity) and parabolic component (fluid) the basic mathematical questions
such as well-posedness of finite energy physical solutions had not been resolved until recently
[10, 11, 19, 20, 16]. It is known by now that weak (finite energy) solutions corresponding to
fluid structure interaction exist globally and they are unique when the dimension of the domain
is equal to two. Thus, in the two dimensional case there exists a well defined semi-flow describ-
ing the associated dynamical system.

There are two common physical settings for this interaction model: solid submerged in the
fluid and fluid flown in the solid. Examples of the former include a submarine submerged in the
water; examples of the latter include membrane valves. The main aim of this paper is to establish
uniform stability results for the FSI model with “fluid in the solid” setting under different sce-
narios. We shall consider the following configurations: (1) nonlinear interior feedback in a form
of frictional damping affecting the solid; (2) linear boundary feedback affecting the interface.
No strong assumptions are imposed on the interior damping when the magnitude of the solution
is small (see Assumption 2.10). Geometry plays an important role dispensing with tangential
derivatives of the displacement of the solid at the interface in a key estimate.

1.2 The model

The model is defined on a bounded domain Ω ∈ R2, that describes an elastic body interacting
with an interior incompressible viscous fluid. Ω is a bounded simply connected domain, consist-
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ing of two open sub-domains Ωs and Ωf where Ωs is the exterior domain with non-overlapping
boundaries ∂Ω and Γs, so that ∂Ωs = ∂Ω ∪ Γs; and Ωf is the interior domain with boundary
Γs = ∂Ωf . Ωs is occupied by an elastic solid, while Ωf is filled with fluid. The interaction
between the fluid and the solid occurs at the interface Γs.

Figure 1. Geometry of Ω.

The dynamics of the fluid is described by the Navier-Stokes equation and the dynamics of
the elastic body is described by an elasto-dynamic system of wave equations. u(t, x) ∈ R2

is a vector-valued function representing the velocity of the fluid and p(t, x) is a scalar-valued
function representing pressure. w(t, x), wt(t, x) ∈ R2 denote the displacement and the velocity
functions of the elastic solid Ωs. −→n denotes the unit outward normal vector on Γs with respect
to the region Ωs. See Figure 1.

This leads to the following coupled PDE system defined for the state variables [u,w,wt, p]
[34]:



ut −4u+ (u · ∇)u+∇p = 0 in Ωf × (0,∞)

div u = 0 in Ωf × (0,∞)

wtt = 4w − ρ(x)g(wt) in Ωs × (0,∞)
∂w

∂n
=
∂u

∂n
− p−→n +

1
2
(u · −→n )u on Γs × (0,∞)

u = wt + β(x)
∂w

∂n
on Γs × (0,∞)

w = 0 on ∂Ω× (0,∞)

u(0, ·) = u0 in Ωf

w(0, ·) = w0, wt(0, ·) = w1 in Ωs

(1.1)

where β(x), ρ(x) > 0 are smooth functions of x.

In (1.1), g(wt) represents an interior viscous -frictional nonlinear feedback while
∂w

∂n
repre-

sents porous damping on the interface between the solid and fluid. Both damping mechanism are
typical for dynamics of oscillating structures governed by wave equation [24, 23, 22, 25, 13]. It
will be assumed that g(·) is monotone, continuously differentiable, and of a polynomial growth
with g(0) = 0.

Remark 1.1. We note that the functions β(x) and ρ(x) while positive, they are not required to be
uniformly positive (the latter is a standard assumption in stabilization theory). One of the goals
in this paper is to study the effects of potential degeneracy of one of the dampings.

The interaction between the fluid and the solid occurs at the interface Γs and is reflected
by the velocity and stress matching boundary conditions. The model considered accounts for
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small but rapid oscillations of the elastic displacements [17]. This allows one to assume that the
interface is static.

It is convenient at this stage to introduce the energy functional of the system

E(t) ≡ 1
2

∫
Ωf

|u|2dx+ 1
2

∫
Ωs

(|∇w|2 + |wt|2)dx (1.2)

where the states [u,w,wt]T belong to the finite energy space [10]

H ≡ H × [H1
∂Ω(Ωs)]

2 × [L2(Ωs)]
2

with H ≡ {u ∈ [L2(Ωf )]2 : div u = 0} and H1
∂Ω

(Ωs) denotes the Sobolev space H1(Ωs)
with zero boundary condition on ∂Ω.

1.3 Mathematical Challenges

The major mathematical difficulty stems from the mismatch between the boundary regularity
of the hyperbolic wave equation and the parabolic Navier-Stokes equation, which does not pro-
vide sufficient regularity for the boundary traces. In dealing with this particular difficulty, sev-
eral strategies have been developed in earlier mathematical literatures where either a structural
damping is added to the wave equation or a very smooth local-in-time solution were consid-
ered. Only recently the existence, uniqueness (in two dimension), of the solutions in the natural
energy level were shown to hold [10]. This was accomplished by taking advantage of recently
discovered hyperbolic trace theory [27] applied on the interface of the structure. Regularity of
weak solutions was subsequently developed in [11], and also in [19, 20] for a slightly different
topological setting. Smooth solutions with moving interface have been analyzed in [16].

As mentioned above, stability results are available for the linearized model with the presence
of pressure: strong stability in [2, 3, 5] where geometric dependency is first discovered; expo-
nential decay rate with additional boundary damping in [3, 4]. The main tool used to establish
the strong stability results for linear models is spectral theory [1], which has no extension to non-
linear models. For stability results of the nonlinear model in “solid in the fluid” setting, one can
consult [28] for strong stability with no damping but subject to partial flatness geometric con-
ditions on Γs; [29] for exponential uniform stability with boundary damping and [30] for poly-
nomial uniform stability with nonlinear interior damping. The main contribution of the present
paper, however, is to establish uniform stability for nonlinear model in the “fluid in the solid”
setting. This particular setting is motivated by numerous applications in biology and medicine.
For instance, a classical fluid structure interaction model arises in a context of body fluid encap-
sulated in a human body (blood flowing through the arteries). On the other hand, mathematical
analysis of such setup has several novel aspects. Notwithstanding is the fact that the damping
coefficients are now variable. Moreover, the present setup allows to eliminate “partial flatness”
condition used in [28, 29, 2] which is restrictive where it comes to applications to structures that
are circular (like veins, arteries). Indeed, partial flatness eliminates perfect symmetries such as
circles, spheres etc. The technical difficulty in the “solid in the fluid” setting is that the energy
functional (1.2) does not control |w|L2(Ωs). In the new setting, however, the energy functional
does control |w|L2(Ωs) by the virtue of w|∂Ω = 0 and Poincarè’s inequality. This lack of control
of lower order term now transfers to the fluid component, which requires delicate treatments in
our analysis. The dissipation from the frictional damping eliminates nontrivial solutions in the
asymptotic dynamics, a point we will elaborate below.

2 Preliminaries and Main Results

In this section, we will review some preliminary definitions and known results and then introduce
the main results.
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2.1 Notations

The following (standard) notations will be used:

(u, v)f =

∫
Ωf

uv dΩf , (u, v)s =

∫
Ωs

uv dΩs, 〈u, v〉 =
∫

Γs

uv dΓs;

|u|α,D = |u|Hα(D), |u|f = |u|0,Ωf , (u, v)1,f ≡
∫

Ωf

∇u · ∇v dΩf

Qs ≡ (0, T ]×Ωs; Qf ≡ (0, T ]×Ωf ; Σs ≡ (0, T ]× Γs; Σf ≡ (0, T ]× Γf

2.2 Feedback control mechanisms

A natural interior nonlinear frictional damping to consider is the following function g(s) =
[gi(si)]i=1,2 which is subject to the following assumptions:

Assumption 2.1. The function g(s) = [gi(si)]i=1,2, where gi(si), si ∈ R are monotone increas-
ing,continuous functions, zero at the origin and subject to the following conditions for |s| ≥ 1

m|si|2 ≤ gi(si)si, |g(s)| ≤M |s|p, p > 0

for some positive constants 0 < m,M <∞.

We will specify the range of p in our main results.

Remark 2.2. (a). Note that no conditions are imposed on the damping function at the origin.
This is one of the issues when dealing with questions of stability and decay rates [32].
(b). One could impose more general structure of monotone frictional damping allowing for
mixing of the wave coordinates. However, the main challenges of the problem are present already
in this special configuration. In order to focus reader’s attention we shall consider the frictional
damping in this form only. For more general structures of frictional damping acting on the wave
vectors we refer the reader to [14].

2.3 Existence, uniqueness and regularity of finite energy solutions

Define the following key space
V ≡ H ∩ [H1(Ωf )]

2

Projecting the equations on H and utilizing the boundary conditions allows us to define weak
solutions to our PDE system in the variational form for a.e. t ∈ (0, T ):

(ut, φ)f + 〈
∂w

∂n
, φ〉+ (∇u,∇φ)f + ((u · ∇)u, φ)f − 〈

1
2
(u · −→n )u, φ〉 = 0, ∀ φ ∈ V (2.1)

(wtt, ψ)s − 〈
∂w

∂n
, ψ〉+ (∇w,∇ψ)s + ρ(g(wt), ψ)s = 0, ∀ ψ ∈ [H1(Ωs)]

2 (2.2)

We recall some results for wellposedness and regularity of finite energy solutions. Global-in-
time existence of weak solutions is obtained in [10].

Theorem 2.3. (Existence and uniqueness of weak solutions [10]) Given any initial condition
(u0, w0, w1) ∈ H, and any T > 0, there exists unique weak (finite energy) solution (u,w,wt) ∈
Cw([0, T ],H) to the system (1.1) with the following additional properties:
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(i) u ∈ L2(0, T ;V ), ut ∈ L2(0, T ;V ′), wtt ∈ L2(0, T ; [[H1(Ωs)]2]′),

u|Γs = wt|Γs + β(x)
∂w

∂n

(ii) ρ(x)g(wt)wt ∈ L1(Qs), wt|Γs ∈ L2((0, T ); [H1/2(Γs)]2)

Moreover, the said solution depends continuously on the initial data (with respect to the
topology induced by H.

Finite energy solutions are constructed as limits of monotone approximations to Navier
Stokes problem. More specifically, the nonlinear N-S term is truncated so that the resulting
problem is maximally monotone. Weak solutions are shown to be strong limits of these approx-
imations [10].

Remark 2.4. When g(wt) ∈ L2(Ω) one can also show [10] that weak solutions satisfy
∂w

∂n
∈

L2((0, T ); [H−1/2(Γs)]2). The latter happens when p = 1 in Assumption 2.1.

Additional regularity including differentiability of weak solutions is asserted in [11] (see also
[19] for different topological configuration) for solutions with more regular initial data.

Theorem 2.5. (Regularity [11]) Let (u0, w0, w1) ∈ H∩{([H2(Ωf )]2∩V×[H2(Ωs)]2×[H1(Ωs)]2)}
satisfy the usual boundary compatibility conditions imposed on the boundary. Then, for any
T > 0, (u,w,wt) satisfies the variational form (2.1), (2.2) and we have :

(i) (u, p) ∈ L2((0, T ); [H2(Ωf )]2 ×H1(Ωf ))

(ii) (ut, wt, wtt) ∈ L∞((0, T );H), w ∈ L∞((0, T ); [H2(Ωs)]2).

Theorem 2.3 and Theorem 2.5 were proved in [10, 11] without the damping F (w) and g(wt)
and in the “solid in the fluid” setting. However, the same proof can be carried in the presence of
frictional damping that is assumed monotone and subject to polynomial growth condition when
dimension of Ω is equal to two for the “fluid in the solid” setting.

2.4 Energy identity

Let u,w be regular solutions obtained in Theorem 2.5. Choose as the test functions φ = u and
ψ = wt in the formulation (2.1)-(2.2). Noticing cancelation occurring in the nonlinear term

((u · ∇)u, u)f − 〈
1
2
(u · −→n )u, u〉 = 0

and utilizing the transmission condition u = wt + β
∂w

∂n
on Γs, one obtains the following energy

identity for 0 ≤ s ≤ t

E(t) +

∫ t

s

[
|∇u|2Ωf +

∣∣∣∣β 1
2
∂w

∂n

∣∣∣∣2
Γs

+ (ρg(wt), wt)Ωs

]
dτ = E(s), 0 ≤ s < t (2.3)

where E(t) is the energy functional defined in (1.2). Denote the dissipation terms in (2.3) as

D(t) = |∇u|2Ωf +
∣∣∣∣β 1

2
∂w

∂n

∣∣∣∣2
Γs

+ (ρg(wt), wt)Ωs

The energy identity can be rewritten as

E(t) +

∫ t

s

D(τ)dτ = E(s), 0 ≤ s < t (2.4)

A few observations are in order:
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Remark 2.6. The energy identity (2.3) reveals the potential sources of dissipation: one from
the Navier-Stokes equation, one from the boundary damping and one from the interior damping
g(wt). If no damping are imposed (β, ρ = 0), the only source of dissipation is the one propagated
from the fluid dynamics. In this case, the dissipation of energy is so weak that it does not have
any impact on the boundary normal displacement of the solid. The geometric optic conditions
for the wave equation are violated. Uniform stability for the overall dynamics is thus impossible
[25]. This is the case even for the linear model for which one can show that there are infinitely
many eigenvalues with real parts on the imaginary axis [5, 2]. The best stability result one can
hope for is strong stability for energy only. And to compensate the weakness of dissipation,
geometric conditions such as partially flatness need to be place on the interface Γs, as shown for
the linear model in [2] with initial data restricted to a closed subspace of H, which eliminates
a subspace corresponding to zero eigenvalue of the linear generator. We note that the above
condition fails when Ω is a ball. Thus, the aforementioned condition is not compatible with a
perfect symmetry of the domain. To improve strong stability to uniform stability, the interior
frictional damping and the boundary dynamic damping play pivot roles.

2.5 Main Results

Our main results answer the question of decay rates of (1.1). With boundary and/or interior
damping and suitable geometric conditions, one obtains uniform decay of energy with either an
exponential rate or a polynomial rate determined by a solution of suitably constructed nonlinear
ODE [32]:

Theorem 2.7. (Uniform Decay Rates for Energy).
Suppose ρ(x) ≥ ρ0 > 0 for all x ∈ Ωs and β = 0. Assume p ≥ 1 in Assumption 2.1. Moreover

assume that the initial conditions satisfy compatibility condition:
∫

Γs

w0 · −→n dΓs = 0. Then,

there exist constant T0 > 0 , such that the energy satisfies

E(t) ≤ S(t), for t > T0

where S(t) satisfies the following ODE:

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0) (2.5)

with q(s) ∼ ĥ−1(s) where ĥ(s) = (meas Qs) h
(

s

meas Qs

)
with h monotone increasing, con-

tinuous, h(0) = 0, concave and determined from the inequality s2 ≤ h(sg(s)), |s| ≤ 1.

Remark 2.8. Note that owing to monotonicity of g(s), function h(s) can be always constructed
as a concave envelope [32]. Function h(s) captures the behavior of the dissipation g(s) at the
origin. This is the most sensitive region with respect to the decay rates. Thus, the task of finding
decay rates is reduced to solving an ODE equation (2.5) with a given function h(s) (hence q(s))
. In fact, when g(s) = as then h(s) = a−1s and the decay rates are exponential of the type
e−at. For polynomial g(s) at the origin the decay rates are polynomial as well (algebraic) t−

2
p−1 .

These are optimal algebraic decay rates. See [32] and also [33] for many other examples.

Theorem 2.9. (Exponential Decay Rates for Energy).
Suppose Ω1 ⊂ supp ρ(x) where Ω1 has nonzero measure in a layer of Γs and β(x) ≥ β0 > 0
for all x in Γs. In addition we assume that p ≤ 1 in Assumption 2.1 and the following geometric
condition:
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Assumption 2.10. l · −→n > 0, where l(x) ≡ x− x0 is defined for x ∈ Ωs arbitrary with x0 ∈ R2

fixed; and −→n is the unit outward normal vector of Γs with respect to Ωs.

Then, there exist constants M ≥ 1, δ > 0 and a time T1 > 0, such that

E(t) ≤Me−δtE(0), for t > 0 (2.6)

Remark 2.11. Though our method does not depend on dimensionality, we restrict dim Ω to two
for the reason that when n = 3, weak solutions are not known to be unique, thus the decay rates
obtained for strong solutions only can not be extended to all weak solutions. In that case the
result remains valid for smooth solutions which are global (e.g. corresponding to small initial
data -as shown in [11]).

The main mechanism that drives the decay of energy of the overall dynamics are different
under the conditions of Theorem 2.7 and 2.9: for the former, it is the frictional damping g(wt);
while for the latter, it is the boundary damping. The difficulty arises from lack of control of
|u|0,Ωf by |∇u|0,Ωf . In light of this, the proofs of our results will strongly depart from previous
treatments and will require serious modifications.

2.6 Strong decay of energy

Before we show the proof of main results of this paper, we should point out that with weaker
assumptions on ρ as in Theorem 2.9 and β > 0, following similar argument as in [28], one can
show that energy E(t) → 0 as t → ∞ without assuming any geometric conditions. We cover a
few key points of the proof of this claim, which also validates an aforementioned observation that
the frictional damping eliminates nontrivial steady state solutions. The key is the “uniqueness
result” highlighted below.

Let [u0, w0, w1] be an element in ω(u0, w0, w1) for [u0, ξ0, v0] ∈ D (see [28] for definitions).
By definition, there exists a sequence tn → ∞ such that [u(tn), w(tn)] → [u0, w0] strongly in
L2(Ωf )×L2(Ωs) and wt(tn)⇀ w1 weakly in L2(Ωs). Denote X(t;X0) := [u(t), w(t), wt(t)] a
solution with initial dataX0 = [u0, w0, w1]. For this sequence tn, consider the translateXn(t) :=
X(t + tn;X0). Xn is bounded in L∞((0,∞);H). Thus, Xn has a subsequence, which we still
denote by Xn, such that it converges to X := [u,w,wt] weakly in L2((0, T );H) and weak* in
L∞((0,∞);H). We will show that X ≡ 0.

Choose t > 0 fixed, the energy identity (2.3) implies that

E(t+ tn) +

∫ t

0

[
|∇un|2Ωf +

∣∣∣∣β 1
2
∂wn
∂n

∣∣∣∣2
Γs

+ (ρg(wt,n), wt,n)Ωs

]
dτ = E(tn)

Let tn → ∞. Since E(t) is monotonically non-increasing and positive, E(t + tn), E(tn)

must converge to the same limit, which forces ∇un → 0 in L1(0, T ;L2(Ωf )),
∂wn
∂n

→ 0 in
L1(0, T ;L2(Γs)) and ρg(wt,n)wt,n → 0 inL1(0, T, L1(Ωs)). Thus,∇u = 0 in Ωf , (ρg(wt), wt)Ωs =

0 and
∂w

∂n
≡ 0 on Γs. Since the support of ρ contains a portion whose closure intersects with

Γs, wt ≡ 0 on a nontrivial subset Γ0 of Ωs. The transmission condition on Γs in turn shows that
u ≡ 0 on Γ0. Combining this observation with∇u = 0 implies that u ≡ 0 in Ωs. Thus, [u,w,wt]
satisfies the following stationary problem:

∆w = 0 in Ωs × (0, T1)
∂w

∂n
= 0 on Γs × (0, T1)

w = 0 on ∂Ω× (0, T1)

(2.7)
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By Holmgren’s uniqueness theorem, the above problem has only trivial solutions, thus w ≡ 0
in Ωs as well. To show how to improve from weak ω-limit set to strong ω-limit set, one can see
[28] for details.

2.7 Further discussion

We conclude our introduction with the following open questions:

(i) Is it possible to obtain the result of Theorem 2.9 without assuming p ≤ 1 in Assumption
2.1?

(ii) Is it possible to obtain a fully nonlinear counterpart of uniform decay results with nonlinear

boundary damping. This is to say βf
(
∂w

∂n

)
where f(s) is -say-monotone.

The Assumption that p ≤ 1 was used in Theorem 2.9 for purely technical reasons, due to
the use of higher energy multipliers. From physical point of view it is plausible to think that
such assumption may be eliminated. As to the second question, a related result is well known
for a pure wave equation with boundary monotone damping. Whether one could also generalize
porous damping to a nonlinear form, requires further studies.

The rest of the manuscript is devoted to the proofs of main results stated in Theorem 2.7 and
Theorem 2.9 .

3 Uniform stability with damping

The proof of Theorem 2.7 and 2.9 is based on the multiplier’s method. As usual, the critical step
in proving Theorem 2.7 and 2.9 is the following estimate:

Theorem 3.1. (a). Under the conditions of Theorem 2.7, there exists a time T > 0 and a constant
CT > 0, such that the energy at t = T is dominated by the dissipation for all initial condition
[u0, w0, w1] ∈ H :

E(T ) ≤ HT

(∫ T

0
D(t)dt

)
(3.1)

where HT (s) : R+ → R+ is a concave, monotone increasing function and zero at the origin
with asymptotic behavior dictated by ĥ .

(b). Under the conditions of Theorem 2.9, HT (s) could be further identified as HT (s) = Cs,
where C > 0 is a constant determined by geometry of Ωs and initial data.

Once Theorem 3.1 is established, using the energy identity (2.3) and following the nonlinear
version of an inductive argument in [32], one is able to show Theorem 2.7 and Theorem 2.9. In-
deed, using the fact that the system is autonomous we reiterate the same estimate on the multiple
T , which gives

E((m+ 1)T ) ≤ HT

(∫ (m+1)T

mT

D(t)dt

)
,m = 0, 1 . . .

By the energy identity (2.4)

E((m+ 1)T ) ≤ HT (E(m(T ))− E((m+ 1)T )

H−1
T (E((m+ 1)T )) ≤ E(mT )− E(m+ 1)T
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H−1
T (E((m+ 1)T )) +E((m+ 1)T ) ≤ E(mT )

The rest of the argument rests on ODE comparison theorem [32]. The existence of the function
HT (s) will allow one to calculate the decay rates -as in [32]. Under the conditions of Theorem
2.9, solving the ODE (2.5) with HT (s) = Cs will yield an exponential decay rate for the energy
functional. Thus, the main task is to establish the validity of Theorem 3.1.

4 Proof of Theorem 3.1 (a)

In this step, we will show uniform stability result for the model with the main damping mecha-
nism being the interior frictional damping g with ρ > ρ0 > 0 on the entire Ωs. W.l.o.g, we take
β = 0 throughout this section. Our goal is to establish the inequality

E(T ) ≤ HT

(∫ T

0
D(t)dt

)
(4.1)

where HT (s) is a concave, continuous function, monotone and zero at the origin and such that
asymptotically coincides with ĥ.

First of all, we can easily see that the kinetic energy of the wave is controlled by the dissipa-
tion. Indeed

∫ T

0
|wt|2sdt =

∫
Qs∩|wt|≥1

+

∫
Qs∩|wt|≤1

≤ 1
m

∫
Qs

(g(wt), wt)sdt+

∫
Qs

h(g(wt)wt)dt

Hence by Jensen’s inequality and monotonicity and concavity of h,∫ T

0
|wt|2sdt ≤ [ĥ+m−1I]

(∫ T

0
(g(wt), wt)sdt

)
(4.2)

where ĥ =
1

meas Qs
h(meas Qs·).

The next step is the control of potential energy. Applying multiplier w to the wave equation
wtt = ∆w − ρg(wt) along with integration by parts yields

(wt, w)s

∣∣∣∣T
0
−
∫ T

0
|wt|2sdt =

∫ T

0

[
〈∂w
∂n

,w〉 − |∇w|2s
]
dt−

∫ T

0
(ρg(wt), w)sdt

Thus, the kinetic energy of the wave is given by

∫ T

0
|∇w|2sdt =

∫ T

0
|wt|2sdt+

∫ T

0
〈∂w
∂n

,w〉dt+
∫ T

0
(ρg(wt), w)sdt− (wt, w)s

∣∣∣∣T
0

(4.3)

We need to estimate the last three terms on the right hand side of (4.3).

Step 1: Interior damping term:

|(ρg(wt), w)s| ≤ I + II (4.4)

where

I =

∣∣∣∣ ∫
Ωs,|wt|≤1

ρg(wt)w dΩs

∣∣∣∣ ≤ C ∫
Ωs

|wt||w|dΩs ≤ Cε|wt|2s + ε|∇w|2s
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II =

∣∣∣∣ ∫
Ωs,|wt|≥1

ρg(wt)w dΩs

∣∣∣∣ ≤ ε|∇w|2s + Cε,E(0)

∫
Ωs

g(wt)wtdΩs (4.5)

Detailed proof of (4.5): Take r =
1
p
+ 1. Denote the conjugate of r as r = 1 + p. Applying

Hölder’s inequality to II , taking into account that r ≥ 2 and |w|s ≤ C|∇w|s yields:

II ≤ C|g(wt)|r,s|w|r,s ≤ C|g(wt)|r,s|w|s ≤ ε|∇w|2s + Cε

(∫
Ωs,|wt|≥1

(g(wt))
rdΩs

) 2
r

Since for |s| ≥ 1, |g(s)| ≤ |s|p, continuing from above and using the fact that p(r − 1) = 1,
we have

II ≤ ε|∇w|2s + Cε

(∫
Ωs,|wt|≥1

(g(wt))
r−1(g(wt))dΩs

) 2
r

≤ ε|∇w|2s + Cε

(∫
Ωs,|wt|≥1

(wt)
p(r−1)(g(wt))dΩs

) 2
r

≤ ε|∇w|2s + Cε

(∫
Ωs

wtg(wt)dΩs

)
(4.6)

The last is because
2
r
=

2p
p+ 1

≥ 1.

Step 2: Boundary term
∫ T

0
〈∂w
∂n

,w〉dt.

Define the following Stokes extension of the Dirichlet map D

z = Dg∗ ⇔

{
4z = ∇q, div z = 0 in Ωf

z|Γs = g∗ on Γs
(4.7)

where we assume the compatibility
∫

Γs

g∗ · −→n dΓs = 0. Stokes theory [38] gives that D :

Hα(Γs) → Hα+ 1
2 (Ωf ) is well defined and continuous. In particular, D is continuous from

H
1
2 (Γs) to V .

Choose the boundary term g∗ as: g∗ = w|Γs on Γs, where the boundary function satisfies

the requisite compatibility condition. This is argued below. Since u = wt , on Γs and
∫

Γs

w0 ·

−→n dΓs = 0 as well as
∫

Γs

u · −→n dΓs = 0 we obtain that
∫

Γs

w(t) · −→n dΓs = 0 for all t > 0.

Applying weak formulation of the fluid equation with the test function φ = Dw yields

(ut, Dw)f − 〈
∂w

∂n
,w〉+ (∇u,∇Dw)f + b(u, u,Dw) = 0 (4.8)

where b is the trilinear form defined by

b(u, v, w) ≡ ((u · ∇)v, w)f −
1
2
〈(u · −→n )v, w〉, for u ∈ V, v, w ∈ H1(Ωf )
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Integration by parts in time yields:

(u,Dw)f

∣∣∣∣T
0
−
∫ T

0
[(u,D(wt))f + 〈

∂w

∂n
,w〉+ (∇u,∇Dw)f ]dt+

∫ T

0
b(u, u,Dw)dt = 0 (4.9)

From here the estimate for the boundary term becomes:∫ T

0
〈∂w
∂n

,w〉dt ≤
∫ T

0
(u,Dwt)fdt+

∫ T

0
(∇u,∇Dw)f ]dt+

∫ T

0
b(u, u,Dw)dt+ (u,Dw)f

∣∣∣∣T
0
(4.10)

We need to estimate each of the four terms on the right hand side of (4.10).

Step 2.1: Nonlinear term
∫ T

0
b(u, u,Dw)dt.

We apply a key estimate of the trilinear form on [u, u,Dw] obtained by the virtue of Sobolev’s
embedding (as in [10]) when dim Ω = 2,

|b(u, u,Dw)| ≤ C
[
|u| 1

2 ,f
|u|1,f |Dw| 1

2 ,f
+ |u| 1

2 ,f
|u| 3

4 ,f
|Dw| 3

4 ,f

]
(4.11)

Elliptic theory [38], interpolation and Poincaré’s Inequality thus imply

|Dw|1/2,f ≤ |w|0,Γs ≤ C|w|1/2
s |w|

1/2
1,s ≤ C|∇w|s (4.12)

|Dw|3/4,f ≤ |w|1/4,Γs ≤ C|w|
1/4
s |w|

3/4
1,s ≤ C|∇w|s (4.13)

Combining (4.12), (4.13) with (4.11) and applying interpolation and Young’s inequality then
gives ∫ T

0
|b(u, u,Dw)|dt ≤ ε

∫ T

0
|∇w|2sdt+ Cε,E(0)

∫ T

0

[
|∇u|2f + |u|2f

]
dt (4.14)

Step 2.2: Time derivatives. Elliptic theory, trace theory and transmission condition combined

imply that |Dwt|2f ≤ C|wt| 12 ,Γs = C

∣∣∣∣u∣∣∣∣
Γs

≤ CD(t). Thus,

|(u,Dwt)f | ≤ C
[
D(t) + |u|2f

]
(4.15)

Step 2.3 Gradient term. Applying elliptic theory, trace theory and Poincaré’s inequality to the
interior gradient term in (4.10) implies that

(∇u,∇Dw)f ≤ Cε|∇u|2f + ε|∇w|2s (4.16)

Step 2.4 The term: (u,Dw)f
∣∣∣∣T
0

. The boundedness of the operator D implies

(u,Dw)f

∣∣∣∣T
0
≤ C[E(0) +E(T )] (4.17)

Substituting inequalities (4.14), (4.15), (4.16), (4.17) into (4.10) gives the final bound for the
boundary interface coupling term:∫ T

0
〈∂w
∂n

,w〉dt ≤ ε
∫ T

0
|∇w|2sdt+ Cε,E(0)

∫ T

0
D(t)dt+ CE(0) + CE(T ) (4.18)



226 Y. Lu

Step 3: Final estimation on (4.3). On the strength of Poincaré’s inequality,

(wt, w)s

∣∣∣∣T
0
≤ CE(0) + CE(T ) (4.19)

Taking suitably small ε and combining (4.4), (4.18), (4.19) with (4.3) yield

∫ T

0
|∇w|2sdt ≤ C

∫ T

0
|wt|2sdt+ CE(0)

∫ T

0
D(t)dt+ C

∫ T

0
|u|2fdt+ CE(0) + CE(T ) (4.20)

(4.2) ,(4.20) and energy identity then imply∫ T

0
E(t)dt ≤ [ĥ+m−1I]

(∫ T

0
D(t)dt

)
+ CE(0)

∫ T

0
D(t)dt+ C

∫ T

0
|u|2fdt+ CE(T )(4.21)

After obtaining the following inequality by energy identity

1
2
E(T )T +

1
2

∫ T

0
E(t)dt ≤ CE(0)[(1 +m−1)I + ĥ]

(∫ T

0
D(t)dt

)
++C

∫ T

0
|u|2fdt+ CE(T )

and taking T > 2C, we arrive at

E(T ) ≤ CE(0)H

(∫ T

0
D(t)dt

)
+ C

∫ T

0
|u|2fdt (4.22)

where H(s) = s+m−1s+ ĥ(s) ∼ ĥ(s) for small s.

The final step is to absorb the lower order term by the dissipation in (4.22). We follow a
standard nonlinear version of the compactness-uniqueness argument [32].

Lemma 4.1. With reference to system (1.1), assume ρ(x) ≥ ρ0 > 0 and β ≥ 0, then there exists
a constant CT (E(0)) > 0 such that the following holds

∫ T

0
|u|2fdt ≤ CT (E(0))H

(∫ T

0
D(t)dt

)
(4.23)

Proof. We prove by contradiction. Suppose such constant does not exist. Then, there exists
a sequence of solutions Xn(t) ≡ [un(t), wn(t), wn,t(t)] of (1.1) corresponding to initial data
Xn(0) ≡ [un(0), wn(0), wn,t(0)], which are uniformly bounded: En(0) ≤M , such that

lim
n→∞

∫ T

0
|un|2fdt

H

(∫ T

0
Dn(t)dt

) =∞ (4.24)

where Dn(t) is the dissipation term in (2.3) for Xn(t).
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Denote by cn ≡
|un|L2(0,T ;L2(Ωf ))

M
√
T

. Then, cn is uniformly bounded by 1. We renormalize

Xn(t) and denote the normalized sequence by X̂n(t) ≡
Xn(t)

c2
n

. By (4.24),

lim
n→∞

H

(∫ T

0
Dn(t)dt

)
c2
n

= 0 (4.25)

Applying (4.22) to Xn(t) and dividing by c2
n yields for 0 ≤ t ≤ T ,

Ên(t) ≤ C (4.26)

Thus, there exists a subsequence of X̂n(t) such that X̂n(t) → X̂(t) ≡ [û, ŵ, ŵt] weak-∗ in
L∞(0, T ;H). For this subsequence, since cn ≤ 1, by concavity, continuity of H , H(0) = 0 and
(4.25), we have ∫ T

0
D̂n(t)dt→ 0 (4.27)

which in turn implies

∇ûn → 0, in L2(0, T ;L2(Ωf )); β
∂ŵn
∂n
→ 0, in L2(0, T ;L2(Γs))

ρg(wt,n)wt,n
c2
n

→ 0, in L1(0, T ;L2(Ωs))

by the virtue of g(s)s ≥ m|s|2, the last of which implies

ŵt,n → 0, in L2(0, T ;L2(Ωs))

Therefore, we conclude that ∇û = 0 in Ωf , ŵt = 0 in Ωs and
∂ŵ

∂n
= 0 on Γs. Combining

the last two with the transmission condition then implies û ≡ 0 on Γs, which allows to apply
Poincarè’s inequality on û yielding that û = 0 in H1(Ωf ). From here, the compactness of
H1(Ωf ) in L2(Ωf ) gives that ûn → 0 in L2(0, T ;L2(Ωf )), which contradicts with the fact that
|ûn|L2(0,T ;L2(Ωf )) ≡ const.

Remark 4.2. We note that in the proof of the above lemma, β could be taken as 0. In this case,
utilizing the transmission condition u|Γs = wt|Γs , one can still conclude that û ≡ 0 on Γs. The
rest of the proof follows through.

Inserting (4.23) into (4.22) completes the proof for Theorem 3.1 (a). The function H deter-
mines the asymptotic behavior of the ODE (2.5).

5 Proof of Theorem 3.1 (b)

In this section, we prove part (b) of Theorem 3.1 under the geometric condition specified in
Theorem 2.9: there exists l with l · −→n > 0, where l(x) ≡ x− x0 is defined for x ∈ Ωs arbitrary
with x0 ∈ R2 fixed; and −→n is the unit outward normal vector of Γs with respect to Ωs. W.l.o.g,
throughout this section, we take β = 1.

Multiplying wtt = ∆w − ρg(wt) with the classical l · ∇w yields



228 Y. Lu

(wt, l · ∇w)s
∣∣∣∣T
0
−
∫ T

0
(wt, l · ∇wt)sdt =

∫ T

0
〈∂w
∂n

, l · ∇w〉dt−
∫ T

0
|∇w|2sdt

−1
2

∫ T

0
〈|∇w|2, l · −→n 〉dt+ 1

2

∫ T

0
(|∇w|2s, div l)sdt−

∫ T

0
(ρg(wt), l · ∇w)Ω1dt (5.1)

Integration by parts with respect to space then yields∫ T

0
(wt, l · ∇wt)sdt =

1
2

∫ T

0
〈w2

t , l · −→n 〉dt−
1
2

∫ T

0
(w2

t , div l)sdt (5.2)

Substituting (5.2) into (5.1) and noticing that div l = n = 2 gives

∫ T

0
|wt|2Ωsdt =

1
2

∫ T

0
〈w2

t , l · −→n 〉dt+
∫ T

0
〈∂w
∂n

, l · ∇w〉dt− 1
2

∫ T

0
〈|∇w|2Γs , l ·

−→n 〉dt

−
∫ T

0
(ρg(wt), l · ∇w)Ω1dt− (wt, l · ∇w)s

∣∣∣∣T
0

(5.3)

Splitting |wt|2s =
1
2
|wt|2s +

1
2
|wt|2s and adding

1
2

∫ T

0
|∇w|2sdt on both sides leads to

1
2

∫ T

0

[
|wt|2Ωs + |∇w|

2
Ωs

]
dt =

1
2

∫ T

0

[
|∇w|2

Ωs
− |wt|2Ωs

]
dt+

∫ T

0
〈∂w
∂n

, l · ∇w〉dt

−1
2

∫ T

0
〈|∇w|2Γs , l ·

−→n 〉dt+ 1
2

∫ T

0
〈w2

t , l · −→n 〉dt

−
∫ T

0
(ρg(wt), l · ∇w)Ω1dt− (wt, l · ∇w)s

∣∣∣∣T
0

(5.4)

Applying a second multiplier w to wtt = ∆w − ρg(wt) and rerunning the argument in the
previous section before (4.3) gives

∫ T

0

[
|∇w|2s − |wt|2s

]
dt =

∫ T

0
〈∂w
∂n

,w〉dt−
∫ T

0
(ρg(wt), w)Ω1dt− (wt, w)s

∣∣∣∣T
0

(5.5)

Substituting (5.5) into (5.4) then yields

1
2

∫ T

0

[
|wt|2Ωs + |∇w|

2
Ωs

]
dt =

∫ T

0
〈∂w
∂n

,w〉dt+
∫ T

0
〈∂w
∂n

, l · ∇w〉dt

−1
2

∫ T

0
〈|∇w|2Γs , l ·

−→n 〉dt+ 1
2

∫ T

0
〈w2

t , l · −→n 〉dt

−
∫ T

0
[(ρg(wt), l · ∇w)Ω1 + (ρg(wt), w)Ω1 ] dt

−(wt, l · ∇w)s
∣∣∣∣T
0
− (wt, w)s

∣∣∣∣T
0

(5.6)
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We need to estimate each term on the right hand side of (5.6).

Step 1: Interior damping terms: Following a similar argument as the one to get (4.4), and
applying growth condition p ≤ 1, we have

(ρg(wt), l · ∇w)Ω1 + (ρg(wt), w)Ω1 ≤ ε|∇w|2Ωs + Cε|wt|2Ω1
+ Cε(g(wt), wt)Ω1 (5.7)

Indeed, we can argue as in the previous section when |wt|Ω1 ≤ 1. If |wt|Ω1 ≥ 1, then for v in
L2(Ωs),

∣∣∣∣ ∫
Ω1∩|wt|≥1

ρg(wt)vdx

∣∣∣∣ ≤ C ∫
Ω1∩|wt|≥1

|g(wt)||v|dx ≤ C
∫

Ω1∩|wt|≥1
|wt|p|v|dx

(since p ≤ 1) ≤ C
∫

Ω1∩|wt|≥1
|wt||v|dx ≤ ε|v|2Ωs + Cε|wt|2Ω1

Note that in (5.7), since Ω1 ⊂ Ωs is small, Cε could be chosen such that Cε|wt|2Ω1
<

1
2
|wt|2Ωs .

Step 2: Boundary terms: The key is to estimate the four boundary terms in (5.6).

Step 2.1: Estimate on
∫ T

0
〈∂w
∂n

,w〉dt:

With β > 0, we can now apply a more standard argument. Choosing ε1 > 0 small, we can
estimate this term simply as:∫ T

0
〈∂w
∂n

,w〉dt ≤ Cε1

∫ T

0

∣∣∣∣∂w∂n
∣∣∣∣2
Γs

dt+ ε1

∫ T

0
|∇w|2Ωsdt (5.8)

Step 2.2: Estimate on
∫ T

0
〈∂w
∂n

, l · ∇w〉dt− 1
2

∫ T

0
〈|∇w|2, l · −→n 〉dt:

Writing ∇w|Γs = (
∂w

∂n
)−→n + (

∂w

∂τ
)τ and using Young’s inequality, for any ε2 > 0, there

exists a Cε2 > 0 such that∫ T

0
〈∂w
∂n

, l · ∇w〉dt ≤ Cε2

∫ T

0

∣∣∣∣∂w∂n
∣∣∣∣2
0,Γs

dt+ ε2Ch

∫ T

0

∣∣∣∣∂w∂τ
∣∣∣∣2
0,Γs

dt (5.9)

Using the geometric condition h · −→n > 0 and choosing ε2 small enough such that ε2Ch <
1
2 minh · −→n yields∫ T

0
〈∂w
∂n

, l · ∇w〉dt− 1
2

∫ T

0
〈|∇w|2, l · −→n 〉dt ≤ Cε2

∫ T

0

∣∣∣∣∂w∂n
∣∣∣∣2
0,Γs

dt (5.10)

Step 2.3: Estimate on
∫ T

0
〈w2

t , l · −→n 〉dt:
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Using the transmission condition u = wt+
∂w

∂n
on Γs and majorizing |u|0,Γs by |∇u|0,Ωs , we

obtain

1
2

∫ T

0
〈w2

t , l · −→n 〉dt ≤ Ch
∫ T

0
D(t)dt (5.11)

Step 3: Final step on estimating (5.6):
By Young’s and Poincaré’s inequality,

−(wt, l · ∇w)s
∣∣∣∣T
0
− (wt, w)s

∣∣∣∣T
0
≤ C[E(0) +E(T )] (5.12)

Substituting (5.7) - (5.12) into (5.6) and taking small ε’s yields∫ T

0
[|wt|20,Ωs + |∇w|

2
0,Ωs ]dt ≤ Ch,ε1,ε2

∫ T

0
D(t)dt+ C[E(0) +E(T )] (5.13)

�
Now proceeding as in the last step of previous section, we could recover the total energy and

obtain:

E(T ) ≤ CE(0)

(∫ T

0
D(t)dt

)
+ C

∫ T

0
|u|2fdt (5.14)

The final task now is again to absorb the lower order term into the dissipation:∫ T

0
|u|2fdt ≤ CE(0)

(∫ T

0
D(t)dt

)
, for some CE(0) > 0 (5.15)

To this aim, we revoke a key assumption in Theorem 2.9 that ρ does not vanish on a full
measure near Γs and following the uniqueness-compactness argument as in Lemma 4.1 with
H(s) = Cs, we could show that û ≡ 0 on a nontrivial part of Γs. Poincarè’s inequality then
completes the proof of (5.15), which in turn implies (3.1), thus fulfills the proof of Theorem 3.1
(b).
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