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Abstract. Relationship between W -curvature tensor and its divergence with that of other
curvature tensors has been established. A symmetry of the spacetime named as W -collineation,
has been introduced and conditions under which the spacetimes of general relativity may admit
such collineations are obtained.

1 Introduction

The construction of gravitational potentials satisfying Einstein’s field equations is the principal
aim of all investigations in gravitational physics and this has been often been achieved by im-
posing symmetries on the geometry compatible with the dynamics of the chosen distribution
of matter. The geometrical symmetries of the spacetime are expressible through the vanishing
of the Lie derivative of certain tensors with respect to a vector. This vector may be time-like,
space-like or null. The role of symmetries in general theory of relativity has been introduced by
Katzin, Levine and Davis in a series of papers ([11] - [13]). These symmetries, also known as
collineations, were further studied by Ahsan ([1] - [5]), Ahsan and Ali [7] and Ahsan and Husain
[9].

In the differential geometry of certain F -structures, W -curvature tensor has been studied by a
number of workers especially by Pokhriyal [16] for a Sasakian manifold; while for a P-Sasakian
manifold Matsumoto et al [14] have studied this tensor. Shaikh et al [18] have introduced the no-
tion of weekly W2-symmetric manifolds in terms of W2-tensor and studied their properties along
with numerous non-trivial examples. The role of W2-tensor in the study of Kenmotsu manifolds
has been investigated by Yildiz and De [23] while N(k)-quasi Einstein manifolds satisfying the
conditions R(ξ,X).W2 = 0 have been considered by Taleshian and Hosseinzadeh [20]. Most re-
cently, Venkatesha et al [21] have studied Lorentzian para-Sasakian manifolds satisfying certain
conditions on W -curvature tensor. Motivated by the all important role of W -curvature tensor in
the study of certain differential geometric structures, Ahsan et al. [8] have made a detailed study
of this tensor on the spacetime of general relativity.

The purpose of this paper is to develop the relationships between the divergences of W , pro-
jective, conformal, conharmonic and concircular curvature tensors and to introduce a symmetry
property of spacetime of general relativity, known as W -collineation, defined through the van-
ishing of Lie derivative of W -curvature tensor with respect to a vector field. The divergences
are given in Section 3; while in Section 4, we have discussed W -collineation with some results
and the cases of non-null and null electromagnetic fields are discussed in this context. Finally,
in Section 5 summary of the work is given.

2 Preliminaries

So far more than twenty six different types of collineations have been studied and the litera-
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ture on such collineations is very large and still expanding with results of elegance (cf., [5]).
However, here we shall mention only those symmetry assumptions that are required for our in-
vestigations and we have

Definition 2.1. A spacetime is said to admit motion if there exists a vector field ξa such that

£ξgab = ξa;b + ξb;a = 0 (2.1)

Equation (2.1) is known as Killing equation and vector ξa is called a Killing vector field.

Definition 2.2. A spacetime admits curvature collineation if there is a vector field ξa such that

£ξR
a
bcd = 0, (2.2)

where Rabcd is the Riemann curvature tensor.

Definition 2.3. A spacetime is said to admit Ricci collineation if there is a vector field ξi such
that

£ξRab = 0, (2.3)

where Rab is the Ricci tensor.

Definition 2.4. Infinitesimal transformation

′ξx = ξx + vxdt (2.4)

is called WCC if and only if
£ξC

a
bcd = 0, (n > 3) (2.5)

Definition 2.5. A spacetime admits Weyl projective collineation if there is a vector field ξa such
that

£ξP
a
bcd = 0, (2.6)

where P abcd is the Projective curvature tensor.

Definition 2.6. The electromagnetic field inherits the symmetry property of spacetime defined
by

£ξFab = Fab;cξ
c + Facξ

c
;b + Fbcξ

c
;a = 0 (2.7)

where Fab is the electromagnetic field tensor then transformation (2.4) be called as Maxwell
collineation.

3 Divergence of W -tensor and other curvature tensors

In this section, we shall express W -curvature tensor in terms of projective, conformal, conhar-
monic and concircular curvature tensor and obtain the relationships between the divergence of
W -tensor and these curvature tensors.

In 1970 Pokhariyal and Mishra [17] have introduced a W -curvature tensor or W2-curvature
tensor and studied its properties and this tensor is defined as

W2(X,Y, Z, T ) = R(X,Y, Z, T ) +
1

n− 1
[g(X,Z)Ric(Y, T )− g(Y, Z)Ric(X,T )] (3.1)
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Or, in local coordinates

Wabcd = Rabcd +
1

n− 1
[gacRbd − gbcRad] (3.1a)

This satisfies the following properties:

Wabcd = −Wbacd, Wabcd 6= −Wabdc, Wabcd 6=Wcdab (3.2)

Wabcd +Wbcad +Wcabd = 0 (3.3)

The W -curvature tensor for the spacetime of general relativity, taking n = 4 in equation (3.1a)
and contracting with gah is given by

Wh
bcd = Rhbcd +

1
3
[δhcRbd − gbcRhd ] (3.4)

The Bianchi identities are given by

Rhbcd;e +Rhbde;c +Rhbec;d = 0 (3.5)

Contracting Equation (3.5) over h and e, using the symmetry properties of the Riemann curvature
tensor, we get

Rhbcd;h = Rbc;d −Rbd;c (3.6)

Now from Equation (3.4) we have

Wh
bcd;e = Rhbcd;e +

1
3
(δhcRbd;e − gbcRhd;e) (3.7)

so that the divergence of W -curvature tensor is given by

Wh
bcd;h = Rhbcd;h +

1
3
(Rbd;c − gbcR,d) (3.8)

3.1 Projective curvature tensor

For a Riemannian space V4, the projective curvature tensor Phbcd is defined as

Phbcd = Rhbcd −
1
3
(Rbcδ

h
d −Rbdδhc ) (3.9)

It may be noted that the contraction of Phbcd over h and d vanishes. Also

Pabcd = Rabcd −
1
3
(gadRbc − gacRbd) (3.10)

From Equation (3.9), the covariant derivative of projective curvature tensor is given by

Phbcd;e = Rhbcd;e −
1
3
(Rbc;eδ

h
d −Rbd;eδ

h
c ) (3.11)

so that the divergence of projective curvature tensor can be expressed as

Phbcd;h = Rhbcd;h −
1
3
(Rbc;d −Rbd;c) (3.12)
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which on using Equation (3.6) leads to

Phbcd;h =
2
3
(Rbc;d −Rbd;c) (3.13)

Remark 3.1. From Equation (3.13) it is evident that
(a) The divergence of projective curvature tensor vanishes if and only if the Ricci tensor is of
Codazzi type.
(b) The divergence of projective curvature tensor vanishes for Einstein spaces.

From equations (3.8) and (3.12), the divergence of W -tensor in terms of the divergence of
projective curvature tensor can be expressed as

Wh
bcd;h = Phbcd;h +

2
3
(Rbc;d − gbcR,d) (3.14)

we thus have the following

Theorem 3.1. For a V4 of constant curvature,

Wh
bcd;h = Phbcd;h (3.15)

3.2 Conformal curvature tensor

The conformal curvature tensor Cabcd (also known as Weyl conformal curvature tensor), for a V4
is defined through the equation

Rabcd = Cabcd +
1
2
(gacRbd + gbdRac − gadRbc − gbcRad)

+
R

6
(gadgbc − gacgbd)

(3.16)

so that

Rhbcd = Chbcd +
1
2
(δhcRbd + gbdR

h
c − δhdRbc − gbcRhd) +

R

6
(δhdgbc − ghc gbd) (3.17)

Taking the covariant derivative of Equation (3.17) so that the divergence of conformal curva-
ture tensor can be expressed as

Rhbcd;h = Chbcd;h +
1
2
(Rbd;c −Rbc;d) +

2
3
(gbdR,c − gbcR,d) (3.18)

From equations (3.8) and (3.18), the divergence of W -tensor and conformal curvature tensor
are related through the equation

Wh
bcd;h = Chbcd;h +

5
6
Rbd;c −

1
2
Rbc;d +

2
3
gbdR,c − gbcR,d (3.19)

and we have

Theorem 3.2 For a V4 of constant curvature, the divergences of W -tensor and Weyl conformal
tensor are identical.
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3.3 Conharmonic curvature tensor

For a V4, the conharmonic curvature tensor Lhbcd is defined as ([19])

Lhbcd = Rhbcd −
1
2
(gbcR

h
d + δhdRbc − δhcRbd − gbdRhc ) (3.20)

so that the divergence of Lhbcd is given by

Lhbcd;h = Rhbcd;h −
1
2
(gbcR

h
d;h + δhdRbc;h − δhcRbd;h − gbdRhc;h) (3.21)

Now from equations (3.8) and (3.21), we have

Wh
bcd;h = Lhbcd;h +

1
6
(gbcR,d −Rbd;c) +

1
2
(Rbc;d − gbdR,c) (3.22)

Thus we have the following

Theorem 3.3. For a V4 of constant curvature

Wh
bcd;h = Lhbcd;h (3.23)

3.4 Concircular curvature tensor

The Concircular curvature tensor Mabcd, for a V4 is defined as ([10])

Mabcd = Rabcd −
R

12
(gbcgad − gbdgac) (3.24)

Also
Mh
bcd = Rhbcd −

R

12
(gbcδ

h
d − gbdδhc ) (3.25)

so that the divergence of concircular curvature tensor is

Mh
bcd;h = Rhbcd −

1
12

(gbcR,d − gbdR,c) (3.26)

Using equations (3.8) and (3.26), we get

Wh
bcd;h =Mh

bcd;h −
1
3
Rbd;c −

1
4
(gbcR,d +

1
3
gbdR,c) (3.27)

We thus have the following

Theorem 3.4. For a V4 of constant curvature, the divergence of W -tensor and concircular cur-
vature tensor are identical.

Remark 3.2. Since a space of constant curvature is an Einstein space, therefore from the above
discussions (cf., Theorems 3.1 - 3.4) it is evident that for Einstein spaces, the divergence of
W -curvature tensor is identical to the divergence of projective, conformal, conharmonic and
concircular curvature tensors although all the five curvature tensors have different properties.
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4 W -Collineation

In this section, we shall define a symmetry property in terms of W -curvature tensor and obtain
the condition under which the spacetime of general relativity may admit such symmetry. We have

Definition 4.1. A spacetime is said to admit W -collineation if there is a vector field ξa such that

£ξW
a
bcd = 0, (4.1)

where W a
bcd is W -curvature tensor defined through the equation (3.4) (For detailed study of Lie

derivatives and collineations see [22]).

Taking Lie derivative of Equation (3.4) with respect to vector field ξ

£ξW
h
bcd = £ξR

h
bcd +

1
3
£ξ[δhcRbd − gbcRhd ] (4.2)

Using the definitions and properties of Lie derivative ([6]), equation (4.2) leads to

£ξW
h
bcd = (ξmRhbcd;m −Rmbcdξh;m +Rhmcdξ

m
;b +Rhbmdξ

m
;c

+Rhbcmξ
m
;d ) +

1
3
[δhc (ξ

mRbd;m +Rbmξ
m
;d +Rmdξ

m
;c )

−(ξb;c + ξc;b)Rhd − gbc(ξmRhd;m −Rmd ξh;m +Rhmξ
m
;d )]

(4.3)

Katzin et al. [11] have given the relationship chart of different symmetry properties of a space-
time manifold and from that chart we can have following

Lemma 4.1. Every motion in Vn imply curvature collineation (CC), Weyl projective collineation
(WPC) and Weyl conformal collineation (W conf C).

In terms of Weyl projective curvature tensor Phbcd, the Riemann tensor is

Rhbcd = Phbcd +
1
3
(Rbcδ

h
d −Rbdδhc ) (4.4)

Using equations (3.4) and (4.4), the expression for W -curvature tensor come out to be

Wh
bcd = Phbcd +

1
3
(Rbcδ

h
d − gbcRhd) (4.5)

Similarly for Weyl conformal tensor, we can write

Wh
bcd = Chbcd +

1
2
(gbdRhc − δhdRbc)

+
5
6
(δhcRbd − gbcRhd) +

R

6
(gadgbc − gacgbd)

(4.6)

where Chbcd Weyl conformal curvature tensor and R = gabRab is scalar curvature.

Thus it is clear from equations (4.5) and (4.6) that motion and RC equate the Lie derivative
of W -curvature tensor with that of Weyl projective and conformal curvature tensor. By using
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Lemma 4.1, Equation (4.3) or (4.5) or (4.6) gives the following

Theorem 4.1. A spacetime admits W -collineation if it admits motion and Ricci collineation
(RC).

Corollary 4.1. An empty spacetime (Rij = 0) admits W -collineation if it admits motion.

For non-null electromagnetic field, the energy momentum tensor Tab is expressed as

Tab = FamF
m
b −

1
4
gabFijF

ij (4.7)

and Einstein equation for purely electromagnetic distribution are

Rij = kTij (4.8)

Using equations (4.7) and (4.8) in Equation (4.6), we get

Wh
bcd = Chbcd + (

k

3
+
R

6
)(δhdgbc − δhc gbd)FijF ij

+
k

2
[(gbdFhmF

m
c − δhdFbmFmc ) +

5
3
(δhc FbmF

m
d − gbcFhmFmd )]

(4.9)

Lemma 4.2 [15] In a non-null electromagnetic field, the Lie derivative of electromagnetic field
tensor Fab with respect to a vector field ξ, vanishes if ξ is Killing vector.

The use of Lemmas 4.1 and 4.2 in equation (4.7), leads the following

Theorem 4.2. If a non-null electromagnetic field admits motion then it does admitW -collineation.

Remark 4.1. Similar result can also be obtained by using Equations (4.5), (4.6) and (4.7) and
Lemmas 4.1 & 4.2.

The energy-momentum tensor for a null electromagnetic is given by

Tab = FanF
n
b (4.10)

where Fij = sitj − tisj and sisi = sit
i = 0, titi = 1, vectors s and t are the propagation and

polarization vectors, respectively.

Now Using equations (4.8) and (4.10) in equation (4.6) we get

Wh
bcd = Chbcd +

k

2
(gbdFhnF

n
c − δhdFbnFnc ) +

5
3
(δhc FbnF

n
b − gbcFhnFnd )

+
R

6
(δhdgbc − δhc gbd)

(4.11)

It is known that

Lemma 4.3. [1] A null electromagnetic field admits Maxwell collineation along the propagation
(polarization) vector if the propagation (polarization) vector is Killing and expansion-free.
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From Equation (4.11) and Lemmas 4.1 and 4.3, the Lie derivative ofW -curvature tensor with
respect to propagation (polarization) vector, vanishes. Thus we can state

Theorem 4.3. A null electromagnetic field admits W -collineation along a propagation (polar-
ization) vector if propagation (polarization) vector is Killing and expansion-free.

Remark 4.2. A number similar results can be obtained for W -collineation as W -curvature ten-
sor can be expressed in terms of other curvature tensors like concircular curvature tensor and
conharmonic curvature tensor. (cf., [8])

5 Summary

In this paper an attempt has been made to investigate the relationship between the divergence of
W -curvature tensor and other curvature tensors especially projective, conformal, concircular and
conharmonic curvature tensor. Also we have introduce the notion of W -collineation and have
obtained theconditions under which the spacetime of general relativity may the W -collineation.
The cases of non-null and null electromagnetic field has also been discussed.
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