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Abstract. A module M is said to satisfy the ECS condition if every ec-closed submodule of
M 1is a direct summand. It is known that the class of ECS-modules is not closed under direct
sums. In this paper, we studied when a direct sum of two modules is an ECS-module and when
an ECS-module has a decomposition into uniform submodules.

1 Introduction

Throughout this paper, all rings are associative with unity and R denotes such aring. All modules
are unital right R-modules. A right R-module M has finite uniform (Goldie) dimension if M does
not contain an infinite direct sum of non-zero submodules. It is well known that a module M has
finite uniform dimension if and only if there exists a positive integer n and uniform submodules
U; (1 <i<mn)of Msuchthat Uy & U, & ... ® U, is an essential submodule of M and in this
case n is an invariant of the module called the uniform dimension of M, (see, for example, [1, p.
294, ex. 2]).

Recall that a module M is said to be extending or CS if every complement (or closed) sub-
module of M is a direct summand. Equivalently, every submodule of M is essential in a direct
summand of M (see [6], [10]). Following [9], we call a (closed) submodule N of M as ec-
(closed) submodule if N contains essentially a cyclic submodule, i.e., there exists x € N such
that =R is essential in N. Note that every direct summand of an ec-closed submodule of M is
ec-closed. A module M is said to be principally extending (or P-extending) if every cyclic sub-
module of M is essential in a direct summand. Following [5], a module is said to be ECS if every
ec-closed submodule is a direct summand. Among examples of ECS-modules, we could mention
that extending modules and von Neumann regular rings. Furthermore, it can be seen easily that
for a module of finite uniform dimension CS and ECS concepts coincide. ECS-modules were
investigated in [5] and [9]. In this paper, we continue the study of ECS-modules. To this end,
we studied when a P-extending module and also a direct sum of two modules are ECS-modules.
Moreover we generalize a well known result on CS-modules to ECS-modules which provides a
decomposition into uniform submodules.

Let R be a ring and M a right R-module. If X C M, then X < M denotes X is a sub-
module of M. Moreover End(Mg), Z(M), E(M) and r(m) (m € M) symbolize the ring
of endomorphisms of M, the singular submodule of M, the injective hull of M and the right
annihilator of m in R, i.e., 7(m) = {r € R : mr = 0}, respectively. Recall from [2],
Si(R) = {e? = e € R: ze = exeforallz € R}. A ring is called Abelian if every idem-
potent is central. Other terminology and notation can be found in [6] and [7].

2 Preliminary Results

In this section, we study relationships between the P-extending and ECS conditions. In particu-
lar, we make it clear that ec-closed and complement submodules are different from each other.
The next Lemma is taken from [5, Proposition 1.1] and we state here without proof.

Lemma 2.1. Let M be a module. Consider the following statements.
(i) M is CS

(74) M is ECS

(#41) M is P-extending

Then (i) = (ii) = (i7¢). In general, the converses to these implications do not hold.
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Corollary 2.2. Let M be a nonzero indecomposable module. Then the following statements are
equivalent.

(1) M is CS

(74) M is ECS

(#i1) M is P-extending

(iv) M is uniform

Proof. Immediate by Lemma 2.1. O

Our next result and thereafter its companion Proposition show that ec-closed and complement
submodules are not the same, in general. First note that there are uniform rings R for which
Z(Rpg) # 0, i.e., R is not nonsingular (see [4]).

Lemma 2.3. Let R be a right uniform nonsingular ring and Pr be a projective module. Then
there exists a right R-module M such that Pr is a complement but not an ec-submodule of M.

Proof. Since Pr is projective there exists a free R-module say M, such that Pg is a direct
summand of M. It is clear that P is a complement in M and Mpg, is nonsingular. Assume P
is ec-submodule of M. There exists 0 = = € P such that zR is essential in P. However,
r(z) is essential in Rp, by assumption. Hence xz € Z(Pr) = 0, a contradiction. So P is not
ec-submodule of M. O

Proposition 2.4. Let n > 3 be any odd integer. Let R be the real field and S the polynomial ring
R[z,22, ..., ¥,). Then the ring R = S/Ss, where s = Y"1 | 22 — 1, is a commutative Noetherian
domain. Moreover the free R-module M = @] | R contains a complement K which is not
ec-closed.

Proof. 1t is easy to check that R is a commutative Noetherian domain. Note that R is uniform
and My, is nonsingular.

Let ¢ : M — R be the homomorphism defined by ¢(a; + Ss,a; + Ss,...,a, + Ss) = ajz; +
a2ty + ... + apxy + Ssforall a; in S (1 <4 < n). Clearly, ¢ is an epimorphism, and hence,
its kernel K is a direct summand of M, i.e., M = K @& K’ for some submodule K’. Obviously,
K’ = Rand K is a complement submodule of M. Assume that K is an ec-closed submodule of
M. Then there exists 0 # = € K such that 2R is essential in K. However r(z) is essential in
Rp. Sox € Z(Kg) = 0, a contradiction. It follows that K5 is not an ec-closed submodule of
M. O

Note that the module K in the proof of Proposition 2.4 is indecomposable projective of
uniform dimension n — 1 (see [12]). Thus K is not included in Lemma 2.1 but it is included in
Lemma 2.3. In conjuction with Proposition 2.4, we have the following easy result.

Proposition 2.5. Let M be an ECS right R-module and N < M. Assume M contains a cyclic
essential submodule. Then N is a direct summand if and only if NV is an ec-closed.

Proof. LetY = xR for some 0 # x € M such that Y is essential in M. If N is ec-closed then
by hypothesis, N is a direct summand. Conversely, assume that N is a direct summand. Then
M = N @ N’ for some N’ < M. Let® : M — N be the projection homomorphism. Then
YNK =2RNK < n(Y) = n(x)R < K and n(z)R is essential in K. Hence K is ec-closed. O

Since the ECS property lies strictly between the CS and P-extending properties, it is natural
to seek conditions which ensure that a P-extending module is ECS or an ECS-module is CS.
Such conditions were illustrated in [5, Proposition 1.2]. Now, we prove another result which
makes a P-extending module is ECS.

Theorem 2.6. Let M be a R-module such that End(Mpg) is Abelian and X < M implies X =
> icr hi(M), where h; € End(Mpg). Then M is P-extending if and only if M is ECS.

Proof. Assume M is P-extending and X is an ec-closed in M. There exists z € X such that zR
is essential in X. Then X = )", _; h;(M), where each h; € End(Mg). So, by hypothesis, 2R is
essential in eM = D where ¢ = e € End(Mpg). Thus M = eM & D’ where D' = (1—e)M. Itis
clear that X@® D’ is essential in M. Let0 # y € X. Theny = ey+(1—e)y. Buty = 3", hi(m;)
where m; € M. Thus (1 —e)y = (1 —e) >, hi(mi) = 3, hi((1 —e)m;) € XN D' =0,
i.e., y = ey. Hence X < D. It follows that X is essential in D. So X = D. Hence My is ECS.
The converse follows from Lemma 2.1. O
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Recall that an R-module M is said to be a multiplication module if for each X < M there
exists Ag < Rpg such that X = M A.

Corollary 2.7. If M is an R-module satisfying any of the following conditions, then M is P-
extending if and only if M is ECS.

(i) Mr = R and R is Abelian.

(74) M is cyclic and R is commutative.

(741) M is a multiplication module and R is commutative.

Proof. By Theorem 2.6 the result is true for condition (). Now assume that M is cyclic and
R is commutative. There exists By < Rp such that My is isomorphic to R/B. Let Y/B be
an R-submodule of R/B. So, Y/B = (> ,.;%:R) + B = (3_,c; iR + B)R, where each
y; € Y. Define h; : R/B — R/B by h;(r + B) = y; + B. Then h; € End((R/B)r). Hence
Y/B =3,.; hi(R/B). Since R is commutative, End((R/B)r) is commutative. Thus Theorem
2.6 yields the result for condition (7).

Finally, assume that M is a multiplication module and R is commutative. Let X = M A, where
Ar < Rp. For each a € A define h, : M — M by h,(m) = ma for m € M. Then
X = MA =3 .4 ha(M). Observe that every submodule of a multiplication module is fully
invariant. By [3, Lemma 1.9], if > = ¢ € End(Mg), then e and 1 — e € S;(End(Mg)). Hence
e is central. So End(Mpg) is Abelian. Again, Theorem 2.6 yields the result. i

3 Direct Sums of ECS-Modules

In this section, we deal with when a direct sum of two modules is an ECS-module. Recall that
the Z-module M = Q & Z/Zp, where p is any prime integer, is not CS-module by [11, Example
10]. Since M has finite uniform dimension, M is not ECS-module. Moreover My, is a direct
sum of two uniform (and hence ECS) modules and even if Q is Z/Zp-injective, Z/Zp is not
Q-injective.

In [9], the authors assumed that ECS and P-extending conditions are the same and proved
results for P-extending modules. However these two conditions are different by Lemma 2.1. So
we give the corrected forms of some results in [9] which are stated for a direct sum of modules
being P-extending. First we have the following result.

Proposition 3.1. Let M = M, @& M, be a module, where the M; are uniform and End(M;) local
for i = 1,2. Then the following conditions are equivalent:

(i) M is a CS-module, and monomorphisms M; — M, are isomorphisms; ¢ # j.

(1) M is an ECS-module, and monomorphisms AM; — M; are isomorphisms; i # j.

(i12) M, are M;-injective; i # j.

Proof. (i) = (ii). Clear by Lemma 2.1.

(1) = (dii). Let f : E(M;) — E(M,) be an arbitrary homomorphism, where i # j. Let
X ={zxeM,: f(x) e M;}. Then A = {x+ f(z) : x € X} is a closed and uniform submodule
of M, by [8, Lemma 1]. Hence A is an ec-closed in M. By hypothesis, M = A @& M; or
M =A®M; f M = A® M,, then M; = f(X), and hence f~! : M; — X C M, is, by
assumption, an isomorphism, i.e., X = M;. On the other hand, if M = A @ M, then X = M,.
(#4i) = (¢). Obvious. ]

Proposition 3.2. Let M = M; @ My, and let C N M) be an ec-submodule of M, for every ec-
closed submodule C of M. Then M is ECS if and only if every ec-closed submodule C' with
CnNM; =0o0rCnNM,=0is adirect summand.

Proof. The necessity is clear. For the sufficiency, let C' be an ec-closed submodule of M with
cR is essential in C. If C' N M; = 0, then we are done. Otherwise, C' N M; is an ec-submodule
of M, by assumption. Let C' be the closure of C' N M) in C, then C is an ec-closed submodule
of M, with C1 N M, = 0. By hypothesis, C is a direct summand of M. Hence M = C| & C;
for some submodule C, of M. Thus C = C; & (C N C,). So C N (C; is an ec-closed submodule
of M with (C' N Cy) N M; = 0, and therefore C' N C; is a direct summand of M. Hence C is a
direct summand of M. It follows that M is an ECS-module. O

Theorem 3.3. Let M = M; ® M, where M is of finite uniform dimension. Then M is ECS
if and only if every ec-closed submodule C of M, with C' N M; = 0, or C'is of finite uniform
dimension, is a direct summand.
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Proof. The necessary condition is obvious. For the sufficient condition, let C' be an ec-closed
submodule of M with mR is essential in C. If C N M; = 0, then we are done. Now, let
0 # ¢ € C N M; and C| be the closure of cR in C. Note that C has finite uniform dimension.
By hypothesis, C] is a direct summand of M. Thus M = C; @ K for some submodule K of
M. Hence C = Cy & D, where D = K N C'is closed in M. Since D is a direct summand of an
ec-closed submodule C, then D is ec-closed. If D N M; = 0, then by assumption D is a direct
summand, and hence C'is a direct summand of M. If DN M, # 0, then by repeating the previous
steps, we have D = C, @ (3, where () is a direct summand and has a nonzero intersection with
M. Continuing in this manner, we obtain C' = C; ®C> & ... & C,,, where C; is a direct summand
of M (i =1,2,..,n — 1) and C,, contains an essential cyclic submodule with C,, N M; = 0. By
hypothesis, C,, is a direct summand of M and therefore C' is a direct summand of M. O

Corollary 3.4. Let M = M; ® M;. Then every ec-closed submodule of M with finite uniform
dimension, is a direct summand if and only if every ec-closed submodule C' of M with finite
uniform dimension such that C'N M; = 0 or C N M, = 0, is a direct summand.

Proof. Similar to the proof of Theorem 3.3. O

Proposition 3.5. Let M = M| @ M,, where M is a semisimple module. Then M is ECS if and
only if every ec-closed submodule C of M with C'N M; = 0, is a direct summand.

Proof. The necessity is obvious. For the sufficiency, let C' be an ec-closed submodule of M.
If Cn M; = 0, then we are done. So assume that C' N M # 0. Thus C N M, is a direct
summand of M;. It follows that C' = (C'N M;) @ D for some submodule D of C. Since D is
an ec-closed submodule of M and D N M; = 0, then D is a direct summand of M. Thus C'is a
direct summand of M. O

4 A Decomposition into Uniform Submodules

Finally we prove a result which decomposes an ECS-module as a direct sum of uniform sub-
modules. For analogy result in the CS case, we refer to [6] (see, also [10]). Since we will use it
in our result, we need to give the following definition. Let M be a module and let N = @, .; N;
be a direct sum of submodules N; (i € I) of M. Then N is called a local direct summand of M
if @, Ni is a direct summand of M for every finite subset I’ of I. It is well known that a local
direct summand is a complement. Now, we have the following result.

Theorem 4.1. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m € M). If every direct summand of M is P-extending and every local
direct summand of M is a direct summand then M is a direct sum of uniform submodules.

Proof. Let 0 # m € M such that r(m) is maximal in {r(z) : 0 # z € M}. There exists a
direct summand K of M such that mR is essential in K. Suppose that K is not indecomposable.
Then there exist non-zero submodules K; and K, of K such that K = K| @ K,. There exist
m; € K; (i =1,2)suchthat m = m; +my. If m; =0thenm =my € Kr,and mRNK; =0
gives K| = 0, a contradiction. Thus m; # 0. Clearly r(m) C r(m;). Hence r(m) = r(my),
by the choice of m. Similarly m, # 0 and r(m) = r(m;). Because m; # 0, there exist
ri,r2 € R such that 0 # myr; = mry = (m + ma)ry = myry + mory. Thus mpr, = 0, and
hence 7, € r(mz)\r(m), a contradiction. Thus K is indecomposable. By hypothesis, K is a
P-extending module and so Corollary 2.2 yields that K is uniform.

By Zorn’s Lemma, M contains a maximal local direct summand N = ), <1 Vi, where N; is
a uniform submodule of M for each i € I. By assumption, M = N @ N’ for some N’ < M. If
N’ # 0 then, by the above argument, N’ = U & U’ for some U, U’ < M with U uniform. Then
N @ U is alocal direct summand, contradicting the choice of N. Thus N’ = 0. It follows that
M = @,¢; N is a direct sum of uniform submodules. O

Corollary 4.2. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m € M). If M is an ECS-module and every local direct summand of
M is a direct summand then M is a direct sum of uniform submodules.

Proof. By Lemma 2.1 and Theorem 4.1. O
As direct consequences of Corollary 4.2, we have next corollaries.

Corollary 4.3. Let R be a right Noetherian ring and let M be an R-module. If M is an ECS-
module and every local direct summand of M is a direct summand then M is a direct sum of
uniform submodules.
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Corollary 4.4. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m € M). If M is a CS-module then M is a direct sum of uniform
submodules.

Observe that the indecomposable nonuniform module K in the proof of Proposition 2.4 is
not included in the above Corollaries of Theorem 4.1.
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