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Abstract. A module M is said to satisfy the ECS condition if every ec-closed submodule of
M is a direct summand. It is known that the class of ECS-modules is not closed under direct
sums. In this paper, we studied when a direct sum of two modules is an ECS-module and when
an ECS-module has a decomposition into uniform submodules.

1 Introduction

Throughout this paper, all rings are associative with unity andR denotes such a ring. All modules
are unital rightR-modules. A rightR-moduleM has finite uniform (Goldie) dimension ifM does
not contain an infinite direct sum of non-zero submodules. It is well known that a module M has
finite uniform dimension if and only if there exists a positive integer n and uniform submodules
Ui (1 ≤ i ≤ n) of M such that U1 ⊕ U2 ⊕ ... ⊕ Un is an essential submodule of M and in this
case n is an invariant of the module called the uniform dimension of M , (see, for example, [1, p.
294, ex. 2]).

Recall that a module M is said to be extending or CS if every complement (or closed) sub-
module of M is a direct summand. Equivalently, every submodule of M is essential in a direct
summand of M (see [6], [10]). Following [9], we call a (closed) submodule N of M as ec-
(closed) submodule if N contains essentially a cyclic submodule, i.e., there exists x ∈ N such
that xR is essential in N . Note that every direct summand of an ec-closed submodule of M is
ec-closed. A module M is said to be principally extending (or P-extending) if every cyclic sub-
module ofM is essential in a direct summand. Following [5], a module is said to be ECS if every
ec-closed submodule is a direct summand. Among examples of ECS-modules, we could mention
that extending modules and von Neumann regular rings. Furthermore, it can be seen easily that
for a module of finite uniform dimension CS and ECS concepts coincide. ECS-modules were
investigated in [5] and [9]. In this paper, we continue the study of ECS-modules. To this end,
we studied when a P-extending module and also a direct sum of two modules are ECS-modules.
Moreover we generalize a well known result on CS-modules to ECS-modules which provides a
decomposition into uniform submodules.

Let R be a ring and M a right R-module. If X ⊆ M , then X ≤ M denotes X is a sub-
module of M . Moreover End(MR), Z(M), E(M) and r(m) (m ∈ M) symbolize the ring
of endomorphisms of M , the singular submodule of M , the injective hull of M and the right
annihilator of m in R, i.e., r(m) = {r ∈ R : mr = 0}, respectively. Recall from [2],
Sl(R) = {e2 = e ∈ R : xe = exe for all x ∈ R}. A ring is called Abelian if every idem-
potent is central. Other terminology and notation can be found in [6] and [7].

2 Preliminary Results

In this section, we study relationships between the P-extending and ECS conditions. In particu-
lar, we make it clear that ec-closed and complement submodules are different from each other.
The next Lemma is taken from [5, Proposition 1.1] and we state here without proof.

Lemma 2.1. Let M be a module. Consider the following statements.
(i)M is CS
(ii)M is ECS
(iii)M is P-extending

Then (i)⇒ (ii)⇒ (iii). In general, the converses to these implications do not hold.
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Corollary 2.2. Let M be a nonzero indecomposable module. Then the following statements are
equivalent.
(i)M is CS
(ii)M is ECS
(iii)M is P-extending
(iv)M is uniform

Proof. Immediate by Lemma 2.1.

Our next result and thereafter its companion Proposition show that ec-closed and complement
submodules are not the same, in general. First note that there are uniform rings R for which
Z(RR) 6= 0, i.e., R is not nonsingular (see [4]).

Lemma 2.3. Let R be a right uniform nonsingular ring and PR be a projective module. Then
there exists a right R-module M such that PR is a complement but not an ec-submodule of M .

Proof. Since PR is projective there exists a free R-module say M , such that PR is a direct
summand of M . It is clear that P is a complement in M and MR is nonsingular. Assume P
is ec-submodule of M . There exists 0 6= x ∈ P such that xR is essential in P . However,
r(x) is essential in RR, by assumption. Hence x ∈ Z(PR) = 0, a contradiction. So PR is not
ec-submodule of M .

Proposition 2.4. Let n ≥ 3 be any odd integer. Let R be the real field and S the polynomial ring
R[x1, x2, ..., xn]. Then the ring R = S/Ss, where s =

∑n
i=1 x

2
i −1, is a commutative Noetherian

domain. Moreover the free R-module M =
⊕n

i=1 R contains a complement K which is not
ec-closed.

Proof. It is easy to check that R is a commutative Noetherian domain. Note that R is uniform
and MR is nonsingular.
Let φ : M → R be the homomorphism defined by φ(a1 + Ss, a2 + Ss, ..., an + Ss) = a1x1 +
a2x2 + ... + anxn + Ss for all ai in S (1 ≤ i ≤ n). Clearly, φ is an epimorphism, and hence,
its kernel K is a direct summand of M , i.e., M = K ⊕K ′ for some submodule K ′. Obviously,
K ′ ∼= R and K is a complement submodule of M . Assume that K is an ec-closed submodule of
M . Then there exists 0 6= x ∈ KR such that xR is essential in KR. However r(x) is essential in
RR. So x ∈ Z(KR) = 0, a contradiction. It follows that KR is not an ec-closed submodule of
M .

Note that the module KR in the proof of Proposition 2.4 is indecomposable projective of
uniform dimension n− 1 (see [12]). Thus KR is not included in Lemma 2.1 but it is included in
Lemma 2.3. In conjuction with Proposition 2.4, we have the following easy result.

Proposition 2.5. Let M be an ECS right R-module and N ≤ M . Assume M contains a cyclic
essential submodule. Then N is a direct summand if and only if N is an ec-closed.

Proof. Let Y = xR for some 0 6= x ∈ M such that Y is essential in MR. If N is ec-closed then
by hypothesis, N is a direct summand. Conversely, assume that N is a direct summand. Then
M = N ⊕ N ′ for some N ′ ≤ M . Let π : M → N be the projection homomorphism. Then
Y ∩K = xR∩K ≤ π(Y ) = π(x)R ≤ K and π(x)R is essential inK. HenceK is ec-closed.

Since the ECS property lies strictly between the CS and P-extending properties, it is natural
to seek conditions which ensure that a P-extending module is ECS or an ECS-module is CS.
Such conditions were illustrated in [5, Proposition 1.2]. Now, we prove another result which
makes a P-extending module is ECS.

Theorem 2.6. Let M be a R-module such that End(MR) is Abelian and X ≤ M implies X =∑
i∈I hi(M), where hi ∈ End(MR). Then M is P-extending if and only if M is ECS.

Proof. Assume M is P -extending and X is an ec-closed in M . There exists x ∈ X such that xR
is essential in X . Then X =

∑
i∈I hi(M), where each hi ∈ End(MR). So, by hypothesis, xR is

essential in eM = D where e2 = e ∈ End(MR). ThusM = eM⊕D′ whereD′ = (1−e)M . It is
clear thatX⊕D′ is essential inM . Let 0 6= y ∈ X . Then y = ey+(1−e)y. But y =

∑
i∈I hi(mi)

where mi ∈ M . Thus (1 − e)y = (1 − e)
∑

i∈I hi(mi) =
∑

i∈I hi((1 − e)mi) ∈ X ∩D′ = 0,
i.e., y = ey. Hence X ≤ D. It follows that X is essential in D. So X = D. Hence MR is ECS.
The converse follows from Lemma 2.1.



A NOTE ON ECS-MODULES 385

Recall that an R-module M is said to be a multiplication module if for each X ≤ M there
exists AR ≤ RR such that X =MA.

Corollary 2.7. If M is an R-module satisfying any of the following conditions, then M is P-
extending if and only if M is ECS.
(i)MR = RR and R is Abelian.
(ii)M is cyclic and R is commutative.
(iii)M is a multiplication module and R is commutative.

Proof. By Theorem 2.6 the result is true for condition (i). Now assume that M is cyclic and
R is commutative. There exists BR ≤ RR such that MR is isomorphic to R/B. Let Y/B be
an R-submodule of R/B. So, Y/B = (

∑
i∈I yiR) + B = (

∑
i∈I yiR + B)R, where each

yi ∈ Y . Define hi : R/B → R/B by hi(r + B) = yi + B. Then hi ∈ End((R/B)R). Hence
Y/B =

∑
i∈I hi(R/B). SinceR is commutative,End((R/B)R) is commutative. Thus Theorem

2.6 yields the result for condition (ii).
Finally, assume that M is a multiplication module and R is commutative. Let X = MA, where
AR ≤ RR. For each a ∈ A define ha : M → M by ha(m) = ma for m ∈ M . Then
X = MA =

∑
a∈A ha(M). Observe that every submodule of a multiplication module is fully

invariant. By [3, Lemma 1.9], if e2 = e ∈ End(MR), then e and 1− e ∈ Sl(End(MR)). Hence
e is central. So End(MR) is Abelian. Again, Theorem 2.6 yields the result.

3 Direct Sums of ECS-Modules

In this section, we deal with when a direct sum of two modules is an ECS-module. Recall that
the Z-module M = Q⊕Z/Zp, where p is any prime integer, is not CS-module by [11, Example
10]. Since M has finite uniform dimension, M is not ECS-module. Moreover MZ is a direct
sum of two uniform (and hence ECS) modules and even if Q is Z/Zp-injective, Z/Zp is not
Q-injective.

In [9], the authors assumed that ECS and P-extending conditions are the same and proved
results for P-extending modules. However these two conditions are different by Lemma 2.1. So
we give the corrected forms of some results in [9] which are stated for a direct sum of modules
being P-extending. First we have the following result.

Proposition 3.1. Let M =M1⊕M2 be a module, where the Mi are uniform and End(Mi) local
for i = 1, 2. Then the following conditions are equivalent:
(i)M is a CS-module, and monomorphisms Mi →Mj are isomorphisms; i 6= j.
(ii)M is an ECS-module, and monomorphisms Mi →Mj are isomorphisms; i 6= j.
(iii)Mi are Mj-injective; i 6= j.

Proof. (i)⇒ (ii). Clear by Lemma 2.1.
(ii) ⇒ (iii). Let f : E(Mi) → E(Mj) be an arbitrary homomorphism, where i 6= j. Let
X = {x ∈Mi : f(x) ∈Mj}. Then A = {x+ f(x) : x ∈ X} is a closed and uniform submodule
of M , by [8, Lemma 1]. Hence A is an ec-closed in M . By hypothesis, M = A ⊕ Mi or
M = A ⊕Mj . If M = A ⊕Mi, then Mj = f(X), and hence f−1 : Mj → X ⊆ Mi is, by
assumption, an isomorphism, i.e., X =Mi. On the other hand, if M = A⊕Mj , then X =Mi.
(iii)⇒ (i). Obvious.

Proposition 3.2. Let M = M1 ⊕M2, and let C ∩M1 be an ec-submodule of M , for every ec-
closed submodule C of M . Then M is ECS if and only if every ec-closed submodule C with
C ∩M1 = 0 or C ∩M2 = 0 is a direct summand.

Proof. The necessity is clear. For the sufficiency, let C be an ec-closed submodule of M with
cR is essential in C. If C ∩M1 = 0, then we are done. Otherwise, C ∩M1 is an ec-submodule
of M , by assumption. Let C1 be the closure of C ∩M1 in C, then C1 is an ec-closed submodule
of M , with C1 ∩M2 = 0. By hypothesis, C1 is a direct summand of M . Hence M = C1 ⊕ C2
for some submodule C2 of M . Thus C = C1 ⊕ (C ∩ C2). So C ∩ C2 is an ec-closed submodule
of M with (C ∩ C2) ∩M1 = 0, and therefore C ∩ C2 is a direct summand of M . Hence C is a
direct summand of M . It follows that M is an ECS-module.

Theorem 3.3. Let M = M1 ⊕M2 where M1 is of finite uniform dimension. Then M is ECS
if and only if every ec-closed submodule C of M , with C ∩M1 = 0, or C is of finite uniform
dimension, is a direct summand.
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Proof. The necessary condition is obvious. For the sufficient condition, let C be an ec-closed
submodule of M with mR is essential in C. If C ∩ M1 = 0, then we are done. Now, let
0 6= c ∈ C ∩M1 and C1 be the closure of cR in C. Note that C1 has finite uniform dimension.
By hypothesis, C1 is a direct summand of M . Thus M = C1 ⊕ K for some submodule K of
M . Hence C = C1 ⊕D, where D = K ∩ C is closed in M . Since D is a direct summand of an
ec-closed submodule C, then D is ec-closed. If D ∩M1 = 0, then by assumption D is a direct
summand, and hence C is a direct summand ofM . IfD∩M1 6= 0, then by repeating the previous
steps, we have D = C2 ⊕C3, where C2 is a direct summand and has a nonzero intersection with
M1. Continuing in this manner, we obtain C = C1⊕C2⊕ ...⊕Cn, where Ci is a direct summand
of M (i = 1, 2, .., n− 1) and Cn contains an essential cyclic submodule with Cn ∩M1 = 0. By
hypothesis, Cn is a direct summand of M and therefore C is a direct summand of M .

Corollary 3.4. Let M = M1 ⊕M2. Then every ec-closed submodule of M with finite uniform
dimension, is a direct summand if and only if every ec-closed submodule C of M with finite
uniform dimension such that C ∩M1 = 0 or C ∩M2 = 0, is a direct summand.

Proof. Similar to the proof of Theorem 3.3.

Proposition 3.5. Let M =M1 ⊕M2, where M1 is a semisimple module. Then M is ECS if and
only if every ec-closed submodule C of M with C ∩M1 = 0, is a direct summand.

Proof. The necessity is obvious. For the sufficiency, let C be an ec-closed submodule of M .
If C ∩ M1 = 0, then we are done. So assume that C ∩ M1 6= 0. Thus C ∩ M1 is a direct
summand of M1. It follows that C = (C ∩M1) ⊕ D for some submodule D of C. Since D is
an ec-closed submodule of M and D ∩M1 = 0, then D is a direct summand of M . Thus C is a
direct summand of M .

4 A Decomposition into Uniform Submodules

Finally we prove a result which decomposes an ECS-module as a direct sum of uniform sub-
modules. For analogy result in the CS case, we refer to [6] (see, also [10]). Since we will use it
in our result, we need to give the following definition. Let M be a module and let N =

⊕
i∈I Ni

be a direct sum of submodules Ni (i ∈ I) of M . Then N is called a local direct summand of M
if
⊕

i∈I′ Ni is a direct summand of M for every finite subset I ′ of I . It is well known that a local
direct summand is a complement. Now, we have the following result.

Theorem 4.1. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m ∈M). If every direct summand of M is P -extending and every local
direct summand of M is a direct summand then M is a direct sum of uniform submodules.

Proof. Let 0 6= m ∈ M such that r(m) is maximal in {r(x) : 0 6= x ∈ M}. There exists a
direct summand K of M such that mR is essential in K. Suppose that K is not indecomposable.
Then there exist non-zero submodules K1 and K2 of K such that K = K1 ⊕ K2. There exist
mi ∈ Ki (i = 1, 2) such that m = m1 +m2. If m1 = 0 then m = m2 ∈ K2, and mR ∩K1 = 0
gives K1 = 0, a contradiction. Thus m1 6= 0. Clearly r(m) ⊆ r(m1). Hence r(m) = r(m1),
by the choice of m. Similarly m2 6= 0 and r(m) = r(m2). Because m1 6= 0, there exist
r1, r2 ∈ R such that 0 6= m1r1 = mr2 = (m1 +m2)r2 = m1r2 +m2r2. Thus m2r2 = 0, and
hence r2 ∈ r(m2)\r(m), a contradiction. Thus K is indecomposable. By hypothesis, K is a
P -extending module and so Corollary 2.2 yields that K is uniform.

By Zorn’s Lemma, M contains a maximal local direct summand N =
⊕

i∈I Ni, where Ni is
a uniform submodule of M for each i ∈ I . By assumption, M = N ⊕N ′ for some N ′ ≤ M . If
N ′ 6= 0 then, by the above argument, N ′ = U ⊕ U ′ for some U,U ′ ≤ M with U uniform. Then
N ⊕ U is a local direct summand, contradicting the choice of N . Thus N ′ = 0. It follows that
M =

⊕
i∈I Ni is a direct sum of uniform submodules.

Corollary 4.2. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m ∈ M). If M is an ECS-module and every local direct summand of
M is a direct summand then M is a direct sum of uniform submodules.

Proof. By Lemma 2.1 and Theorem 4.1.

As direct consequences of Corollary 4.2, we have next corollaries.

Corollary 4.3. Let R be a right Noetherian ring and let M be an R-module. If M is an ECS-
module and every local direct summand of M is a direct summand then M is a direct sum of
uniform submodules.



A NOTE ON ECS-MODULES 387

Corollary 4.4. Let R be a ring and let M be an R-module such that R satisfies ACC on right
ideals of the form r(m) (m ∈ M). If M is a CS-module then M is a direct sum of uniform
submodules.

Observe that the indecomposable nonuniform module KR in the proof of Proposition 2.4 is
not included in the above Corollaries of Theorem 4.1.

References
[1] F. W. Anderson and K. R. Fuller, Rings and Catogories of Modules (Springer-Verlag, New York, 1992).

[2] G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983) 567–580.

[3] G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, Modules in which every fully invariant submodule is
essential in a direct summand, Comm. Algebra 30 (2002) 1395–1415.

[4] K. A. Brown, The singular ideals of group rings, Quart. J. Math. 28 (1977) 41–60.

[5] C. Celep Yücel and A. Tercan, Modules whose ec-closed submodules are direct summand, Taiwanese J.
Math., 13 (2009) 1247–1256.

[6] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules (Longman Scientific & Techni-
cal, Harlow, 1994).

[7] K. R. Goodearl, Von Neumann Regular Rings (Pitman, London, 1979).

[8] M. A. Kamal, Relative injectivity and CS-modules, Internat. J. Math. and Math. Sci. 17 (1994) 661–666.

[9] M. A. Kamal and O. A. Elmnophy, On P-extending Modules, Acta. Math. Univ. Comenianae 74 (2005)
279–286.

[10] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules (Cambridge Univ. Press, London
Math. Soc. Lecture Note Series, 147, Cambridge, 1990).

[11] P. F. Smith and A. Tercan, Continuous and Quasi-Continuous Modules, Houston J. Math. 18 (1992) 339–
348.

[12] A. Tercan, Weak C11 modules and algebraic topology type examples, Rocky Mountain J. Math. 34 (2004)
783–792.

Author information

CANAN CELEP YÜCEL, Department of Mathematics, Faculty of Science and Art, Pamukkale University,
20070, Denizli, Turkey.
E-mail: ccyucel@pau.edu.tr

Received: January 14, 2014.

Accepted: April 8, 2014.


