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Abstract. In this paper the degree of approximation to functions belonging to Lipschitz class
is estimated by Cλ-method obtained by deleting a set of rows from the Cesáro matrix C1 under
the some conditions.

1 Introduction

Assume that f is a 2π− periodic function and f ∈ Lp := Lp [0, 2π] for p ≥ 1 where Lp consists
of all measurable functions for which the Lp− norm is defined as follows

‖f‖p :=

{
1

2π

∫ 2π

0
|f(x)|p dx

} 1
p

<∞.

On the other hand, the partial sum of the first (n+ 1) terms of the Fourier series of f ∈ Lp at
a point x is denoted by

sn(f ;x) =
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) ≡
n∑
k=0

Ak(f ;x).

Furthermore, a function f belongs to the Lip(α, p) class if ωp(δ, f) = O(δα), where

ωp(δ, f) = sup
|t|≤δ
||f(·+ t)− f(·)||p 0 < α ≤ 1; p ≥ 1,

is the integral modulus of continuity of f ∈ Lp.
One of the basic problems in the theory of approximation of functions and the theory of

Fourier series is to examine the degree of approximation in given function spaces by some certain
methods. In this sense, one of the important results encountered belongs to Quade in [8]. He
solved a problem related with approximation by trigonometric polynomials on conjecture stated
without proof by G. H. Hardy and J. E. Littlewood in 1928. In subsequent years, Chandra gave
some attractive results including sharper estimates than some results of Quade by Nörlund and
Riesz methods. In 2005, Leindler[5] weakened the conditions of monotonicity given by Chandra
according to Nörlund and Riesz methods. We know that Nörlund and Riesz methods generalize
the well known Cesáro method which has an important place in this theory. Naturally, there arises
the question how we can generalize these approximation methods. There are two possibilities in
this way. First it can be generalized by taking into account summability methods. The other one
can be weakened the conditions of monotonicity. In this work we shall consider both of these
conditions and move this direction. Accordingly, let F be an infinite subset of N as the range of
a strictly increasing sequence of positive integers, with F = (λ (n))∞n=1. The Cesáro submethod
Cλ is defined as

(Cλx)n =
1

λ (n)

λ(n)∑
k=1

xk, (n = 1, 2, ...) ,

where (xk) is a sequence of a real or complex numbers. Therefore, the Cλ-method yields a
subsequence of the Cesáro method C1, and hence it is regular for any λ. Note that Cλ is obtained
by deleting a set of rows from Cesáro matrix. The basic properties of Cλ-method can be found
in [1] and [7]. By considering this method the following definitions was given in [3]:

Nλ
n (f ;x) =

1
Pλ(n)

λ(n)∑
m=0

pλ(n)−msm(f ;x),
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Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pmsm(f ;x),

where

sn(f ;x) =
1
π

∫ 2π

0
f (x+ t)Dn(t) dt,

and

Dn(t) =
sin(n+ 1

2)t

2 sin
(
t
2

) .

Also,
Pλ(n) = p0 + p1 + p2 + ...+ pλ(n) 6= 0 (n ≥ 0),

and by convention p−1 = P−1 = 0.
In case λ(n) = n, the methods Nλ

n (f ;x) and Rλn(f ;x) give us classicaly known Nörlund and
Riesz means. Provided that pn = 1 for all (n ≥ 0) both of them yield

σλn(f ;x) =
1

λ (n) + 1

λ(n)∑
m=0

sm(f ;x).

In addition to this, if λ(n) = n for σλn(f ;x), then it coincides with Cesáro method C1.
Moreover, let tn be a trigonometrical polynomial of order n. Then, it is 2π- periodic and

Lebesgue integrable. If sm(tn;x) denotes partial sum of the first (m + 1) terms of the Fourier
series of tn at x, then

sm(tn;x) =

{
tm(x), if m ≤ n;
tn(x), if m ≥ n.

(1.1)

We shall also use the notations

∆an = an − an+1 , ∆ma(n,m) = a(n,m)− a(n,m+ 1).

While taking into account these methods, the monotonicity conditions on the sequence (pn)
are important. So, let’s recall the definitions of some classes of numerical sequences discussed
in detail in [4], [5] and [6]. Let u := (un) be a nonnegative sequence and C := (Cn) =

1
n+1

n∑
m=0

um:

A sequence u is called almost monotone decreasing (briefly u ∈ AMDS) (increasing (briefly
u ∈ AMIS)), if there exists a constant K := K(u) which only depends on u such that

un ≤ Kum (Kun ≥ um)

for all n ≥ m.
If C ∈ AMDS (C ∈ AMIS), then we say that the sequence u is almost monotone decreas-

ing (increasing) mean sequence and denoted by C ∈ AMDMS (C ∈ AMIMS).
A sequence u tending to zero is called a rest bounded variation sequence (RBV S) (rest

bounded variation mean sequence (RBVMS)), if it has the property

∞∑
m=k

|∆um| ≤ K(u)uk (
∞∑
m=k

|∆Cm| ≤ K(u)Ck)

for all natural numbers k. Leindler first raised the rest bounded variation condition in [4].
A sequence u is called a head bounded variation sequence (HBV S) (head bounded variation

mean sequence (HBVMS)), if it has the property

k−1∑
m=0

|∆um| ≤ K(u)uk (
k−1∑
m=0

|∆Cm| ≤ K(u)Ck)

for all natural numbers k, or only for all k ≤ N if the sequence u has only finite nonzero terms
and the last nonzero term uN .

It is clear that the following inclusions are true for the above classes of numerical sequences:

RBV S ⊂ AMDS , RBVMS ⊂ AMDMS



46 Uǧur Deǧer and Musa Kaya

and
HBV S ⊂ AMIS , HBVMS ⊂ AMIMS.

Moreover, Mohapatra and Szal showed that the following embedding relations are true in [6]:

AMDS ⊂ AMDMS

and
AMIS ⊂ AMIMS.

It is clear that the class of nonnegative and nondecreasing (nonincreasing) sequences is a
subset of the class of almost monotone decreasing (increasing) sequences. Taking into these in-
clusions, both we will extend the results given in [5] by weakening the monotonicity conditions
and we will give the degree of approximation of functions by Cλ-method of their Fourier series
of functions that belong to the class Lp for p ≥ 1. Especially, we consider the degree of approx-
imation of f ∈ Lp by trigonometrical polynomials Nλ

n (f ;x) and Rλn(f ;x) under the perspective
of [5, 6]. We see that the results obtained in this paper strongly generalize the results in [2]-[5].

2 Main Results

The following results are important in the theory of Fourier series for both the creation and
acceleration of convergence of a Fourier series and also for the acceleration of convergence in
approximation theory.

Theorem 2.1. Suppose that f ∈ Lip(α, p) and let (pn) be positive. If one of the conditions,
(i) p > 1, 0 < α < 1, (pn) ∈ AMIMS with

(λ(n) + 1)pλ(n) = O(Pλ(n)), (2.1)

(ii) p > 1, 0 < α < 1 and (pn) ∈ AMDMS
satisfies, then ∥∥f −Nλ

n (f)
∥∥
p
= O(λ(n)−α).

Since AMDS ⊂ AMDMS and AMIS ⊂ AMIMS, we can derive the following result
from Theorem 2.1.

Corollary 2.2. Suppose that f ∈ Lip(α, p) and let (pn) be positive. If one of the conditions,
(i) p > 1, 0 < α < 1, (pn) ∈ AMIS and (2.1) holds,
(ii) p > 1, 0 < α < 1 and (pn) ∈ AMDS

satisfies, then ∥∥f −Nλ
n (f)

∥∥
p
= O(λ(n)−α).

This corollary also generalizes the cases (i) and (ii) of Theorem 1 given in [5] with respect
to both monotonicity condition and Cesáro submethod Cλ. Therefore the results of Chandra [2]
are generalized. Moreover, the last corollary can be also written in accordance with the classes
HBVMS and RBVMS.

A subsequent result is related to [5, Theorem 1] for sequences that are more general than
monotone sequences in case p > 1, α = 1. Accordingly, it is easy to see that if (pn) is nonde-
creasing and (2.1) satisfies, then

λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n))

holds. On the other hand, if (pn) is nonincreasing, then

λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n))

is also true. Therefore, the following result is implied under the weaker assumptions. In this
way, we write the next theorem.



On the approximation by Cesáro submethod 47

Theorem 2.3. Let f ∈ Lip(1, p) and let (pn) be positive. If one of the following conditions is
satisfied

(i) p > 1,
λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n)) and (2.1) holds,

(ii) p > 1 and
λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n)),

then ∥∥f −Nλ
n (f)

∥∥
p
= O(n−1). (2.2)

Remark 2.4. Let (pn) ∈ RBV S with condition (λ(n) + 1) = O(Pλ(n)). Then it is clear that

λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n))

is true. Therefore, keep in mind the Theorem 2.3-(ii), we can write the next corollary:

Corollary 2.5. Let f ∈ Lip(1, p), p > 1. If (pn) ∈ RBV S and the condition (λ(n) + 1) =
O(Pλ(n)) holds, then ∥∥f −Nλ

n (f)
∥∥
p
= O(n−1). (2.3)

The following two results give us the results of Leindler for p = 1 and 0 < α < 1 in [5] in
the event of λ(n) = n.

Theorem 2.6. Let f ∈ Lip(α, 1), 0 < α < 1, and let (pn) be positive. If the condition

λ(n)−1∑
k=−1

|∆pk| = O(Pλ(n)/λ(n))

holds, then ∥∥f −Nλ
n (f)

∥∥
1 = O((λ(n))−α).

Remark 2.7. Nλ
n (f, x) gives the method of σλn(f, x) in the Theorem 2.6 in case pn = 1. So, we

have ∥∥f − σλn(f)∥∥1 = O((λ(n))−α). (2.4)

Theorem 2.8. Let f ∈ Lip(α, 1), 0 < α < 1, and let (pn) be positive. If (pn) satisfies (2.1) and
the condition

λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n))

holds, then ∥∥f −Rλn(f)∥∥1 = O(λ(n)−α). (2.5)

Remark 2.9. Let (pn) ∈ HBV S with condition (2.1). Then it is easy to observe that

λ(n)−1∑
k=0

|∆pk| = O((λ(n))−1Pλ(n)).

Hence, we can write the following corollary due to Theorem 2.8:

Corollary 2.10. Let f ∈ Lip(α, 1), 0 < α < 1. If (pn) ∈ HBV S with the condition (2.1), then
(2.5) holds.

Moreover, we can write with the following way the analogy of Theorem 2.1 for generalized
Riesz method.

Theorem 2.11. Assume that f ∈ Lip(α, p) and let (pn) be positive. If one of the conditions is
satisfied

(i) p > 1, 0 < α < 1, (pn) ∈ AMDMS and (λ(n) + 1) = O(Pλ(n)) holds,
(ii) p > 1, 0 < α < 1 and (pn) ∈ AMIMS,

then ∥∥f −Rλn(f)∥∥p = O(λ(n)−α).
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In [6], we know that class of head bounded variation mean sequences(HBVS) includes the
class of non-decreasing sequences(NDS). Therefore, taking into account this fact, we write the
following result that generalizes Theorem 3 given in [2] by motivation in [6, Theorem 5].

Theorem 2.12. Let f ∈ Lip(1, 1) and (pn) with (2.1) be positive. If ((n+ 1)−ηpn) ∈ HBV S
for some η > 0, then ∥∥f −Rλn(f)∥∥1 = O(n−1). (2.6)

3 Some Auxiliary Results

In this section, we shall give some auxiliary results requiring to prove the theorems given in
Section 2.

Lemma 3.1. Let
(pn) ∈ AMDMS

or
(pn) ∈ AMIMS and satisfy (2.1).

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m = O((λ(n) + 1)−αPλ(n)).

Proof. We shall use the analogy technique in [6] in proof of this lemma. Let us denote integer
part of λ(n)2 by r. So,

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m =
r∑

m=0

(m+ 1)−αpλ(n)−m +

λ(n)∑
m=r+1

(m+ 1)−αpλ(n)−m

≤
r∑

m=0

(m+ 1)−αpλ(n)−m + (r + 1)−αPλ(n).

First by using Abel’s transformation for the sum in the right sight of inequality in above and then
by applying Lagrange’s mean value theorem to function f(x) = x−α, 0 < α < 1 on interval
(m+ 1,m+ 2), we conclude that

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m ≤
r−1∑
m=0

{(m+ 1)−α − (m+ 2)−α}
m∑
k=0

pλ(n)−k + (r + 1)−αPλ(n)

=
r−1∑
m=0

α(m+ 1)α−1

(m+ 1)α(m+ 2)α

m∑
k=0

pλ(n)−k + (r + 1)−αPλ(n)

≤
r−1∑
m=0

1
(m+ 2)α

(
1

(m+ 1)

m∑
k=0

pλ(n)−k

)
+ (r + 1)−αPλ(n).

If (pn) ∈ AMIMS and satisfies (2.1), then we have

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m ≤ pλ(n)
r−1∑
m=0

1
(m+ 2)α

+ (r + 1)−αPλ(n)

= O(
pλ(n)

1 + λ(n)
)(1 + λ(n))1−α + (r + 1)−αPλ(n) = O((λ(n) + 1)−αPλ(n)). (3.1)

If (pn) ∈ AMDMS, then

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m ≤

(
1

(r + 1)

r∑
k=0

pλ(n)−k

)
r−1∑
m=0

1
(m+ 2)α

+ (r + 1)−αPλ(n)

≤ (r + 1)−α
r∑
k=0

pλ(n)−k + (r + 1)−αPλ(n) = O((λ(n) + 1)−αPλ(n)). (3.2)

Hence, the required result is obtained from (3.1) and (3.2).
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Lemma 3.2. Let
(pn) ∈ AMIMS

or
(pn) ∈ AMDMS and satisfy (λ(n) + 1) = O(Pλ(n)) .

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpm = O((λ(n) + 1)−αPλ(n)).

We will omit here the proof of Lemma 3.2 because of the fact that its proof is similar with
the proof of Lemma 3.1.

The proof of Corollary 2.2 is obvious from Theorem 2.1. However, we can also prove this
corollary by using the following Lemma whose proof is slightly different from the proof of the
above lemma.

Lemma 3.3. Let
(pn) ∈ AMDS

or
(pn) ∈ AMIS and satisfy (2.1).

Then, for 0 < α < 1,
λ(n)∑
m=1

m−αpλ(n)−m = O(λ(n)−αPλ(n)). (3.3)

Proof. Let us denote integer part of λ(n)2 by r. So,

λ(n)∑
m=1

m−αpλ(n)−m =
r∑

m=1

m−αpλ(n)−m +

λ(n)∑
m=r+1

m−αpλ(n)−m. (3.4)

If (pn) ∈ AMDS, then

r∑
m=1

m−αpλ(n)−m ≤ Kpλ(n)−r
λ(n)∑
m=1

m−α = O(n1−α)pλ(n)−r (3.5)

and
λ(n)∑

m=r+1

m−αpλ(n)−m ≤ (r + 1)−α
λ(n)∑
m=1

pλ(n)−m = (r + 1)−αPλ(n). (3.6)

From (3.4), (3.5) and (3.6), we obtain (3.3). If (pn) ∈ AMIS and satisfies (2.1), then

r∑
m=1

m−αpλ(n)−m ≤ Kpλ(n)
λ(n)∑
m=1

m−α = O(
Pλ(n)

λ(n)
λ(n)1−α). (3.7)

Taking into account (3.6) and (3.7), therefore we get (3.3).

Lemma 3.4. The following inequalities are valid:

Aλn :=
λ(n)∑
m=1

|∆m
{
m−1(Pλ(n) − Pλ(n)−m)

}
| = O(1)

λ(n)−1∑
m=0

|∆pm| (3.8)

and if
λ(n)−1∑
m=1

m|∆pm| = O(Pλ(n))

then

Aλn = O

(
Pλ(n)

λ(n)

)
. (3.9)
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Proof. With a simple analysis, we get∣∣∣∆m {m−1Uλ(n)m

}∣∣∣ =

∣∣∣∣Pλ(n) − Pλ(n)−m−1

m(m+ 1)
+
Pλ(n)−m−1 − Pλ(n)−m

m

∣∣∣∣
=

∣∣∣∣∣∣ 1
m(m+ 1)


λ(n)∑

k=λ(n)−m

pk − (m+ 1)pλ(n)−m


∣∣∣∣∣∣

where Uλ(n)m := Pλ(n) − Pλ(n)−m. It is easy to show by induction, similar to [4, p.134], that∣∣∣∣∣∣


λ(n)∑
k=λ(n)−m

pk − (m+ 1)pλ(n)−m


∣∣∣∣∣∣ ≤

m∑
k=1

k|pλ(n)−k+1 − pλ(n)−k|.

Hence, we have

λ(n)∑
m=1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣ ≤
λ(n)∑
m=1

1
m(m+ 1)

m∑
k=1

k|pλ(n)−k+1 − pλ(n)−k|

≤
λ(n)∑
k=1

k|pλ(n)−k+1 − pλ(n)−k|

( ∞∑
m=k

1
m(m+ 1)

)

=

λ(n)−1∑
k=0

|∆pk|.

Therefore the first part of the lemma has been proven. Now let’s verify the second part of the
lemma. We know that

Aλn ≤
λ(n)∑
m=1

1
m(m+ 1)

m∑
k=1

k|pλ(n)−k+1 − pλ(n)−k|

=

 r∑
m=1

+

λ(n)∑
m=r+1

 1
m(m+ 1)

m∑
k=1

k|∆kpλ(n)−k| =: I + J (3.10)

where r is integer part of λ(n)2 . Firstly let’s estimate I .

I ≤
r∑
k=1

k|∆kpλ(n)−k|
∞∑
m=k

1
m(m+ 1)

=
r∑
k=1

|∆kpλ(n)−k|

≤ 1
λ(n)− r

λ(n)−1∑
k=1

k|∆pk| = O(
1

λ(n)
)

λ(n)−1∑
k=1

k|∆pk| = O(
Pλ(n)

λ(n)
) (3.11)

On the other hand, we have

J ≤
λ(n)∑
m=r

1
m(m+ 1)

m∑
k=1

k|∆kpλ(n)−k|

≤
λ(n)∑
m=r

1
m(m+ 1)

(
r∑
k=1

+
m∑

k=r+1

)
k|∆kpλ(n)−k| =: J1 + J2. (3.12)

Taking into account our assumption for J1 and J2, respectively, we get

J1 ≤
λ(n)∑
m=r

1
m(m+ 1)

r∑
k=1

k|∆kpλ(n)−k|

≤
λ(n)∑
m=r

1
(m+ 1)

r∑
k=1

|∆kpλ(n)−k| = O

(
1

λ(n)− r

) λ(n)−1∑
k=λ(n)−r

k|∆pk|

= O
(
(λ(n))−1) λ(n)−1∑

k=1

k|∆pk| = O

(
Pλ(n)

λ(n)

)
(3.13)
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and

J2 ≤
λ(n)∑
m=r

1
m(m+ 1)

{
m∑
k=r

k|∆kpλ(n)−k|

}

= O

(
1

λ(n)

) λ(n)∑
m=r

m∑
k=r

|∆kpλ(n)−k|

= O
(
(λ(n))−1) λ(n)−1∑

k=0

(k + 1)|∆pk| = O

(
Pλ(n)

λ(n)

)
. (3.14)

By combining the (3.10)-(3.14), we confirm (3.9).

The following auxiliary results have been given by Quade in [8].

Lemma 3.5. . If f ∈ Lip(α, 1), 0 < α < 1, then

‖f − σn(f)‖1 = O(n−α).

Lemma 3.6. . Let f ∈ Lip(α, p) for 0 < α ≤ 1 and p > 1. Then

‖f − sn(f)‖p = O(n−α).

Lemma 3.7. . If f ∈ Lip(α, p) for 0 < α ≤ 1 and p ≥ 1, then for any positive integer n, f may
be approximated in Lp - space by a trigonometrical polynomial tn order n such that

‖f − tn‖p = O(n−α).

Lemma 3.8. . If f ∈ Lip(1, p) for p > 1, then

‖σn(f)− sn(f)‖p = O(n−1).

In the next part, we shall present the proofs of the theorems by using the analogy technique
given in some references such as [5]-[6].

4 Proofs of the Main Results

Proof of Theorem 2.1. By the definition of Nλ
n (f, x), we have

Nλ
n (f, x)− f(x) =

1
Pλ(n)

λ(n)∑
m=0

pλ(n)−m {sm(f, x)− f(x)} . (4.1)

From hypothesis, Lemma 3.1 and Lemma 3.6, we obtain

∥∥Nλ
n (f)− f

∥∥
p
≤ 1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m ‖sm(f)− f‖p

=
O(1)
Pλ(n)

λ(n)∑
m=0

pλ(n)−m(m+ 1)−α = O(λ(n)−α).

Therefore, the proofs of the cases (i) and (ii) have been completed together.

Proof of Corollary 2.2. Proceeding as above, from Lemma 3.3 and Lemma 3.6, we get

∥∥Nλ
n (f)− f

∥∥
p
≤ 1
Pλ(n)

λ(n)∑
m=1

pλ(n)−m ‖sm(f)− f‖p +
pλ(n)

Pλ(n)
‖s0(f)− f‖p

=
1

Pλ(n)
O(λ(n)−αPλ(n)) +O(λ(n)−α) = O(λ(n)−α).
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Proof of Theorem 2.3. First we consider the case (i). Let p > 1 and α = 1. It is clear

Nλ
n (f, x) =

1
Pλ(n)

λ(n)∑
m=0

Pλ(n)−mAm

that

sn(f, x)−Nλ
n (f, x) =

1
Pλ(n)

n∑
m=0

Uλ(n)m Am −
1

Pλ(n)

λ(n)∑
m=n+1

Pλ(n)−mAm.

Denoting ηm := Pλ(n)−m and I :=
1

Pλ(n)

λ(n)∑
m=n+1

ηmAm. By Abel’s Transformation we have

sn(f, x)−Nλ
n (f, x) =

1
Pλ(n)

[
n−1∑
m=1

∆m(
U
λ(n)
m

m
)
m∑
k=0

kAk+
U
λ(n)
n

n

m∑
k=0

kAk

]
−I

=
1

Pλ(n)

[
n∑

m=1

∆m(
U
λ(n)
m

m
)
m∑
k=0

kAk+
U
λ(n)
n+1

n+ 1

m∑
k=0

kAk

]
−I

and hence

∥∥sn(f)−Nλ
n (f)

∥∥
p
≤ 1

Pλ(n)

n∑
m=1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣
m∑
k=0

kAk

+
U
λ(n)
n+1

Pλ(n)

1
n+ 1

∥∥∥∥∥
m∑
k=0

kAk

∥∥∥∥∥
p

+ ‖I‖p (4.2)

By using Abel’s transformation we have

I =
1

Pλ(n)
(

λ(n)∑
m=n+1

∆m(
ηm
m

)
m∑
k=1

kAk

+

[
ηλ(n)

λ(n)
− ∆(

ηλ(n)

λ(n)
)

] λ(n)∑
k=1

kAk −
ηn+1

n+ 1

n∑
k=1

kAk)

=
1

Pλ(n)
(

λ(n)∑
m=n+1

∆m(
ηm
m

)
m∑
k=1

kAk −
ηn+1

n+ 1

n∑
k=1

kAk)

and hence

‖I‖p ≤
1

Pλ(n)

λ(n)∑
m=n+1

∣∣∣∆m(ηm
m

)
∣∣∣ ∥∥∥∥∥

m∑
k=1

kAk

∥∥∥∥∥
p

+
ηn+1

Pλ(n)

1
n+ 1

∥∥∥∥∥
n∑
k=1

kAk

∥∥∥∥∥
p

(4.3)

Since

sn(f, x)− σn(f, x) =
1

n+ 1

n∑
k=1

kAk

by Lemma 3.8 we get

(n+ 1) ‖sn(f)− σn(f)‖p =

∥∥∥∥∥
n∑
k=1

kAk

∥∥∥∥∥
p

= O(1) (4.4)

So, combining (4.2),(4.3) and (4.4) we have

∥∥sn(f)−Nλ
n (f)

∥∥
p

= O(
1

Pλ(n)
)

n∑
m=1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣+ U
λ(n)
n+1

Pλ(n)
O(n−1)

+ O(
1

Pλ(n)
)

λ(n)∑
m=n+1

∣∣∣∆m(ηm
m

)
∣∣∣+O(n−1) (4.5)
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If we consider ∆m(
ηm
m ) = ∆m(

−Uλ(n)m

m ) + Pλ(n)∆m(
1
m) then

λ(n)∑
m=n+1

∣∣∣∆m(ηm
m

)
∣∣∣ =

λ(n)∑
m=n+1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣+ Pλ(n)

λ(n)∑
m=n+1

∆m(
1
m
)

=

λ(n)∑
m=n+1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣+O(
Pλ(n)

n
) (4.6)

Due to (3.8) of Lemma 3.4, we know that

λ(n)∑
m=n+1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣ = O(1)
λ(n)−1∑
k=0

|∆pk| (4.7)

and
n∑

m=1

∣∣∣∣∣∆m(Uλ(n)m

m
)

∣∣∣∣∣ = O(1)
λ(n)−1∑
k=0

|∆pk|. (4.8)

Taking into account (4.5)-(4.8) and the condition (i) of Theorem 2.3 we obtain∥∥sn(f)−Nλ
n (f)

∥∥
p
= O(n−1). (4.9)

Therefore, by using (4.9) and Lemma 3.6 we get (2.2) for the case (i).
Similarly, we prove the case (ii). Namely, by considering Lemma 3.6, (3.9) of Lemma 3.4,

(4.5) and (4.6) we obtain (2.2) under the condition (ii) of Theorem 2.3. Accordingly, the proof
of Theorem 2.3 is completed.

Proof of Theorem 2.6. By using (4.1) and Abel’s transformation, we have

Nλ
n (f, x)− f(x) =

1
Pλ(n)

λ(n)∑
m=0

pλ(n)−m {sm − f(x)}

=
1

Pλ(n)

λ(n)∑
m=0

(m+ 1)∆m(pλ(n)−m)
1

m+ 1

m∑
k=0

{sk − f(x)}

=
1

Pλ(n)

λ(n)∑
m=0

(m+ 1)∆m(pλ(n)−m) (σm(f, x)− f(x)) .

If the norm ‖ · ‖1 of each side is taken and by using the result of Quade [8] for p = 1 and
0 < α < 1, Lemma 3.5, we get

∥∥Nλ
n (f)− f

∥∥
1 ≤

1
Pλ(n)

λ(n)∑
m=0

(m+ 1)
∣∣∆m(pλ(n)−m)∣∣ ‖σm(f)− f‖1

≤ 1
Pλ(n)

λ(n)∑
m=0

(m+ 1)m−α
∣∣∆m(pλ(n)−m)∣∣

= O

(
(λ(n) + 1)1−α

Pλ(n)

) λ(n)∑
m=0

∣∣∆m(pλ(n)−m)∣∣
= O

(
(λ(n))1−α

Pλ(n)

) λ(n)−1∑
m=−1

|∆pm| = O((λ(n))−α)

by suitability p−1 = 0 under the condition of theorem.

Proof of Theorem 2.8. Since

f(x)−Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pm(f(x)− sm(f, x)), (4.10)
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therefore, in view of Abel’s transformation, we obtain

λ(n)∑
m=0

pm(f(x)− sm(f, x)) =
λ(n)−1∑
m=0

(m+ 1)(f(x)− σm(f ;x))∆pm
m∑
k=0

(f(x)− sm(f, x))

+(λ(n) + 1)pλ(n)(f(x)− σλm(f ;x)).

After continuing with the norm from here, by considering (2.4) and Lemma 3.5, we have

‖f −Rλn(f)‖1 ≤
1

Pλ(n)

λ(n)−1∑
m=0

(m+ 1)|∆(pm)|‖f − σm(f)‖1

+
(1 + λ(n))pλ(n)

Pλ(n)
‖f − σλn(f)‖1 =

1
Pλ(n)

|∆(p0)|‖f − σ0(f)‖1

+
1

Pλ(n)

λ(n)−1∑
m=1

(m+ 1)|∆(pm)|‖f − σm(f)‖1+
(1 + λ(n))pλ(n)

Pλ(n)
‖f − σλn(f)‖1

= O(
(λ(n))1−α

Pλ(n)
)

λ(n)−1∑
m=0

|∆(pm)|+O(λ(n)−α) = O(λ(n)−α).

Thus, this yields (2.5).

Proof of Theorem 2.11. Let p > 1 and 0 < α < 1. We have

f(x)−Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pm(f(x)− sm(f, x)).

Accordingly, we get the expected result from Lemma 3.2 and Lemma 3.6 by combining the
conditions (i) and (ii):

‖f −Rλn(f)‖p ≤
1

Pλ(n)

λ(n)∑
m=0

pm‖f − sm(f)‖p

=
O(1)
Pλ(n)

λ(n)∑
m=0

pm(m+ 1)−α = O(λ(n)−α).

Proof of Theorem 2.12. If tn(x) is a trigonometric polynomials we have sm(tn, x) = tm(x)
when m ≤ n. Hence,

sm(f, x)− tm(x) = sm(f, x)− sm(tn, x) = sm(f − tn, x).

From integral representation of partial sum of Fourier series we have

sm(f − tn, x) =
1
π

2π∫
0

{f(x+ u)− tn(x+ u)}Dm(u)du

and

Rλn(f, x)−
1

Pλ(n)

λ(n)∑
m=0

pmtm(x) =
1

Pλ(n)

λ(n)∑
m=0

pmsm(f − tn, x)

=
1

Pλ(n)

λ(n)∑
m=0

pm
1
π

2π∫
0

{f(x+ u)− tn(x+ u)}Dm(u)du

=
1
π

2π∫
0

{f(x+ u)− tn(x+ u)}Kλ
n(u)du (4.11)
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where Dm(u) is Dirichlet kernel and

Kλ
n(u) :=

1
Pλ(n)

λ(n)∑
m=0

pmDm(u).

Let us take ‖.‖1 norm of (4.11) and by general form of Minkowskii inequality we have∥∥∥∥∥∥Rλn(f)− 1
Pλ(n)

λ(n)∑
m=0

pmtm

∥∥∥∥∥∥
1

=
1

2π

2π∫
0

∣∣∣∣∣∣ 1π
2π∫

0

{f(x+ u)− tn(x+ u)}Kλ
n(u)du

∣∣∣∣∣∣dx

≤

 1
π

2π∫
0

∣∣Kλ
n(u)

∣∣ du
 1

2π

2π∫
0

|f(x)− tn(x)|dx

 =
1
π
‖f − tn‖1

2π∫
0

∣∣Kλ
n(u)

∣∣ du

=
2
π
‖f − tn‖1

 π/λ(n)∫
0

∣∣Kλ
n(u)

∣∣ du+ π∫
π/λ(n)

∣∣Kλ
n(u)

∣∣ du
 =:

2
π
‖f − tn‖1 (I1 + J1).

After this, by considering the method in [6, p. 13], we will complete the proof. Let’s estimate I1.
For 0 < t ≤ π/λ(n) ≤ π/n, from Jordan’s inequality, (sin(t/2))−1 ≤ π/t, and sin(n + 1)t ≤
(n+ 1)t, we have

I1 =

π/λ(n)∫
0

∣∣Kλ
n(u)

∣∣ du =
O(1)
Pλ(n)

π/λ(n)∫
0

∣∣∣∣∣∣
λ(n)∑
m=0

pm(m+ 1)

∣∣∣∣∣∣ du = O(1). (4.12)

We know that if ((n+ 1)−ηpn) ∈ HBV S, then ((n+ 1)−ηpn) ∈ AMIS and hence (pn) ∈
AMIS. Therefore, by using again Jordan inequality and taking into account (2.1), we get

J1 =

π∫
π/λ(n)

∣∣Kλ
n(u)

∣∣ du =
O(1)
Pλ(n)

π∫
π/λ(n)

1
u

∣∣∣∣∣∣
λ(n)∑
m=0

pm sin(m+
1
2
)u

∣∣∣∣∣∣ du

=
O(1)
Pλ(n)

π∫
π/λ(n)

1
u
pλ(n)u

−1du = O(1). (4.13)

On collecting the above results (4.12) and (4.13) we thus get∥∥∥∥∥∥Rλn(f)− 1
Pλ(n)

λ(n)∑
m=0

pmtm

∥∥∥∥∥∥
1

= O(1) ‖f − tn‖1 . (4.14)

By using (4.14) and Lemma 3.7 in the case p = α = 1 we have

∥∥f −Rλn(f)∥∥1 = O(n−1) +

∥∥∥∥∥∥f − 1
Pλ(n)

λ(n)∑
m=0

pmtm

∥∥∥∥∥∥
1

. (4.15)

In view of Lemma 3.7, (pn) ∈ AMIS and (2.1), we see that the norm on the right of (4.15) is∥∥∥∥∥∥f − 1
Pλ(n)

λ(n)∑
m=0

pmtm

∥∥∥∥∥∥
1

≤ 1
Pλ(n)

λ(n)∑
m=0

pm‖f − tm‖1

= O(
1

Pλ(n)
)

λ(n)∑
m=1

pm‖f − tm‖1+O(
p0

Pλ(n)
)‖f − t0‖1

= O(
1

Pλ(n)
)

λ(n)∑
m=0

(m+ 1)−1pm+O(n
−1).
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By applying Abel’s transformation on the last sum, we observe that

∥∥f −Rλn(f)∥∥1 = O(n−1) +
1

Pλ(n)

λ(n)−1∑
m=0

∣∣∣∣∆m( pm
(m+ 1)η

)

∣∣∣∣ m∑
k=0

(k + 1)η−1

+
pλ(n)

Pλ(n)(λ(n) + 1)η

λ(n)∑
m=0

(m+ 1)η−1

≤ (λ(n) + 1)η

Pλ(n)

λ(n)−1∑
m=0

∣∣∣∣∆m( pm
(m+ 1)η

)

∣∣∣∣+ pλ(n)

Pλ(n)
+O(n−1). (4.16)

Since ((n+ 1)−ηpn) ∈ HBV S, it follows that

λ(n)−1∑
m=0

∣∣∣∣∆m( pm
(m+ 1)η

)

∣∣∣∣ = O
(
(λ(n) + 1)−ηpλ(n)

)
and owing to (2.1), from (4.16), we get (2.6). Therefore, Theorem 2.12 is proved.

The proofs of Corollary 2.5 and Corollary 2.10 are clear from Theorem 2.3 and Theorem 2.8,
respectively.
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