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Abstract. An ideal I of a commutative ring is regular if it contains a regular element (an
element that is not a zero divisor). If each regular ideal of a ring is generated by its regular
elements, then the ring is said to be a Marot ring. Also, a ring R is additively regular if for each
pair of elements a, b ∈ R with b regular, there is an element r ∈ R such that a+ br is a regular
element of R. Of primary interest here are rings with only finitely many regular maximal ideals
(but perhaps infinitely many maximal ideals that are not regular). For example, if R is additively
regular and has only finitely many regular maximal ideals, then each invertible ideal is principal.
In contrast, an example is given of a Marot ringR with exactly two regular maximal ideals where
each regular maximal ideal is invertible, but neither is principal.

1 Introduction

Throughout the paper R denotes a commutative ring with identity and T (R) denotes its total
quotient ring. Also we let Z(R) denote the set of zero divisors of R and refer to an element that
is not contained in Z(R) as being regular. A regular ideal is an ideal that contains at least one
regular element. We let Max(R) denote the set of maximal ideals of R and let Max(R, I) denote
the set of maximal ideals (of R) that contain the ideal I .

A Marot ring is a ring in which each regular ideal can be generated by the regular elements
it contains (see for example [7]). A related concept is that of an additively regular ring, R is
additively regular if for each t ∈ T (R) there is an element r ∈ R such that t + r is a regular
element (of T (R)). An equivalent formulation is that for a, b ∈ R with b regular, there is an
element s ∈ R such that a + sb is regular (alternately, a ∈ T (R) and b ∈ R\Z(R)) [see [6,
Lemma 7]]. It is clear that an additively regular ring is Marot. Examples exist to show the
concepts are not equivalent (see for example [7, Example 12, Section 27]).

For a multiplicatively closed subset S of a ring R, the regular ring of quotients of R with
respect to S is the ring R(S) = {t ∈ T (R) | ts ∈ R for some regular s ∈ S}. A second ring
of quotients related to S is the large ring of quotients R[S] = {t ∈ T (R) | ts ∈ R for some
s ∈ S}. It is clear that R(S) ⊆ R[S], but the containment can be proper. In the case S = R\P for
some prime P of R, one uses R(P ) and R[P ] in place of R(S) and R[S]. If R is a Marot ring, then
R(P ) = R[P ] [13, Proposition 6]. However, as we will see below it is possible to have proper
containment R(S) ( R[S] even if S is the complement of a finite set of regular maximal ideals in
a Marot ring [Example 2.5].

For an ideal I of R and multiplicative set S, the “simple" extension IR(S) is the same as
the set {t ∈ R(S) | ts ∈ I for some regular element s ∈ S}. On the other hand the ideal
[I]R[S] = {t ∈ R[S] | ts ∈ I for some s ∈ S} may be larger than the simple extension IR[S].
For example, if ts = 0 for some s ∈ S, then t ∈ [I]R[S] for each ideal I of R. If I is a regular
ideal of a Marot ring R and P is a prime ideal that does not contain I , then IR(P ) = R(P ) as
the Marot property guarantees the existence of a regular element in I\P . Hence if Q is a regular
prime of R and R is Marot, then QR(Q) is the unique regular maximal ideal of R(Q). A simple
conductor argument shows that if R 6= T (R), then I =

⋂
{IR(M) | M ∈ RMax(R)} for each

ideal I of R where RMax(R) denotes the (nonempty) set of regular maximal ideals of R. Note
that R = R(M) in the event M is the unique regular maximal ideal of R. Also R(P ) = T (R) if P
is a prime ideal that is not regular.

Recall that a ring R is a Prüfer ring if each finitely generated regular ideal is invertible. Also
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it is a regular Bézout ring if each finitely generated regular ideal is principal. The ring in [2,
Example 3.6] is a Prüfer ring with a unique regular maximal ideal and this ideal is invertible but
not principal. Thus this ring is not regular Bézout. However, if R is a Marot Prüfer ring with
a unique regular maximal ideal, then it is a regular Bézout ring [Corollary 2.2]. In contrast, the
ringR in Example 2.4 is a Marot Prüfer ring with two regular maximal ideals where each regular
ideal is invertible, but R is not regular Bézout. In particular, both regular maximal ideals are
invertible yet neither is principal. For additively regular rings, Theorem 3.5 shows that if R is an
additively regular ring with only finitely many regular maximal ideals, then each invertible ideal
is principal. Hence an additively regular Prüfer ring with only finitely many regular maximal
ideals is a regular Bézout ring.

For a ring V with prime ideal P , (V, P ) is said to be a valuation pair of T (V ) if for each
t ∈ T (V )\V , there is an element p ∈ P such that tp ∈ V \P . Corresponding to such a pair there
is a totally ordered Abelian groupG and a corresponding surjective “valuation" map v : T (V )→
G
⋃
{∞} such that for all a, b ∈ T (V ):

(1) v(ab) = v(a) + v(b) (with g <∞ =∞+ g =∞+∞ for each g ∈ G),

(2) v(a+ b) ≥ min{v(a), v(b)}, and

(3) V = {t ∈ T (V ) | v(t) ≥ 0} and P = {t ∈ T (V ) | v(t) > 0}.

As with domains, V is referred to as a rank one discrete valuation ring if G = Z. For a ring R,
R is a Prüfer ring if and only if (R[M ], [M ]R[M ]) is a valuation pair for each (regular) maximal
ideal M (see, for example, [7, Theorem 6.2]).

2 Marot Rings

We start with the case of a Marot ring with a unique regular maximal ideal.

Theorem 2.1. If R is a Marot ring with a unique regular maximal ideal M , then each invertible
ideal is principal.

Proof. Suppose M is the unique regular maximal ideal of the Marot ring R and that I is an
invertible ideal. Then I is regular and thus M is the only maximal ideal of R that contains I .
Moreover, IRM is invertible and thus principal. Since R is Marot, I can be generated by a finite
set of regular elements and thus there is a regular element s ∈ I such that IRM = sRM .

Since M is the only regular maximal ideal, Max(R, I) = {M} and s/1 is a unit in RN for
each maximal ideal N 6=M . Thus sRN = RN = IRN . Therefore I = sR.

Corollary 2.2. If R is Marot ring with a unique regular maximal ideal M , then R is a Prüfer
ring if and only if it is a regular Bézout ring.

One might hope that an invertible ideal in a Marot ring with only finitely many regular maxi-
mal ideals would be principal, but this need not be the case even when there are only two regular
maximal ideals (and each of these is invertible).

For the examples in this section we make use of the A+B construction. Let D be an integral
domain and let P be a nonempty set of prime ideals with index set A. Next let I = A × N and
for each i = (α, n) ∈ I we let Ki = Kα be the quotient field of D/Pα. For B =

∑
Ki, we

form a ring R = D +B from D ×B by defining addition and multiplication as (r, b) + (s, c) =
(r + s, b+ c) and (r, b)(s, c) = (rs, rb+ sc+ bc). We refer to R as the ring of the form A+ B
corresponding to D and P . For each r ∈ D, b ∈ B and i ∈ I, we let ri denote the image of r in
Ki and let bi be the ith component of b. In the next theorem we recall some basic properties of
these rings. Note that statements (7) and (8) are new. We assume all of the notation above.

Theorem 2.3. [cf. [9, Theorems 8.3 & 8.4]] Let P be a nonempty set of prime ideals of a domain
D and let R = D +B be the A+B ring corresponding to D and P .

(1) For each i ∈ I, the set Mi = {(r, b) ∈ R | ri = −bi} is both a maximal ideal and a minimal
prime ideal of R. All other prime ideals of R are of the form P +B for some prime ideal P
of D.
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(2) The total quotient ring of R can be identified with the ring DS + B where S = D\
⋃
{Pα |

Pα ∈ P}.

(3) If I is a finitely generated ideal of D such that I
⋂
S 6= ∅, then IR = I + B is a finitely

generated regular ideal of R. Conversely, if J is a finitely generated regular ideal of R, then
J = I +B = IR for some finitely generated ideal I of D such that I

⋂
S 6= ∅.

(4) If I is a finitely generated ideal ofD, then IR has a nonzero annihilator if and only if I ⊆ Pα
for some Pα ∈ P .

(5) If I is a finitely generated ideal of D, then IR is an invertible of R if and only if I is an
invertible ideal of D and I

⋂
S 6= ∅.

(6) If D is a Prüfer domain, then R is a Prüfer ring.

(7) Let P be a nonzero prime ideal P of D. If P
⋂
S = ∅, then P + B ⊆ Z(R) and so

R[P+B] = T (R) = R(P+B). If P
⋂
S 6= ∅, then PR = P + B, R(PR) = DX + B where

X = S\P and R[PR] = (DP

⋂
DS) +B.

(8) If P is a prime ideal of D such that DP is a valuation domain and P
⋂
S 6= ∅, then

(R[PR], [P ]R[PR]) is a valuation pair of T (R).

Proof. For statement (7), if P
⋂
S = ∅, then it is clear that each element of P + B is a zero

divisor. Hence R(P+B) = T (R) = R[P+B]. In the case P
⋂
S 6= ∅, P + B = PR is a regular

prime ideal of R. For R(PR), the regular elements of R that are not contained in PR have the
form (s, b) where s ∈ X = S\P (where si + bi 6= 0 for all i). Since B is a common ideal of R
and T (R), the “b" doesn’t matter. If (f, a) ∈ R(PR), then there is an element s ∈ X such that
(x, 0)(f, a) = (xf, xa) ∈ R. Thus fx−1 ∈ DX . Conversely, if g ∈ DX , then there are elements
c, w ∈ D with w ∈ X such that g = cw−1. It follows that (g, d)(w, 0) = (c, wd) ∈ R and thus
(g, d) ∈ R(PR) for each d ∈ B.

Next consider the rings R[PR] and (DP

⋂
DS) +B. As above, start with an element (f, a) ∈

R[PR] ⊆ DS + B. Then there is an element (x, c) ∈ R\PR such that (f, a)(x, c) ∈ R. Since
B ⊆ P , it must be that x is not in P . As fx ∈ D, we have f ∈ DP

⋂
DS and hence (f, a) ∈

(DP

⋂
DS) + B. For the reverse containment, suppose g ∈ DP

⋂
DS . Then, as above, there is

an element w ∈ D\P such that gw = c ∈ D. It follows that (g, d)(w, 0) = (c, wd) ∈ R. Hence
(g, d) ∈ R[PR].

For (8), if P
⋂
S 6= ∅, then we have PR = P + B and R[PR] = (DP

⋂
DS) + B. To

see that (R[PR], [P ]R[PR]) when DP is a valuation domain it suffices to show that if (f, a) ∈
T (R)\R[PR], then there is an element (p, c) ∈ [P ]R[PR] such that (f, a)(p, c) ∈ R[PR]\[P ]R[PR].
Since (f, a) is not in R[PR], there is no element (r, d) ∈ R\PR such that (f, a)(r, d) ∈ R.
Also f is not in DP . Since DP is a valuation domain, there is an element x ∈ PDP such that
fx ∈ DP \PDP . Thus there is an element y ∈ D\P such that both fxy and xy are in D,
necessarily with fxy ∈ D\P and xy ∈ P . The element (xy, 0) ∈ PR is such that (f, a)(xy, 0) ∈
R[PR]\[P ]R[PR]. Hence (R[PR], [P ]R[PR]) is a valuation pair of T (R).

Example 2.4. Let D = Z[
√

10]. This is a Dedekind domain that is not a PID. Both M =
2D +

√
10D and N = 5D +

√
10D are maximal ideals and neither is principal as all three of 2,

5 and
√

10 are irreducible but not prime. Moreover, M is the only maximal ideal that contains 2,
N is the only maximal ideal that contains 5, and each maximal ideal that contains

√
10 contains

exactly one of 2 and 5. Let P = Max(D)\{M,N} and let R = D + B be the ring of the form
A+B corresponding to D and P .

(1) The only regular maximal ideals are MR =M +B and NR = N +B.

(2) R is a Prüfer ring, but it is not a regular Bézout ring.

(3) Both M +B and N +B are invertible, but neither is principal.

(4) R is a Marot ring with exactly two regular maximal ideals where some invertible ideals are
not principal.

(5) The regular elements of MR are contained in M2R
⋃
MNR but MR is not. Similarly, the

regular elements of NR are contained in N2R
⋃
MNR but NR is not.
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Proof. It is clear that neither 2 nor 5 divides
√

10, and
√

10 divides neither 2 nor 5. In addition,
routine calculations show that 2, 5 and

√
10 are irreducible. On the other hand,

√
10 2 = 10 =

2 · 5. Thus each maximal ideal that contains 2, also contains
√

10. The only elements missing
from 2D+

√
10D are the odd integers. Hence M = 2D+

√
10D is the only maximal ideal that

contains 2. Similarly, each maximal ideal that contains 5, also contains
√

10, and we have that
N = 5D+

√
10D is the only maximal ideal that contains 5. It is also the case that each maximal

ideal that contains
√

10 must contain at least (exactly) one of 2 and 5. Hence Max(D, 2D) =
{M}, Max(D, 5D) = {N} and Max(D,

√
10D) = {M,N}. It follows that (

√
10, 0), (2, 0) and

(5, 0) are regular elements of R and that M +B =MR and N +B = NR are regular maximal
ideals of R.

Since P = Max(D)\{M,N}, M+B =MR andN+B = NR are the only regular maximal
ideals ofR. Each of these is invertible, but neither is principal since neitherM norN is principal.

Let J be a regular proper ideal of R. Then J = I + B = IR for some proper ideal I
of D with Max(D, I) ⊆ {M,N}. Since D is a Dedekind domain, there are nonnegative in-
tegers m and n (with m + n > 0) such that I = MmNn. It follows that I is generated
by 2m5n, 2m

√
10 n, 5n

√
10 m and

√
10 n+m. The corresponding regular elements (2m5n, 0),

(2m
√

10 n, 0), (5n
√

10 m, 0) and (
√

10 n+m, 0) generate J . Therefore R is a Marot ring, MR =
M + B, NR = N + B are the only regular maximal ideals and each of these is an invertible
ideal that is not principal.

In D, M2 = 2D, MN =
√

10D and N2 = 5D. If p ∈ M is not in M2
⋃
MN , then at least

one maximal ideal in the set P contains p, otherwise we have MDM = pDM and M =
√
pD

which together imply M = pD, a contradiction. Translating into R, the regular elements of MR
are contained in M2R

⋃
MNR. A similar proof holds for the regular elements of NR. Hence

each regular element of NR is contained in N2R
⋃
MNR.

Portelli and Spangher showed that if I is a regular ideal in an additively regular ring R and
the regular elements of I are contained in a finite union of regular ideals, then I is also contained
in this union [13, Proposition 8]. In [11], Matsuda gave an example of a nonreduced Marot ring
that does not have this property.

While the ring in the previous example is a Marot Prüfer ring that is not a regular Bézout ring
(even though it has only two regular maximal ideals), at least each of the regular maximal ideals
contains a regular element that is comaximal with all other maximal ideals. In the next example,
we show that a Marot Prüfer ring with exactly four regular maximal ideals can have the property
that each regular nonunit is contained in at least two regular maximal ideals. As in Example 2.4,
each of the regular maximal ideals is invertible.

Example 2.5. Let D be a Dedekind domain with class group Z such that there are four nonzero
nonunits x1, x2, y1, y2 that satisfy the following: (i) x1x2 = y1y2, (ii) x1D+ x2D = D = y1D+
y2D, and (iii) x1D+y1D =M1,1, x1D+y2D =M1,2, x2D+y1D =M2,1 and x2D+y2D =M2,2
are distinct maximal ideals that are not principal. Let P = Max(D)\{M1,1,M1,2,M2,1,M2,2}
and let R = D +B be the ring of the form A+B corresponding to D and P .

(1) R is a Prüfer ring.

(2) M1,1R = M1,1 + B, M1,2R = M1,2 + B, M2,1R = M2,1 + B and M2,2R = M2,2 + B
are invertible maximal ideals of R. These are the only regular prime ideals and none are
principal.

(3) Each regular nonunit of R is contained in at least two (regular) maximal ideals. Thus for
each Mi,j , the set of regular elements in Mi,jR is contained in the union of the other three
regular maximal ideals.

(4) R is a Marot ring.

(5) Let S be the complement of the union of any three of the maximal ideals M1,1R, M1,2R,
M2,1R and M2,2R. Then S contains no regular nonunits and R = R(S) ( R[S].

Proof. By (i) and (ii), for each i ∈ {1, 2}, a maximal ideal that contains xi contains exactly one
of y1 and y2. Similarly, for each j ∈ {1, 2}, a maximal ideal that contains yj contains exactly
one of x1 and x2. Hence Mi,1 and Mi,2 are the only maximal ideals that contain xi and M1,j and
M2,j are the only maximal ideals that contain yj .
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Since the class group of D is Z, no positive power of a Mi,j is principal. Thus each principal
ideal that is contained in at least one Mi,j is contained in at least one other maximal ideal (for
xiD and yjD, each is in exactly one other maximal ideal).

Since D is a Dedekind domain, R is a Prüfer ring. All four of M1,1R, M1,2R, M2,1R and
M2,2R are invertible and none are principal. Also note that for each positive integer n, Mn

i,j can
be generated by the set {xni , ynj }. Thus Mn

i,jR is generated by the regular elements it contains.
Let I be a nonzero proper ideal ofD. Then I =Mk1

1 Mk2
2 · · ·Mkn

n for some (distinct) maximal
ideals M1,M2, . . . ,Mn and positive integers k1, k2, . . . , kn. If at least one Mm is in the set P ,
then IR has a nonzero annihilator. On the other hand, if I is a product of powers of the Mi,js,
then no maximal ideal in P contains I and so in this case IR = I + B is a regular (invertible)
ideal of R. In addition, if I = Mm

1,1M
n
1,2M

r
2,1M

s
2,2 for some nonnegative integers m,n, r and s,

then the product of the generating sets {xm1 , ym1 }, {xn1 , yn2 }, {xr2, yr1} and {xs2, ys2} provides a set
of regular elements that generates IR = I +B. Hence R is a Marot ring.

Let S be the complement of the union of any three of M1,1R, M1,2R, M2,1R and M2,2R.
As noted above, a nonzero element r ∈ Mi,j is contained in at least one other maximal ideal.
Thus if (r, b) is a regular element of R, then r is in no maximal ideal N ∈ P and (r, b) is in at
least two of M1,1R, M1,2R, M2,1R and M2,2R. It follows that S contains no regular nonunits of
R and therefore R(S) = R. On the other hand, S has a nonempty intersection with the fourth
regular maximal ideal. It follows that R[S] contains the dual of this invertible ideal and thus
R[S] ) R(S) = R.

In (the proof of) [3, Theorem 7], Claborn gives a way to take an arbitrary Krull domain D′
(not a field) and produce a Dedekind domain D with the same ideal class group where D is a
certain localization of the polynomial ring D′[Z1, Z2, . . . ]. In his construction, each height one
prime of D′ extends to a maximal ideal of D (and so pairs of elements a, b ∈ D′ are comaximal
in D if and only if no height one prime of D′ contains both a and b). Thus if we start with the
Krull domain D′ = K[X1, X2, Y1, Y2]/(X1X2 − Y1Y2) where X1, X2, Y1, Y2 are indeterminates over
a field K, then the resulting Dedekind domain D has class group Z (see, for example, the proof
of [3, Proposition 6] and [4, Pages 65–66]]). The respective images of X1, X2, Y1 and Y2 satisfy
the desired restrictions for the elements x1, x2, y1 and y2. Specifically, if we let xi denote the
image of Xi in D and yj denote the image of Yj , then we have x1x2 = y1y2, x1D + x2D = D =
y1D+y2D and none of the four (distinct) maximal idealsM1,1 = x1D+y1D,M1,2 = x1D+y2D,
M2,1 = x2D + y1D and M2,2 = x2D + y2D are principal.

There are alternate constructions for the base ringD′ in the previous paragraph. For example,
let D′ = K[X, Y, XW, YW] where X, Y and W be indeterminates over K. Then the (surjective)
homomorphism ϕ : K[X1, X2, Y1, Y2] → D′ defined by ϕ(f(X1, X2, Y1, Y2) = f(X, YW, Y, XW) has
kernel the principal ideal (X1X2 − Y1Y2). In the proof of the next example (which is simply a
more specific one than Example 2.5), we make a few specific choices with regard to the maximal
ideals Mi,j in defining the set P . The end result, R = D + B, is (still) a Prüfer Marot ring
with four regular maximal ideals M1,1R = M1,1 + B, M1,2R = M1,2 + B, M2,1R = M2,1 + B
and M2,2R = M2,2 + B (again all invertible and none principal). Moreover, we will have that
(x1, 0) ∈M1,1R

⋂
M1,2R and (x2, 0) ∈M2,1R

⋂
M2,2R are comaximal regular elements, as are

(y1, 0) ∈ M1,1R
⋂
M2,1R and (y2, 0) ∈ M1,2R

⋂
M2,2R, but there are no comaximal regular

elements (f, b) ∈M1,1R
⋂
M2,2R and (g, c) ∈M1,2R

⋂
M2,1R.

Example 2.6. Let D′ = K[X, Y, XW, YW]. This is a Krull domain with class group Z. To construct
the corresponding Dedekind domain D, we make explicit use of the construction in [3]. Let
D′′ = D′[Z1, Z2, . . . ] where {Zn} is a countably infinite set of indeterminates over K(X, Y,W).
For a well-chosen set N consisting of prime elements of D′′, we obtain a Dedekind domain D
with a corresponding set of maximal ideals P such that R = A + B has exactly four regular
maximal ideals M1,1+B, M1,2+B, M2,1+B and M2,2+B where Mi,j = xiD+yjD under the
identification x1 = X, x2 = YW, y1 = Y and y2 = XW. Of these four, (x1, 0) ∈ M1,1R

⋂
M1,2R

and (x2, 0) ∈ M2,1R
⋂
M2,2R are regular comaximal elements, as are (y1, 0) ∈ M1,1R

⋂
M2,1R

and (y2, 0) ∈M1,2R
⋂
M2,2R, but there are no comaximal regular elements f ∈M1,1R

⋂
M2,2R

and g ∈M1,2R
⋂
M2,1R.

Proof. For each height two prime Q of D′′, choose a nonzero element a ∈ Q and then choose a
b ∈ Q such that no height one prime contains both a and b. Both a and b involve at most finitely
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many Zis (and each is in only finitely many height one primes of D′′), so for sufficiently large
n, aZn + b is a prime element of D′[Z1, Z2, . . . , Zn] (and of D′′) [see, for example, [5, Lemma
45.7] and [14, Proposition 8]]. For X, Y, XW and YW, no height one prime of D′ contains both
X and YW and none contains both Y and XW. Let N denote the multiplicative set generated by
the appropriately defined polynomials “aZn + b." We obtain a Dedekind domain D = D′′N (it
is a one-dimensional Krull domain since each prime Q of D′′ with ht(Q) > 1, has a nonempty
intersection with N ).

Since D′ is a Krull domain, each height one prime of D′ extends to a height one prime of
D′′ (that has empty intersection with N ), and thus to a maximal ideal of D. By the construc-
tion of N , all other nonzero primes of D′ blow up in D. Also, in D′, it is clear that the set
S′ = {aXmYn(XW)r(YW)s | a ∈ K∗, m, n, r, s nonnegative integers} is a saturated multiplicative
subset of D′. In addition, S′ is saturated in D′′. While some height one primes of D′′ (not
extended from height one primes of D′) have nonempty intersection with N , there are others
that don’t. In D, the saturation of the set S′ defined above is S = S′N = {uXmYm(XW)r(YW)s |
u a unit of D = D′′N and m,n, r, s nonnegative integers}.

With regard to the notation of Example 2.5 (and the desired conclusion), we identify X with
x1, Y with y1, YW with x2 and XW with y2. Then M1,1 = XD + YD, M1,2 = XD + XWD,
M2,1 = YWD + YD and M2,2, = YWD + XWD. If M is a maximal ideal not among these four,
then M

⋂
S = ∅ since a height one prime of D′′ that contains at least one of X, Y, YW and XW

contains exactly two of these elements (but not both X and YW, and not both Y and XW).
Let P = Max(D)\{M1,1,M1,2,M2,1,M2,2} and let R = D + B be the ring of form A + B

corresponding to D and P . Since the set S is saturated, if h ∈ D\S, then h ∈ M for some
M ∈ P . It follows that (h, b) is a zero divisor of R for each b ∈ B. Thus a necessary condition
for (r, a) to be a regular element ofR is for r to be in the set S. We have (X, 0) ∈M1,1R

⋂
M1,2R

and (YW, 0) ∈ M2,1R
⋂
M2,2 are comaximal regular elements, as are (Y, 0) ∈ M1,1

⋂
M2,1 and

(XW, 0) ∈ M1,2R
⋂
M2,2R. The set of regular elements A = {(XYW, 0), (XXW, 0), (YYW, 0)} is a

generating set for M1,1R
⋂
M2,2R and the set B = {(XY, 0), (XYW, 0), (XWYW, 0)} fills the same

role for M1,2R
⋂
M2,1R. Each member of A is contained in at least one of M1,2R and M2,1R,

and each member of B is contained in at least one of M1,1R and M2,2R. As each monomial in
M1,1R

⋂
M2,2R is a multiple of at least one member ofA, and each monomial inM1,2R

⋂
M2,1R

is a multiple of at least one member of B, there are no regular elements f ∈M1,1R
⋂
M2,2R and

g ∈M1,2R
⋂
M2,1R that are comaximal.

One of many characterizations of a Krull domain is that an integral domain D with quotient
field K 6= D is a Krull domain if and only if there is a family of discrete rank one valuation
domains {Wα} such that (i)

⋂
Wα = D and (ii) for each nonzero element of K, there are at most

finitely many Wα where the element is not a unit of Wα. A Krull ring R can be defined in an
analogous manner using a family of discrete rank one valuation rings of T (R). For such a family
{Vα}, (i) is simply that R =

⋂
Vα. For (ii), a zero divisor of T (R) cannot be a unit in in some

Vα, but a regular element of T (R) can. So we replace (ii) with each regular element t ∈ T (R) is
a unit except in at most finitely many Vαs. If R is a Krull ring with defining family of valuations
{Vα}, then there is a family of regular prime ideals {Pα} such that Vα = R[Pα] with [Pα]R[Pα]

the set of elements with positive value and no regular prime ideal of R is properly contained in a
Pα (see, for example, [10, Remark 6] and [1, Propositions 2.10 and 2.11]). Portelli and Spangher
showed that if R is an additively regular Krull ring and {V1, V2, . . . , Vn} is a finite subset of the
family {Vα}, then for each k = (k1, k2, . . . , kn) ∈ Zn, there is a regular element t ∈ T (R)
such that vi(t) = ki for 1 ≤ i ≤ n and vα(t) ≥ 0 for all other vαs [13, Proposition 49]. If
we omit the restriction on t being regular, Osmanagic showed if R 6= T (R) is simply a Krull
ring, then for a given finite subset {V1, V2, . . . , Vn} of the family {Vα} and corresponding n-tuple
k = (k1, k2, · · · , kn) ∈ Zn, there is an element t ∈ T (R) such that vi(t) = ki and vα(t) ≥ 0 for
all other vα [12, Theorem 2.1]. Yet another use of the Marot ring R in Example 2.4 is to show
that there need not be such a regular element for a Marot Krull ring defined by a finite set of
discrete rank one valuation rings (in this case, just two!).

Example 2.7. Let D, P and R be as in Example 2.4.

(1) R is a one-dimensional Marot Krull ring with two regular maximal ideals, MR = M + B
and NR = N +B where M = 2D +

√
10D and N = 5D +

√
10D. So the defining family
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of discrete rank one valuations rings is {V1 = R(MR), V2 = R(NR)}.

(2) No regular element of R corresponds to the ordered pair (1, 0) ∈ Z⊕ Z.

Proof. SinceD is a Krull domain, R is a Krull ring [9, Theorem 8.6]. AlsoR is one-dimensional
since D is one-dimensional. The only regular prime ideals of R are MR and NR. Since R is
Marot, R(MR) = R[MR] and R(NR) = R[NR] and each of these is a discrete rank one valuation
ring since DM and DN are discrete rank one valuation domains (Theorem 2.3). In addition,
R = R(MR)

⋂
R(NR). Suppose (r, b) ∈ T (R) is such that v1((r, b)) = 1 and v2((r, b)) = 0,

then r ∈ M\N and rDM = MDM . Since M is not principal, there is a maximal ideal P ∈ P
such that r ∈ P . It follows that (r, b) is a zero divisor of R. Hence no regular element of R
corresponds to the ordered pair (1, 0) ∈ Z⊕ Z. The analogous conclusion holds for (0, 1).

3 Additively Regular Rings

As we saw in Example 2.5, even if S is the complement of the union of finitely many maximal
ideals in a Marot ring R, R(S) need not be equal to R[S]. However, if the ring R is additively
regular, then R(S) = R[S] whenever S is the complement of the union of finitely many prime
ideals (see Corollary 3.3 below). As with localizing at a multiplicative set, when forming the
corresponding large ring of quotients, one may assume the set S is multiplicatively closed since
tc ∈ R for some c in the saturation of S implies there is an element b ∈ R such that cb ∈ S and
then we clearly have tcb ∈ R. However, if c is a regular element in the saturation of S, it may be
that the only elements that multiply c into S are zero divisors (in the saturation). The ring R in
the next example is additively regular with exactly four maximal ideals, each regular, but there
is a multiplicative set S with saturation S′ (in R) such that R(S′) is strictly larger than R(S) (and
R(S) ) R).

Example 3.1. Let R = D⊕D where D = Z(2)
⋂
Z(3). Next let S be the multiplicative subset of

R generated by (2, 2) and (3, 0) and let S′ be the saturation of S in R.

(1) Each regular element of R has the form (c, d) where both c and d are nonzero and a nonzero
zero divisor either has the form (f, 0) or (0, f) for some nonzero f ∈ D. The sums (f, 0) +
(0, 1)(c, d) = (f, d) and (0, f) + (1, 0)(c, d) = (c, f) are regular elements of R. Hence R is
additively regular (see [6, Lemma 9] for a much more general result).

(2) SinceD has only two maximal ideals,R has four maximal ideals and each of these is regular.

(3) (a, b) ∈ S if and only if either a = b = 2n for some positive integer n or (a, b) = (a, 0) with
a = 2n3m for some nonnegative integer n and positive integer m.

(4) {(2n, 2n) | n ≥ 1} is the complete set of regular elements in S.

(5) R(S) = {(p, q) ∈ Q⊕Q | 2np, 2nq ∈ D for some n ≥ 1}.

(6) The regular element (3, 3) is in S′ since (32, 0) = (3, 3)(3, 0) ∈ S. Thus (1/3, 1/3) ∈
R(S′)\R(S).

Theorem 3.2. LetR be an additively regular ring and let S be a saturated multiplicatively closed
subset of R that misses at least one regular prime ideal. If there is a regular element r that is
contained in each regular prime that is maximal with respect to missing S, then R(S) = R[S].

Proof. First note that each regular nonunit in R\S is contained in at least one regular prime that
is maximal with respect to missing S. Also, since S is saturated, it is the complement of the
union of those prime ideals Q such that Q

⋂
S = ∅. Assume r ∈ R\S is a regular element that

is contained in each regular prime that is maximal with respect to missing S. For each t ∈ R[S],
there is an element d ∈ S such that dt ∈ R and a regular element b ∈ R such that bt ∈ R. Since
R is additively regular, there is an element f ∈ R such that d + frb is regular. If N is a prime
that is maximal with respect to missing S and N is not regular, then d+ frb is not in N . Also if
P is a regular prime that is maximal with respect to missing S, then frb ∈ P but d is not. Hence
d+ frb ∈ S. As t(d+ frb) ∈ R, t ∈ R(S) and we have R(S) = R[S].
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Corollary 3.3. Let R be an additively regular ring. If S is a saturated multiplicatively closed
subset of R such that there are only finitely many regular primes that are maximal with respect
to missing S, then R(S) = R[S]. In particular, R(S) = R[S] whenever S is the complement of the
union of a finite set of prime ideals.

Proof. This follows easily from Theorem 3.2 and the fact that the intersection of finitely many
regular primes is regular.

Statement (1) in the next theorem is a special case of [13, Proposition 8].

Theorem 3.4. Let M1,M2, . . . ,Mn be regular maximal ideals of an additively regular ring R
and let S = R\

⋃n
i=1 Mi.

(1) If I is a regular ideal that is not contained in the union
⋃
Mi, then I contains a regular

element that is contained in no Mi.

(2) The only regular ideals of R that survive in R(S) are those that are contained in at least one
Mi.

(3) If M is a regular maximal ideal that is not one of the Mis, then MR(S) = R(S) and M
contains a regular element that is contained in S.

Proof. We revisit the proof of [13, Proposition 8]. To start, let I be a regular ideal of R that
is not contained in

⋃
Mi. Then there is an element c ∈ I such that c /∈

⋃
Mi. The ideal

Q = I
⋂
M1

⋂
M2

⋂
· · ·

⋂
Mn is regular, so we let b be a regular element in Q. Since R is

additively regular, there is an element s ∈ R such that c+ sb is regular. Since b ∈ Q and c is in
no Mi, c+ sb ∈ I is a regular element that is contained in the set S. Thus it is a unit of R(S). It
follows that 1 ∈ IR(S). This takes care of all three statements.

The Marot ring in Example 2.5 shows it is possible that none of the statements in the previous
theorem hold if R is Marot but not additively regular, even if R has only finitely many regular
maximal ideals.

Theorem 3.5. Let R be an additively regular ring. If R has only finitely many regular maximal
ideals, then each invertible ideal is principal.

Proof. Assume R has only finitely many regular maximal ideals (it can have infinitely many
maximal ideals that are not regular) and let I be an invertible ideal. Let M1,M2, . . . ,Mn be
the regular maximal ideals of R. Since R is additively regular, MiR(Mi) is the unique regular
maximal ideal of R(Mi). Hence by Theorem 2.1 and its proof, IR(Mi) is a principal regular
ideal of R(Mi) and there is a regular element ai ∈ I such that aiR(Mi) = IR(Mi). The ideal
J = a1R+ a2R+ · · ·+ anR is regular and contained in I . In addition JR(M) = R(M) = IR(M)

for each maximal ideal M that is not regular (in this case R(M) = T (R)) and JR(Mi) = IR(Mi)

for each Mi. It follows that J = I .
For the remainder of the proof we use induction on n (and continue with the notation above).
Theorem 2.1 takes care of the case n = 1. Suppose n = 2. From the argument above

there is a pair of regular elements a1, a2 ∈ I such that I = a1R + a2R, a1R(M1) = IR(M1) and
a2R(M2) = IR(M2). We may further assume that a1R(M2) ( a2R(M2) and a2R(M1) ( a1R(M1)

(otherwise we can choose a1 = a2). Thus there are elements b1, b2, t1, t2 ∈ R with t1 a regular
element inR\M1 and t2 a regular element inR\M2 such that t1a2 = b1a1 and t2a1 = b2a2. Since
all four of a1, a2, t1 and t2 are regular, so are b1 and b2. As we have assumed a2R(M1) ( a1R(M1)

and a1R(M2) ( a2R(M2), it must be that b1 ∈M1 and b2 ∈M2.
Let d = t1a1 + t2a2. Since a1a2 is regular, there is an element s ∈ R such that g = d+ sa1a2

is regular. We claim that g generates I . It is clear that g ∈ I . Thus it suffices to show gR(M1) =

IR(M1) and gR(M2) = IR(M2). Note that t1g = t21a1+t1t2a2+t1sa1a2 = t21a1+t2b1a1+t1sa1a2 =

(t21 + t2b1 + t1sa2)a1. Similarly, t2g = (t22 + t1b2 + t2sa1)a2. Since t1, t2 and g are regular,
so are t21 + t2b1 + t1sa2 and t22 + t1b2 + t2sa1. For the element t21 + t2b1 + t1sa2, both b1
and a2 are in M1 while t1 is not. Hence t21 + t2b1 + t1sa2 is a unit of R(M1) and we have
gR(M1) = a1R(M1) = IR(M1). Similarly, t22 + t1b2 + t2sa1 is a unit of R(M2) since t2 ∈ R\M2
while both b2 and a1 are in M2. Therefore gR = I .
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Now assume that each invertible ideal of an additively regular ring is principal if the ring has
n− 1 or fewer regular maximal ideals (for some n ≥ 3).

Assume R has exactly n regular maximal ideals (with n ≥ 3). Without loss of generality
we may assume I ⊆ Mn. Thus the element an defined above is in Mn. Let Qn =

⋂
i 6=nMi

and Sn = R\
⋃
i 6=nMi. Then R(Sn) is an additively regular ring with exactly n − 1 regular

maximal ideals (Theorem 3.4). By the induction hypothesis, IR(Sn) is a (regular) principal
ideal. Hence there is a regular element c ∈ I such that IR(Sn) = cR(Sn). Thus IR(Mi) = cR(Mi)

for each 1 ≤ i < n. If we also have cR(Mn) = IR(Mn), then I = cR. Hence we may assume
cR(Mn) ( IR(Mn). From above, we have IR(Mn) = anR(Mn) and so we may further assume
that anR(Sn) ( IR(Sn) = cR(Sn) and cR(Mn) ( anR(Mn).

We have regular elements t1, tn, b1, bn ∈ Rwith t1 ∈ Sn and tn ∈ R\Mn such that t1an = b1c
and tnc = bnan. As we have assumed I ⊆Mn and cR(Mn) ( anR(Mn), both c and bn are in Mn.

Since Qn is a regular ideal (in a Marot ring) that is comaximal with Mn, there is a regular
element z ∈ Qn\Mn. Note that z is a unit in R(Mn).

Let h = t1c + tnzan. Since R is additively regular and zcan is regular, there is an element
s ∈ R such that g = h + szcan is regular. It suffices to show that IR(Sn) = gR(Sn) and
IR(Mn) = gR(Mn).

Since t1 is a regular element of Sn, it is a unit of R(Sn). Also t1g = t1h + t1szcan =

t21c+ t1tnzan+ t1szcan = t21c+ t1b1zc+ t1szcan = (t21 + t1b1z+ t1szan)c. Since both t1 and g
are regular, so is (t21+ t1b1z+ t1szan). In addition, t21+ t1b1z+ t1szan is in Sn since t21 ∈ Sn and
z ∈ Qn. Thus t21 + t1b1z + t1szan is a unit of R(Sn) and therefore IR(Sn) = cR(Sn) = gR(Sn).

An analogous argument works for IR(Mn). The element t2nz is a regular element outside of
Mn. In addition, tng = t2nzan+ tnt1c+ tnszcan = t2nzan+ tnbnan+ tnszcan = (t2nz+ tnbn+
tnszc)an which implies t2nz + tnbn + tnszc is a regular element. As tnbn + tnszc is in Mn

and t2nz is not, t2nz + tnbn + tnszc is not in Mn and thus it is a unit of R(Mn). It follows that
IR(Mn) = anR(Mn) = gR(Mn) and therefore I = gR.

Corollary 3.6. If R is an additively regular ring with only finitely many regular maximal ideals,
then it is a Prüfer ring if and only if it is a regular Bézout ring.

We close with a few questions about Marot rings. For all, assume R is a Marot ring (that is
not additively regular).

Q1: If P1, P2 and P3 are incomparable regular prime ideals, is there a regular element r ∈ P1 that
is not in P2

⋃
P3?

Q2: If P1, P2 and P3 are pairwise comaximal regular prime ideals, is there a regular element
r ∈ P1 that is not in P2

⋃
P3?

Q3: If M1, M2 and M3 are distinct regular maximal ideals, is there a regular element r ∈M1 that
is not in M2

⋃
M3? If the answer is “not necessarily," is the answer “yes" when M1, M2 and

M3 are the only regular maximal ideals.

Q4: IfM1,M2 andM3 are distinct regular maximal ideals, do there exist regular elements r ∈M1
and s ∈ M2

⋂
M3 such that r + s = 1 (or at least rR + sR = R)? If the answer is “not

necessarily," is the answer “yes" when M1, M2 and M3 are the only regular maximal ideals.
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