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Abstract. This paper is a short survey about some properties of algebras obtained by the
Cayley-Dickson process and some of their applications

1. Introduction

It is well known that in October 1843, William Rowan Hamilton made a great discovery find-
ing quaternion algebra, a 4-dimensional algebra over R which is an associative and a noncom-
mutative algebra. In December 1843, John Graves discovered the octonions, an 8-dimensional
algebra over R which is nonassociative and noncommutative algebra. These algebras were later
rediscovered by Arthur Cayley in 1845 and are also known sometimes as the Cayley numbers.
This process, of passing from R to C, from C to H and from H to O has been generalized to
algebras over fields and over rings. It is called the Cayley-Dickson doubling process or the
Cayley–Dickson process.

Even if are old, Quaternion and Octonion algebras have at present many applications, es-
pecially in physics, coding theory, computer science, etc. For example, reliable high rate of
transmission can be obtained using Space-Time coding. For constructing Space-Time codes,
Quaternion division algebras were chosen as a new tool, as for example the Alamouti code,
which can be built from a quaternion division algebra (see [Al; 98]).

The classical Cayley-Dickson process is briefly presented in the following. For details about
this, the reader is referred to [Sc; 66] and [Sc; 54]. From now on, in the whole paper, we will
consider K a field with charK 6= 2.

Let A be an algebra over the field K. A unitary algebra A 6= K such that we have x2 +
α (x)x+ β (x) = 0, for each x ∈ A, with α (x) , β (x) ∈ K, is called a quadratic algebra.

Let A be a finite dimensional unitary algebra over a field K with a scalar involution

: A→ A, a→ a,

i.e. a linear map satisfying the following relations:

ab = ba, a = a,

and
a+ a, aa ∈ K · 1 for all a, b ∈ A.

An element a is called the conjugate of the element a, the linear form

t : A→ K , t (a) = a+ a

and the quadratic form
n : A→ K, n (a) = aa

are called the trace and the norm of the element a, respectively. Therefore, such an algebra A
with a scalar involution is quadratic.

Let γ ∈ K be a fixed non-zero element. On the vector space A⊕A, we define the following
algebra multiplication:

A⊕A : (a1, a2) (b1, b2) =
(
a1b1 + γb2a2, a2b1 + b2a1

)
. (1.1)
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We obtain an algebra structure over A ⊕ A, denoted by (A, γ) and called the algebra obtained
from A by the Cayley-Dickson process. It results that dim (A, γ) = 2 dimA.

For x ∈ (A, γ), x = (a1, a2), the map

: (A, γ)→ (A, γ) , x→ x̄ = (a1, -a2) , (1.2)

is a scalar involution of the algebra (A, γ), extending the involution of the algebra A. Let

t (x) = t(a1)

and
n (x) = n (a1)− γn(a2)

be the trace and the norm of the element x ∈ (A, γ) , respectively.
If we take A = K and apply this process t times, t ≥ 1, we obtain an algebra over K,

At =
(α1, ..., αt

K

)
. (1.3)

By induction in this algebra, the set {1, e2, ..., en}, n = 2t, generates a basis with the properties:

e2
i = αi1, αi ∈ K,αi 6= 0, i = 2, ..., n (1.4)

and
eiej = −ejei = βijek, βij ∈ K, βij 6= 0, i 6= j, i, j = 2, ...n, (1.5)

βij and ek being uniquely determined by ei and ej .
From [Sc; 54], Lemma 4, it results that in any algebra At with the basis

{1, e2, ..., en} satisfying the above relations we have:

ei (eix) = α2
i = (xei)ei, (1.6)

for every x ∈ A and for all i ∈ {1, 2, ..., n}.
A finite-dimensional algebra A is a division algebra if and only if A does not contain zero

divisors (see [Sc;66]).
An algebra A is called central simple if the algebra AF = F ⊗K A is simple for every

extension F of K. An algebra A is called alternative if x2y = x (xy) and xy2 = (xy) y, for all
x, y ∈ A. An algebra A is called flexible if x (yx) = (xy)x = xyx, for all x, y ∈ A and power
associative if the subalgebra < x > of A generated by any element x ∈ A is associative. Each
alternative algebra is a flexible algebra and a power associative algebra.

Algebras At of dimension 2t obtained by the Cayley-Dickson process, described above, are
central-simple, flexible and power associative for all t ≥ 1 and, in general, are not division
algebras for all t ≥ 1. But there are fields (for example, the rational function field) on which,
if we apply the Cayley-Dickson process, the resulting algebras At are division algebras for all
t ≥ 1. (See [Br; 67] and [Fl; 13] ).

2. About Fibonacci Quaternions

Since the above described algebras are usually without division, finding quickly examples of
invertible elements in an arbitrary algebra obtained by the Cayley-Dickson process appear to be
a not easy problem. A partial solution for generalized real Quaternion algebras can be found
using Fibonacci quaternions.

Let H (α1, α2) be the generalized real quaternion algebra. In this algebra, every element has
the form a = a1 · 1 + a2e2 + a3e3 + a4e4, where ai ∈ R, i ∈ {1, 2, 3, 4}.

In [Ho; 61], the Fibonacci quaternions were defined to be the quaternions on the form

Fn = fn · 1 + fn+1e2 + fn+2e3 + fn+3e4, (2.1)

called the nth Fibonacci quaternions, where

fn = fn−1 + fn−2, n ≥ 2, (2.2)

with f0 = 0, f1 = 1, are Fibonacci numbers.
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The norm formula for the nth Fibonacci quaternions is:

n (Fn) = FnFn = 3f2n+3, (2.3)

where Fn = fn ·1−fn+1e2−fn+2e3−fn+3e4 is the conjugate of the Fn in the algebra H (α1, α2)
(see [Ho; 61]). There are many authors which studied Fibonacci quaternions in the real division
quaternion algebra giving more and surprising new properties (see [Sw; 73], [Sa-Mu; 82] and
[Ha; 12], [Fl, Sh; 13], [Fl, Sh; 13(1)]).

Theorem 2.1. ([Fl, Sh; 13] Theorem 2.4. ) The norm of the nth Fibonacci quaternion Fn in
a generalized quaternion algebra is

n (Fn)=h1+2α2,3α2
2n+2 +(α1-1)h1+2α2,α2

2n+3 -2(α1-1) (1+α2) fnfn+1. (2.4)

We know that the expression for the nth term of a Fibonacci element is

fn =
1√
5
[an − bn] = an√

5
[1− bn

αn
], (2.5)

where a = 1+
√

5
2 and b = 1−

√
5

2 .
Using the above notations, we can compute the following limit

lim
n→∞

n (Fn) = lim
n→∞

(f2
n + α1f

2
n+1 + α2f

2
n+2 + α1α2f

2
n+3) =

= lim
n→∞

(
a2n

5
+α1

a2n+2

5
+α2

a2n+4

5
+α1α2

a2n+6

5
) =

= sgnE(α1, α2) · ∞.

Since a2 = a+ 1, we have E(α1, α2) = ( 1
5 + α1

5 a
2 + α2

5 a
4 + α1α2

5 a6) =

= 1
5 (1 + α1 (a+ 1) + α2 (3a+ 2) + α1α2 (8a+ 5)) =

= 1
5 [1 + α1 + 2α2 + 5α1α2 + a (α1 + 3α2 + 8α1α2)].
If E(α1, α2) > 0, there exist a number n1 ∈ N such that for all

n ≥ n1 we have

h1+2α2,3α2
2n+2 + (α1 − 1)h1+2α2,α2

2n+3 − 2(α1 − 1) (1 + α2) fnfn+1 > 0.

If E(α1, α2) < 0, there exist a number n2 ∈ N such that for all n ≥ n2 we have

h1+2α2,3α2
2n+2 + (α1 − 1)h1+2α2,α2

2n+3 − 2(α1 − 1) (1 + α2) fnfn+1 < 0.

It results that for all α1, α2 ∈ R with E(α1, α2) 6= 0, in the algebra H (α1, α2) there is a
natural number n0 = max{n1, n2} such that n (Fn) 6= 0, hence Fn is an invertible element, for
all n ≥ n0.

In this way, Fibonacci Quaternion elements can provide us many important information in the
algebra H (α1, α2) providing sets of invertible elements in algebraic structures without division.
For other details, see [Fl, Sh; 13].

3. Multiplication table in Cayley-Dickson algebras

Multiplication table for algebras obtained by the Cayley-Dickson process over the real field
was studied in [Ba; 09]. In this paper, the author gave an algorithm to find quickly product of two
elements in these algebras. In the following, we shortly present this algorithm. In [Ba; 13], the
author gave all 32 possibilities to define a "Cayley-Dickson product" used in the Cayley-Dickson
doubling process, such that the obtained algebras are isomorphic.

If we consider multiplication (1.1) under the form

A⊕A : (a1, a2) (b1, b2) := (a1b1 + γb2a2, a1b2 + b1a2) , (3.1)

the obtained algebras are isomorphic with those obtained with multiplication (1.1) .

For α1 = ... = αt = −1 and K = R, in [Ba; 09] the author described how we can multiply
the basis vectors in the algebra At, dimAt = 2t = n. He used the binary decomposition for the
subscript indices.
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Let ep, eq be two vectors in the basis B with p, q representing the binary decomposition for
the indices of the vectors, that means p, q are in Zn2 . We have that epeq = γn (p, q) ep⊗q, where:

i) p⊗ q are the "exclusive or" for the binary numbers p and q (the sum of p and q in the group
Zn2 );

ii) γn : Zn2 × Zn2 → {−1, 1} is a map, called the twist map.
In this section, we will consider K = R. Using the same notations as in the Bales’s paper,

we consider the following matrices:

A0 = A =

(
1 1
1 −1

)
, B =

(
1 −1
1 1

)
, C =

(
1 −1
−1 −1

)
. (3.2)

In the same paper [Ba; 09], the author find the properties of the twist map γn and put the signs
of this map in a table. He partitioned the twist table for Zn2 into 2× 2 matrices and obtained the
following result:

Theorem 3.1. ([Ba; 09], Theorem 2.2., p. 88-91) For n > 0, the Cayley-Dickson twist table
γn can be partitioned in quadratic matrices of dimension 2 of the form A,B,C,−B,−C, defined
in the relation (3.2).

 

Fig. 1: Twist trees([Ba; 09], Table 9)

Definition 3.2. Let x = x0, x1, x2, .... and y = y0, y1, y2, ..... be two sequences of real
numbers. The ordered pair

(x, y) = x0, y0, x1, y1, x2, y2, ....

is a sequence obtained by shuffling the sequences x and y.

Proposition 3.3. Let At =
(
−1,...,−1

R

)
be an algebra obtained by the Cayley-Dickson process

with multiplication given by relation (3.1) and {e0 = 1, e1, ..., en−1},
n = 2t a basis in At. Let r ≥ 1, r < k ≤ i < t. We have

· eT eT+1

e2k−r+1 (−1)r+2
eM − (−1)r+2

eM+1

e2k−r+1+1 − (−1)r+2
eM+1 − (−1)r+2

eM

, (3.3)

where the binary decomposition of M is M2 = 2k ⊗ T, whith T = 2r + 2r+1 + ...+ 2k + 2i.

Proof. We compute e2k−r+1eT . We have e2k−r+1eT = γ (s, q) eM , where the binary decom-
position of M is M2 = 2k−r+1 ⊗ T and s is the binary decomposition for 2k−r+1 and q is the
binary decomposition for T,

s = 00...0︸ ︷︷ ︸
i−k+r−1

100...0︸ ︷︷ ︸
k−r+2

, q = 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

.

By "shuffling" s⊗ q, it results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 00︸ ︷︷ ︸
r

.

Starting with A0,we get:

A0
01→ A

00→ ... 00→︸ ︷︷ ︸
i−k

A
01→ A

01→ ... 01→︸ ︷︷ ︸
k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C... 01→ (−1)r+2
C︸ ︷︷ ︸

r+2

00→ ... 00→ (−1)r+2
C︸ ︷︷ ︸

r

.
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Therefore γ (s, q) = (−1)k−r+1
.

Now, we compute e2k−r+1eT+1. For this, we will "shuffling" 00...0︸ ︷︷ ︸
i−k+r−1

100...0︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

.

It results
01 00 00...00︸ ︷︷ ︸

i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 01︸ ︷︷ ︸
r

.

Starting with A0,we get:

A0
01→ A

00→ ... 00→︸ ︷︷ ︸
i−k

A
01→ A

01→ ... 01→︸ ︷︷ ︸
k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C... 01→ (−1)r+2
C︸ ︷︷ ︸

r+2

00→ ... 01→ (−1)r+3
C︸ ︷︷ ︸

r

.

For e2k−r+1+1eT , "shuffling" 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 10︸ ︷︷ ︸
r

.

Starting with A0,we get:

A0
01→ A

00→ ... 00→︸ ︷︷ ︸
i−k

A
01→ A

01→ ... 01→︸ ︷︷ ︸
k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C... 01→ (−1)r+2
C︸ ︷︷ ︸

r+2

00→ ... 10→ (−1)r+3
C︸ ︷︷ ︸

r

.

For e2k−r+1+1eT+1, we compute first
(
2k−r+1 + 1

)
⊗ (T + 1) . We obtain:(

2k−r+1 + 1
)
⊗ (T + 1) =

=

 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2

⊗
100...0︸ ︷︷ ︸

i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

 =

= 10...0︸ ︷︷ ︸
i−k

11..1︸ ︷︷ ︸
r−1

0 1...1︸︷︷︸
k−2r+1

0...0︸︷︷︸
r

= 2k−r+1 ⊗ T =M.

Now, "shuffling" 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 11︸ ︷︷ ︸
r

Starting with A0,we get:

A0
01→ A

00→ ... 00→︸ ︷︷ ︸
i−k

A
01→ A

01→ ... 01→︸ ︷︷ ︸
k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C... 01→ (−1)r+2
C︸ ︷︷ ︸

r+2

00→ ... 11→ (−1)r+3
C︸ ︷︷ ︸

r

.

2

4. Some applications in Algebra and Coding Theory

Let At be an algebra obtained by the Cayley-Dickso process over the field R, with the basis
{1, e2, ..., en}, n = 2t. The unit elements in At are {±1,±e2, ...,±en}. In [Ma, Be, Ga; 09], the
authors defined the integers of the At to be the set

At[Z] = {x1 · 1 +
2n∑
i=2

xi · ei, x1, xi ∈ Z, i ∈ {2, ..., n}}.

At[Z] is a non-associative and non-commutative ring on which the following equivalence
relation can be defined.

Definition 4.1. Let a, x, y ∈ At[Z]. We say that x, y are right(left) congruent modulo a if and
only if there is the element b ∈ At[Z] such that

x− y = ba ( or x− y = ab). (4.1)
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We denote this relation with x ≡r y mod a (or x ≡s y mod a) and this relation is well defined.
We will consider the quotient ring

At[Z]a = {x mod a / x ∈ At[Z]}.

If a 6= 0 is not a zero divisor, then At[Z]a has N (a)
2n−1

elements (see [Ma, Be, Ga; 09] for
other details).

Since algebrasAt are poor in properties, due to the power-associativity, if we take w ∈ At[Z],
then the set U = {a + bw / a, b ∈ Z} become an associative and a commutative ring with
U ⊂ At[Z].

Let U be the ring defined above, included in At[Z], with t ∈ {2, 3}.

Definition 4.2. An element x ∈ U is prime in U if x is not an invertible element in U and if
x = ab, then a or b is an invertible element in U.

It is obvious that if π ∈ U is a prime element, then n (π) is a prime element in Z.
If we consider relation (4.1) on U, due to commutativity, "the left" is the same with "the

right" and if π is a prime element in U, therefore Uπ is a field isomorphic with Zp, where
n (π) = p, p a prime element in Z, as we can see from the above statements.

Proposition 4.3. ([Fl; 14], [Gu; 13], [Hu; 94] )
i) If x, y ∈ V, then there are z, v ∈ V such that x = zy + v, with N (v) < N (y) .
ii) With the above notation, we have that the remainder v has the formula

v = x−
[
xy

yy

]
y, (4.2)

where the symbol [ , ] is the rounding to the closest integer. For the octonions, the rounding of an
octonion integer can be found by rounding the coefficients of the basis, separately, to the closest
integer.

Proposition 4.4. ([Fl; 14], [Gu; 13], [Hu; 94])
i) The above relation is an equivalence relation on U. The set of equivalence class is denoted

by Uπ and is called the residue class of U modulo π.
ii) The modulo function µ : U→ Uπ is µ (x) = v mod π = x −

[
xy
yy

]
y, where x = zπ + v,

with N (π) < N (y) .
iii) Uπ is a field isomorphic with Zp, p = N(π), p a prime number.

Remark 4.6. ([Ne, In,Fa, El, Pa; 01]) From the above, we have that for vi, vj ∈ Uπ, i, j ∈
{1, 2, ..., p − 1}, ui + uj = uk if and only if k = i + j mod p and ui · uj = uk if and only if
k = i · j mod p. From here, we have the following labelling procedure:

1) Let π ∈ U be a prime, with n (π) = p, p a prime number, π = a+ bw, a, b ∈ Z.
2) Let s ∈ Z be the only solution of the equation a+ bx mod p, x ∈ {0, 1, 2, ..., p− 1}.
3) The element k ∈ Zp is the label of the element u = m + nw ∈ U if m + ns = k mod p

and n (u) is minimum.
In this way, we obtain the map

α : Zp → Uπ, α (m) = µ (m+ π) = (m+ π) mod π.

Example 4.5.
Let t = 2, w = 1 + e2 + e3 + e4, p = 13, π = −1 + 2w. We remark that n (π) = 13 and

w2 − 2w + 4 = 0. The field Uπ isomorphic with Z13 is

Uπ = {0, 1, 2, 3,−3 + w,−2 + w,−1 + w, 1− w, 2− w, 3− w,−3,−2,−1}

Indeed, using relations w2 = 2w − 4 and w = 2− w, we have:
4 = 4 + π = 3 + 2w = −3 + w, since 3 + 2w = (−1 + 2w)w + w − 3, with n (w − 3) =

7 < 13 = n (π) ;
5 = 5 + π = 4 + 2w = −2 + w;
6 = 6 + π = 5 + 2w = −1 + w.
Using the above labelling procedure, we have

α : Zp → Uπ, α (0) = 0, α (1) = 1, α (2) = 2, α (3) = 3,
α (4) = −3 + w,α (5) = −2 + w,α (6) = −1 + w,α (7) = 1− w,
α (8) = 2− w.α (9) = 3− w,α (10) = −3, α (11) = −2, α (12) = −1.



394 Cristina Flaut

Remark 4.6. Since each natural number can be write as a sum of four squares, if m ∈ N,
such that m = a2

1 + a2
2 + a2

3 + a2
4, ai ∈ N, i ∈ {1, 2, 3} and if q = 2a1, therefore the equation

x2 − qx+m = 0, (4.3)

has always solutions in At, for all t. Indeed, let z = a1 · 1 + a2 · ei + a3 · ej + a4 · ek, where
i 6= j 6= k and ei, ej , ek ∈ {e2, ..., en}, n = 2t. The element z is always a solution of the equation
(4.3), since t (z) = 2a1 = q and n (x) = a2

1 + a2
2 + a2

3 + a2
4 = m.

Remark 4.7. Such kind a field obtained above has many applications in Coding Theory,
since on these fields can be constructed good codes which can detected and corrected some error
patterns which occur most frequently (see [Fl; 14], [Gu; 13], [Hu; 94], [Ma, Be, Ga; 09], [Ne,
In,Fa, El, Pa; 01]).
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