A SUBCLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH ITERATIONS OF THE CHO-KWON-SRIVASTAVA OPERATOR

Trailokya Panigrahi

Communicated by S.P Goyal
MSC 2010 Classifications: 30C45.
Keywords and phrases: Meromorphic functions, Multivalent functions, Cho-Kwon-Srivastava operator, Subordination, Hadamard product.

Abstract. Let \sum_{p} denote the class of meromorphically multivalent functions $f(z)$ of the form:

$$
f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad(p \in \mathbb{N}:=\{1,2,3, \cdots\})
$$

which are analytic in the punctured open unit disk $\mathbb{U}^{*}=\{z: 0<|z|<1\}$. In this paper, by making use of a meromorphic analogue of the Cho-Kwon-Srivastava operator and its iterations, a new subclass of meromorphic p-valent functions is introduced. Inclusion theorems and other properties of these function class are studied.

1 Introduction and Definition

Let \sum_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad(p \in \mathbb{N}:=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathbb{U}^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathbb{U} \backslash\{0\} .
$$

For functions $f \in \sum_{p}$ given by (1.1) and $g \in \sum_{p}$ given by

$$
g(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad\left(z \in \mathbb{U}^{*}\right),
$$

we define the Hadamard product (or convolution) of f and g by

$$
(f * g)(z)=\frac{z^{p} f(z) \star z^{p} g(z)}{z^{p}}:=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p}=(g * f)(z) \quad\left(z \in \mathbb{U}^{*}\right),
$$

where \star denotes the usual Hadamard product (or convolution) of analytic functions.
Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. We say that the function $f(z)$ is subordinate to $g(z)$, if there exists a function $w(z)$ analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=$ $g(w(z))$. In such a case, we write $f(z) \prec g(z) \quad(z \in \mathbb{U})$. Furthermore, if the function g is univalent in \mathbb{U}, then (see $[6,12,20]$)

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

Liu and Srivastava [10] studied meromorphic analogue of the Carlson-Shaffer operator [4] by introducing the function $\phi_{p}(a, c ; z)$ given by

$$
\begin{align*}
& \phi_{p}(a, c ; z):=\frac{{ }_{2} F_{1}(a, 1 ; c ; z)}{z^{p}}=: \frac{1}{z^{p}}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k-p} \\
& \left(z \in \mathbb{U}^{*}, a \in \mathbb{C}, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \cdots\}\right) \tag{1.2}
\end{align*}
$$

where ${ }_{2} F_{1}(a, 1 ; c ; z)$ is the Gauss hypergeometric series and $(\lambda)_{k}$ is the Pochhammer symbol (or shifted factorial) given by

$$
(\lambda)_{k}=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}= \begin{cases}1 & (k=0) \\ \lambda(\lambda+1) \ldots(\lambda+k-1) & (k \in \mathbb{N})\end{cases}
$$

Recently, Mishra et al. [13] (see also [16]) considered the function $\phi_{p}^{\dagger}(a, c ; z)$, the generalized multiplicative inverse of $\phi_{p}(a, c ; z)$ given by the relation

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{\dagger}(a, c ; z)=\frac{1}{z^{p}(1-z)^{\lambda+p}} \quad\left(a, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p ; z \in \mathbb{U}^{*}\right) \tag{1.3}
\end{equation*}
$$

Note that if $\lambda=-p+1$, then $\phi_{p}^{\dagger}(a, c ; z)$ is the inverse of $\phi_{p}(a, c ; z)$ with respect to the Hadamard product $*$. Using this function they introduced the following operator $\mathcal{I}_{\lambda, p}^{n, m}(a, c): \sum_{p} \longrightarrow \sum_{p}$ defined by

$$
\begin{align*}
& \mathcal{I}_{\lambda, p}^{n, m}(a, c) f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} {\left[\frac{(\lambda+p)_{k}(c)_{k}}{(a)_{k}(1)_{k}}\right]^{n}\left[\frac{p-k t}{p}\right]^{m} a_{k-p} z^{k-p} } \\
&\left(z \in \mathbb{U}^{*}, t \geq 0, m, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.4}
\end{align*}
$$

The operator $\mathcal{I}_{\lambda, p}^{n, m}(a, c)$ is obtained by taking compositions of m-iterations of the combinations operator

$$
C^{t} f(z)=(1-t) f(z)+\frac{t z}{p}(-f(z))^{\prime}
$$

with n-iterations of the operator

$$
\mathcal{L}_{p}^{\lambda}(a, c) f(z)=\phi_{p}^{\dagger}(a, c ; z) * f(z)
$$

The operator $\mathcal{I}_{\lambda, p}^{n, m}(a, c)$ generalizes several previously studied familiar operators (for details, see [13, 16]).

It is easily verify from (1.4) that

$$
\begin{equation*}
z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)=\frac{p}{t}(1-t) \mathcal{I}_{\lambda, p}^{n, m}(a, c) f(z)-\frac{p}{t} \mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f(z) \tag{1.5}
\end{equation*}
$$

Here we recall that the holomorphic analogue of the function $\phi_{p}^{\dagger}(a, c ; z)$ if the function $\phi_{p}^{\dagger}(a, c ; z)$ given by the relation

$$
z^{p}{ }_{2} F_{1}(a, 1 ; c ; z) * \phi_{p}^{\dagger}(a, c ; z):=\frac{z^{p}}{(1-z)^{\lambda+p}} \quad\left(a, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p ; z \in \mathbb{U}\right)
$$

and the corresponding transform defined by

$$
\mathcal{L}_{p}^{\lambda}(a, c) f(z)=\phi_{p}^{\dagger}(a, c ; z) * f(z)
$$

were studied by Cho, Kwon and Srivastava [5]. The transform $\mathcal{L}_{p}^{\lambda}(a, c)$ is popularly known as the Cho-Kwon-Srivastava operator (see, for detail [7, 18, 21]).
Few literature is available on systematic study of successive iterations of certain transforms on classes of meromorphic as well as analytic functions (see e.g., [1, 2, 13, 16, 19]). Furthermore, using the operator $\mathcal{I}_{\lambda, p}^{n, m}(a, c)$, Panigrahi [17] and Mishra and Soren [14] have investigated its various interesting properties (for recent expository work on meromorphic functions see [3, 8 , 9, 22]).

Motivated by the aforementioned work, in this paper we introduce a new subclass of meromorphic functions and investigate inclusion theorems and other properties of a certain class of meromorphically p-valent functions, which are defined by making use of a meromorphic analogue of the Cho-Kwon-Srivastava operator and its iterations given by (1.4).

Throughout this paper, we assume that $p, l \in \mathbb{N}, \epsilon_{l}=e^{\frac{2 \pi i}{l}}$, and for $f \in \sum_{p}$, we have

$$
\begin{align*}
f_{p, l}^{n, m}(\lambda, a, c ; z) & =\frac{1}{l} \sum_{j=0}^{l-1} \epsilon_{l}^{j p}\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)\left(\epsilon_{l}^{j} z\right) \\
& =\frac{1}{z^{p}}+\left[\frac{(\lambda+p)_{l}(c)_{l}}{(a)_{l}(1)_{l}}\right]^{n}\left[\frac{p-l t}{p}\right]^{m} a_{l-p} z^{l-p}+\cdots \tag{1.6}
\end{align*}
$$

Note that the series we consider is a gap series, each nonzero coefficient appearing after l gaps. For $l=1$, it follows from (1.6) that

$$
f_{p, 1}^{n, m}(\lambda, a, c ; z)=\mathcal{I}_{\lambda, p}^{n, m}(a, c) f(z)
$$

Let \mathcal{P} denote the class of functions of the form:

$$
p(z)=1+b_{1} z+b_{2} z^{2}+\cdots
$$

which are analytic and convex in \mathbb{U} satisfying the condition $\Re(p(z))>0(z \in \mathbb{U})$.
By making use of the operator $\mathcal{I}_{\lambda, p}^{n, m}(a, c)$, we now define a new subclass of \sum_{p} as follows:
Definition 1.1. A function $f(z) \in \sum_{p}$ is said to be in the class $\mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; h)$ if it satisfies the following subordination conditions:

$$
\begin{gather*}
-\beta \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-(1-\beta) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec h(z), \tag{1.7}\\
\left(a, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p, n, m \in \mathbb{N}_{0}, \alpha>0, \beta \geq 0, h \in \mathcal{P} ; z \in \mathbb{U}\right)
\end{gather*}
$$

When $n=1$ we use the following notation:

$$
\mathcal{T}_{p, l}^{1, m}(\lambda, a, c, \alpha, \beta ; h):=\mathcal{T}_{p, l}^{m}(\lambda, a, c, \alpha, \beta ; h) .
$$

In particular for $l=1, \beta=0$ and $h(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$ in (1.7), we get the following function class.

$$
\begin{equation*}
\mathcal{T}_{p}^{n, m}(\lambda, a, c, \alpha, A, B)=\left\{f \in \sum_{p}:-\frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p \mathcal{I}_{\lambda, p}^{n, m}(a, c) f(z)} \prec \frac{1+A z}{1+B z}, \quad(z \in \mathbb{U})\right\} \tag{1.8}
\end{equation*}
$$

2 Preliminaries

We need the following lemmas for our present investigation:
Lemma 2.1. (see [11]) Let $\beta, \gamma \in \mathbb{C}$. Suppose that $\phi(z)$ is convex and univalent in \mathbb{U} with

$$
\phi(0)=1, \quad \Re(\beta \phi(z)+\gamma)>0 \quad(z \in \mathbb{U}) .
$$

If $p(z)$ is analytic in \mathbb{U} with $p(0)=1$, then the following subordination:

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \phi(z) \quad(z \in \mathbb{U})
$$

implies that $p(z) \prec \phi(z)$.
Lemma 2.2. (see [15]) Let $\beta, \gamma \in \mathbb{C}$. Suppose that $\phi(z)$ is convex and univalent in \mathbb{U} with

$$
\phi(0)=1, \quad \Re(\beta \phi(z)+\gamma)>0 \quad(z \in \mathbb{U})
$$

Also let

$$
q(z) \prec \phi(z) \quad(z \in \mathbb{U}) .
$$

If $p(z) \in \mathcal{P}$ and satisfies the following subordination:

$$
p(z)+\frac{z p^{\prime}(z)}{\beta q(z)+\gamma} \prec \phi(z)
$$

then $p(z) \prec \phi(z)$.
Lemma 2.3. Let $f \in \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi)$. Then

$$
\begin{equation*}
-\beta \frac{z\left[(1+\alpha)\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}+\alpha\left(f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right)^{\prime}\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-(1-\beta) \frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec \phi(z) \tag{2.1}
\end{equation*}
$$

Furthermore, if $\phi(z) \in \mathcal{P}$ with

$$
\begin{equation*}
\Re\left\{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \phi(z)\right)\right\}>0 \quad(\alpha, \beta, t>0 ; z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
-\frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec \phi(z) \quad(z \in \mathbb{U}) \tag{2.3}
\end{equation*}
$$

Proof. From (1.6), we have

$$
\begin{align*}
f_{p, l}^{n, m}\left(\lambda, a, c, ; \epsilon_{l}^{j} z\right) & =\frac{1}{l} \sum_{k=0}^{l-1} \epsilon_{l}^{k p}\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)\left(\epsilon_{l}^{k+j} z\right) \\
& =\epsilon_{l}^{-j p} f_{p, l}^{n, m}(\lambda, a, c ; z) \quad(j=0,1, \ldots l-1) \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}=\frac{1}{l} \sum_{k=0}^{l-1} \epsilon_{l}^{(p+1) k}\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right) \tag{2.5}
\end{equation*}
$$

Replacing m by $m+1$ in (2.4) and (2.5) respectively, we can get

$$
\begin{equation*}
f_{p, l}^{n, m+1}\left(\lambda, a, c ; \epsilon_{l}^{j} z\right)=\epsilon_{l}^{-j p} f_{p, l}^{n, m+1}(a, c ; z) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right)^{\prime}=\frac{1}{l} \sum_{k=0}^{l-1} \epsilon_{l}^{(p+1) k}\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right) \tag{2.7}
\end{equation*}
$$

From (2.4) to (2.7) we can get

$$
\begin{align*}
& -\beta \frac{z\left[(1+\alpha)\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}+\alpha\left(f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right)^{\prime}\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-(1-\beta) \frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \\
& =-\frac{1}{l} \sum_{k=0}^{l-1} \beta \frac{\epsilon_{l}^{k} z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)+\alpha f_{p, l}^{n, m+1}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)\right]} \\
& -\frac{(1-\beta)}{l} \sum_{k=0}^{l-1} \frac{\epsilon_{l}^{k} z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)}{p f_{p, l}^{n, m}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)} . \tag{2.8}
\end{align*}
$$

Since $f \in \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi)$, it follows that

$$
\begin{equation*}
-\beta \frac{\epsilon_{l}^{k} z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)+\alpha f_{p, l}^{n, m+1}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)\right]}-(1-\beta) \frac{\epsilon_{l}^{k} z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}\left(\epsilon_{l}^{k} z\right)}{p f_{p, l}^{n, m}\left(\lambda, a, c ; \epsilon_{l}^{k} z\right)} \prec \phi(z) \tag{2.9}
\end{equation*}
$$

Since $\phi(z)$ is convex and univalent in \mathbb{U}, the assertion (2.1) of Lemma 2.3 follows from (2.8) and (2.9).

From (1.5) and (1.6) we obtain

$$
\begin{equation*}
z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}+\frac{p}{t} f_{p, l}^{n, m+1}(\lambda, a, c ; z)=\frac{\frac{p}{t}(1-t)}{l} \sum_{k=0}^{l-1} \epsilon_{l}^{p k}\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)\left(\epsilon_{l}^{k} z\right)=\frac{p(1-t)}{t} f_{p, l}^{n, m}(\lambda, a, c ; z) \tag{2.10}
\end{equation*}
$$

Let $f \in \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi)$ and suppose that

$$
\begin{equation*}
\psi(z)=-\frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

Clearly $\psi(z)$ is analytic in \mathbb{U} and $\psi(0)=1$. It follows from (2.10) and (2.11) that

$$
\begin{equation*}
1-t+t \psi(z)=\frac{f_{p, l}^{n, m+1}(\lambda, a, c ; z)}{f_{p, l}^{n, m}(\lambda, a, c ; z)} \tag{2.12}
\end{equation*}
$$

Taking logarithmic differentiation on both sides of (2.12) and making use of (2.10) and (2.11) in the resulting equation, we get

$$
\begin{equation*}
z\left(f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right)^{\prime}=-\left([p-p t+p t \psi(z)] \psi(z)-t z \psi^{\prime}(z)\right) f_{p, l}^{n, m}(\lambda, a, c ; z) \tag{2.13}
\end{equation*}
$$

Now it follows from (2.1) and (2.11) to (2.13) that

$$
\begin{array}{r}
-\beta \frac{z\left[(1+\alpha)\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}+\alpha\left(f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right)^{\prime}\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-(1-\beta) \frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \\
=\beta \frac{(1+\alpha) \psi(z)+\alpha\left(\{-t+t \psi(z)\} \psi(z)-\frac{t}{p} z \psi^{\prime}(z)\right)}{(1+\alpha)+\alpha(1-t+t \psi(z))}+(1-\beta) \psi(z) \\
=\psi(z)+\frac{z \psi^{\prime}(z)}{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \psi(z)\right)} \prec \phi(z) \quad(z \in \mathbb{U}) . \tag{2.14}
\end{array}
$$

Since

$$
\Re\left\{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \phi(z)\right)\right\}>0 \quad(\alpha, \beta, t>0, z \in \mathbb{U})
$$

the assertion (2.3) of Lemma 2.3 follows by virtue of (2.14) and Lemma 2.1. This completes the proof of Lemma 2.3.

3 Main Results

Theorem 3.1. Let $\phi(z) \in \mathcal{P}$ be such that

$$
\Re\left\{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \phi(z)\right)\right\}>0 \quad(\alpha, \beta, t>0, z \in \mathbb{U})
$$

Then

$$
\mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi(z)) \subset \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha ; \phi(z))
$$

Proof. Let $f \in \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi(z))$ and suppose that

$$
\begin{equation*}
q(z)=-\frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

Clearly $q(z)$ is analytic in \mathbb{U} and $q(0)=1$. It follows from (1.5) and (3.1) that

$$
\begin{equation*}
q(z) f_{p, l}^{n, m}(\lambda, a, c ; z)=-\frac{1}{t}(1-t) \mathcal{I}_{\lambda, p}^{n, m}(a, c) f(z)+\frac{1}{t} \mathcal{T}_{\lambda, p}^{n, m+1}(a, c) f(z) \tag{3.2}
\end{equation*}
$$

Differentiating both sides of (3.2) with respect to z and using (3.1) in the resulting equation, we obtain

$$
\begin{equation*}
z q^{\prime}(z)+\left[\frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{f_{p, l}^{n, m}(\lambda, a, c ; z)}-\frac{p}{t}(1-t)\right] q(z)=\frac{p^{z}}{t} \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \tag{3.3}
\end{equation*}
$$

Making use of (2.11), (2.12), (3.1) and (3.2) in (1.7) yield

$$
\begin{array}{r}
-\beta \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-(1-\beta) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \\
=\beta \frac{(1+\alpha) q(z)-\frac{\alpha t}{p}\left[z q^{\prime}(z)+\left(p-\frac{p}{t}-p \psi(z)\right) q(z)\right]}{(1+\alpha)+\alpha(1-t+t \psi(z))}+(1-\beta) q(z) \\
=q(z)+\frac{z q^{\prime}(z)}{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \psi(z)\right)} \prec \phi(z) \quad(z \in \mathbb{U}) . \tag{3.4}
\end{array}
$$

Since

$$
\Re\left\{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \phi(z)\right)\right\}>0 \quad(\alpha, \beta, t>0, z \in \mathbb{U})
$$

by virtue of Lemma 2.3, we have

$$
\psi(z)=-\frac{z\left(f_{p, l}^{n, m}(\lambda, a, c ; z)\right)^{\prime}}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec \phi(z) \quad(z \in \mathbb{U})
$$

Thus, by (3.4) and Lemma 2.2, we find that

$$
q(z) \prec \phi(z) \quad(z \in \mathbb{U})
$$

which implies

$$
\mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta ; \phi(z)) \subset \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha ; \phi(z))
$$

The proof of Theorem 3.1 is thus completed.
For $n=1$, Theorem 3.1 takes the following form:
Corollary 3.2. Let $\phi(z) \in \mathcal{P}$ be such that

$$
\Re\left\{\frac{1}{\beta}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p \phi(z)\right)\right\}>0 \quad(\alpha, \beta, t>0 ; z \in \mathbb{U})
$$

Then

$$
\mathcal{T}_{p, l}^{m}(\lambda, a, c, \alpha, \beta, \phi) \subset \mathcal{T}_{p, l}^{m}(\lambda, a, c, \alpha, \phi)
$$

Taking $\phi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$ in Theorem 3.1, we get the following result.
Corollary 3.3. Let $-1 \leq B<A \leq 1$ and

$$
\frac{1+A}{1+B}<\left(1-\frac{1}{\alpha t}-\frac{2}{t}\right) \quad(\alpha, t>0)
$$

Then

$$
\mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, \beta, A, B) \subset \mathcal{T}_{p, l}^{n, m}(\lambda, a, c, \alpha, A, B)
$$

Theorem 3.4. Let $h(z) \in \mathcal{P}$ and $0 \leq \beta_{1}<\beta_{2}$ be such that

$$
\Re\left\{\frac{1}{\beta_{2}}\left(p-\frac{p}{\alpha t}-\frac{2 p}{t}-p h(z)\right)\right\}>0 \quad(\alpha, \beta, t>0, z \in \mathbb{U})
$$

Then

$$
\mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{2} ; h(z)\right) \subset \mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{1} ; h(z)\right)
$$

Proof. Let $f \in \mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{2} ; h(z)\right)$. Then by Definition 1.1, we have

$$
\begin{equation*}
-\beta_{2} \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-\left(1-\beta_{2}\right) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec h(z) \tag{3.5}
\end{equation*}
$$

We define the function $q(z)$ by the following:

$$
q(z)=-\frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \quad(z \in \mathbb{U})
$$

Therefore by Theorem 3.1, we get

$$
\mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{2} ; h(z)\right) \subset \mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{1} ; h(z)\right)
$$

Hence,

$$
\begin{equation*}
q(z) \prec h(z) \quad(z \in \mathbb{U}) . \tag{3.6}
\end{equation*}
$$

We also observe that the following identity holds:

$$
\begin{aligned}
& -\beta_{1} \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-\left(1-\beta_{1}\right) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \\
= & \frac{\beta_{1}}{\beta_{2}}\left[-\beta_{2} \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-\left(1-\beta_{2}\right) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)}\right]+\left(1-\frac{\beta_{1}}{\beta_{2}}\right) q(z) .
\end{aligned}
$$

Since $0 \leq \frac{\beta_{1}}{\beta_{2}}<1$, and $h(z)$ is convex univalent in \mathbb{U}, we conclude from (3.5) and (3.6) that
$-\beta_{1} \frac{z\left[(1+\alpha)\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)+\alpha\left(\mathcal{I}_{\lambda, p}^{n, m+1}(a, c) f\right)^{\prime}(z)\right]}{p\left[(1+\alpha) f_{p, l}^{n, m}(\lambda, a, c ; z)+\alpha f_{p, l}^{n, m+1}(\lambda, a, c ; z)\right]}-\left(1-\beta_{1}\right) \frac{z\left(\mathcal{I}_{\lambda, p}^{n, m}(a, c) f\right)^{\prime}(z)}{p f_{p, l}^{n, m}(\lambda, a, c ; z)} \prec h(z) \quad(z \in \mathbb{U})$.
Thus

$$
f(z) \in \mathcal{T}_{p, l}^{n, m}\left(\lambda, a, c, \alpha, \beta_{1} ; h\right)
$$

The proof of Theorem 3.4 is completed.
Acknowledgement: The author thanks the reviewer for many useful suggestions for revision which improved the content of the manuscript.

References

[1] F. M. Al-Oboudi and K. A. Al-Oboudi, On class of analytic functions related to conic domains, J. Math. Anal. Appl. 339, 665-667 (2008).
[2] F. M. Al-Oboudi and K. A. Al-Oboudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl. 354(2), 412-420 (2009).
[3] W. G. Atshan, H. J. Mustafa and E. K. Mouajeeb, A linear operator of a new class of meromorphic multivalent functions, J. Asian Scientific Research 3(7), 734-746 (2013).
[4] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15, 737-745 (1984).
[5] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292, 470-483 (2004).
[6] P. L. Duren, Univalent Functions, Graduate Texts in Mathematics; 259, Springer-Verlag, New York, (1983).
[7] F. Ghanim and M. Darus, Some properties on a certain class of meromorphic functions related to Cho-Kwon-Srivastava operators, Asian-European J. Math. 5(4) , Art. ID 1250052 (2012) .
[8] S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions involving certain linear operators, Tamsui Oxford J. Math.Sci. 25(2), 167-178 (2009).
[9] S. P. Goyal and R. Kumar, Some inclusion properties for new subclasses of meromorphic p-valent strongly starlike and strongly convex functions associated with the El-Ashwah operator, Acta Univ. Apulensis 23, 107-115 (2010).
[10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259, 566-581(2001)
[11] S. S. Miller and P. T. Mocanu, On some classes of first order differential subordination, Michigan Math. J. 32, 185-195 (1985).
[12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, (2000).
[13] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Modelling 57, 945962 (2013).
[14] A. K. Mishra and M. M. Soren, Certain subclasses of multivalent meromorphic functions involving itertions of the Cho-Kwon-Srivastava transform and its combinations, Asian-European J. Math. (to appear).
[15] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Asutral. Math 32, 321-330 (1985) .
[16] T. Panigrahi, On Some Families of Analytic Functions Defined Through Subordination and Hypergeometric Functions, Ph.D Thesis, Berhmapur University, Berhampur, (2011).
[17] T. Panigrahi, Convolution properties of multivalent functions associated with Cho-Kwon-Srivastava operator, Southeast Asian Bull. Math. (to appear).
[18] J. Patel, N. E. Cho and H. M. Srivastava, Certain subclasses of multivalent functions associated with a family of linear operators, Math. Comput. Modelling 43, 320-338 (2006) .
[19] H. M. Srivastava, A. K. Mishra and S. N. Kund, Certain classes of analytic functions associated with iterations of the Owa-Srivastava operator, Southeast Asian Bull. Math. 37, 413-435 (2013).
[20] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).
[21] Z.-G. Wang, H.-T. Wang and Y. Sun, A class of multivalent non-bazelevic functions involving the Cho-Kwon-Srivastava operator, Tamsui Oxford J. Math. Sci. 26(1), 1-19 (2010).
[22] Z.-G. Wang, Y. Sun and Z.-H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl. 58, 1408-1417 (2009) .

Author information

Trailokya Panigrahi, Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar751024, Odisha, India.
E-mail: trailokyap6@gmail.com
Received: June 12, 2014.
Accepted: June 30, 2014.

