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Abstract In this paper, statistical convergence is generalized by using regular Nörlund mean
N(p) where p = (pn) is a positive sequence of natural numbers. It is called statistical Nörlund
convergence and denoted by the symbol st-N(p).

Besides convergence properties of st-N(p), some inclusion results have been given between
st-N(p) convergence and strongly N(p) and statistical convergence.

Also, st-N(p) and st-N(q) convergences are compared under some certain restrictions.

1 Introduction and Backround

Statistical convergence of real (or complex) valued sequences was first introduced by Fast H. [6]
and Steinhaus I. J. [18] independently in the 1951 as a generalization of ordinary convergence.
This subject has been applied various field of mathematics by many authors such as Erdös P.-
Terenbaum G. [5], Freeedman A. R.- Sember J. J. - Raphael M. [7], etc. Besides, Connor J.[3,
4], Fridy J. A. [8], Fridy J. A.- Orhan C. [9], Salat T. [16], Schenberg I. J. [17]. Statistical
convergence is closely related to the natural density of the subset K of natural numbers N ( see
more in [2] ).

For n ∈ N, let K(n) := {k | k ≤ n, k ∈ K} for K ⊂ N. Then, the natural density (or
asymptotic density) of K ⊆ N is denoted by δ(K), and

δ(K) := lim
n→∞

1
n

n∑
k=1

χK(n)(k) (1.1)

if this limit exists. In (1.1) the symbol χK(n)(.) denotes the characteristic function of the set
K(n).

A real (or complex) sequence x = (xn) is said to be statistical convergent to l ∈ R (∈ C),
if the set K(ε) := {k | k ≤ n, |xk − l| ≥ ε} has natural density zero for every ε > 0, i. e.,
δ(K(ε)) = 0. This limit is denoted by xn → l(st).

Throughout this paper, let p = (pn) be a sequence of nonnegative natural numbers with
p0 = 0 and pn > 0 for all n ∈ N and Pn :=

∑n
k=0 pk.

The Nörlund mean of the sequence x = (xn) is defined by tn := 1
Pn

∑n
k=1 pn−k+1xk.

The sequence x = (xn) is said to be N(p) convergent to l ∈ R if the sequence (tn)n∈N
convergent to l ∈ R, and strongly N(p) convergence to l if

lim
n→∞

1
Pn

n∑
k=1

pn−k+1|xk − l| = 0.

and it is denoted by xn → l (N(p)).

Definition 1.1. The sequence x = (xn) is said to be statistically Nörlund convergent to l if

lim
n→∞

1
Pn

n∑
k=1

pn−k+1χK(ε)(k) = 0, (1.2)

holds. It is denoted by xn → l (st-N(p)).

The case pn = 1 in Definition 1.1 is coincide with usual statistical convergence [8]. This
kind of generalization of statistical convergence has been given by Fredman and Sember in [7]
by using any regular matrix summability method.
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Let us recall that if the summability method transforms convergent sequence to convergent
sequence with the same limit, then it is called regular.

It is clear from [15] that the method N(p) is regular if and only if pn

Pn
→ 0, n→∞.

Especially, by using regular Nörlund mean different kind of generalization of statistical con-
vergence has been given in literature such as [1], [11], [12], [13], [14] and etc.

The next lemma plays key role in the proofs of Theorems 2.9 and 2.10.

Lemma 1.2. [15] If N(p) is regular, then the series p(x) =
∑∞

n=1 pnx
n−1 and P (x) =

∑∞
n=1 Pnx

n−1

are convergent for all |x| < 1.

It is easy to see that the following series are convergent for all |x| < 1,

k(x) =
∞∑
n=1

knx
n−1 =

q(x)

p(x)
=
Q(x)

P (x)

and

h(x) =
∞∑
n=1

hnx
n−1 =

p(x)

q(x)
=
P (x)

Q(x)

where q(x) =
∑∞

n=1 qnx
n−1, Q(x) =

∑∞
n=1 Qnx

n−1. Also, by comparing their coefficients

k1pn + ...+ knp1 = qn, k1Pn + ...+ knP1 = Qn, (1.3)

h1qn + ...+ hnq1 = pn, h1Qn + ...+ hnQ1 = Pn. (1.4)

is obtained.

2 New Results

Let us consider the function dp : CN × CN → [0,∞) where CN denotes the set of all complex
variable sequences, as follows:

dp(x, y) := lim sup
n→∞

1
Pn

∑
k≤n

pn−k+1ϕ(|xk − yk|)

for x = (xn), y = (yn) ∈ CN and ϕ is the function ϕ : [0,∞)→ [0,∞) where

ϕ(t) :=

{
t, t ≤ 1,
1, t > 1.

The function dp is a semi-metric and it is called p-semi-metric on CN (for more information
[10]).

Theorem 2.1. The sequence x = (xn) is st-N(p) convergent to l ∈ R if and only if dp(x, y) = 0
where yn = l for all n ∈ N.

Proof. Let us assume dp(x, y) = 0 where yn = l for all n ∈ N. Then, we have

lim sup
n→∞

1
Pn

∑
k 6 n

|xk − l| > ε

pn−k+1 ≤

≤


1
ε lim sup

n→∞

1
Pn

∑
k6n

pn−k+1ϕ(|xk − l|) , ε ≤ |xk − l| ≤ l,

lim sup
n→∞

1
Pn

∑
k6n

pn−k+1ϕ(|xk − l|) , |xk − l| > 1.

6 max{1, 1
ε
} lim sup

n→∞

1
Pn

∑
k6n

pn−k+1ϕ(|xk − l|)

= max{1, 1
ε
}dp(x, l)

for every ε > 0.
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This last inequality implies that the sequence (xn) is st-N(p) convergent to l.
Now, assume that x = (xn) is st-N(p) convergent to l ∈ R. Then, for every ε > 0 we have

1
Pn

∑
k6n

pn−k+1 ϕ(|xk − yk|) =
1
Pn

∑
k 6 n

|xk − l| < ε

pn−k+1ϕ(|xk − l|)

+
1
Pn

∑
k 6 n

|xk − l| > ε

pn−k+1ϕ(|xk − l|)

6 ε
1
Pn

∑
k6n

pn−k+1 +
1
Pn

∑
k 6 n

|xk − l| > ε

pn−k+1

Since N(p) is regular, then the following inequality

dp(x, y) = lim sup
n→∞

1
Pn

∑
k6n

pn−k+1ϕ(|xk − yk|)

6 ε lim sup
n→∞

1
Pn

∑
k6n

pn−k+1 + lim sup
n→∞

1
Pn

∑
k 6 n

|xk − L| > ε

pn−k+1 ≤ ε

holds. This calculation implies that dp(x, y) ≤ ε for any ε > 0 where yn = l (n ∈ N). So, the
proof is completed.

Corollary 2.2. If the sequence x = (xk) is convergent to l then dp(x, y) = 0, where yn = l for
all n ∈ N.

Proof. Let us assume x = (xk) is convergent to l. It means that for every ε > 0, there exists an
n0 = n0(ε) ∈ N such that |xn − l| < ε

2 holds for all n > n0. Therefore, the following inequality

dp(x, y) = lim sup
n→∞

1
Pn

∑
k6n

pn−k+1ϕ(|xk − l|)

= lim sup
n→∞

 1
Pn

∑
k6n0

pn−k+1ϕ(|xk − l|) +
1
Pn

∑
n0+16k6n

pn−k+1ϕ(|xk − l|)


6 lim sup

n→∞

1
Pn

∑
k6n0

pn−k+1 + lim sup
n→∞

1
Pn

n∑
k=n0+1

pn−k+1|xk − l|

6 n0 lim sup
n→∞

pn
Pn

+ ε lim sup
n→∞

1
Pn

n∑
k=n0+1

pn−k+1 <
ε

2
+
ε

2
= ε

holds. It gives that dp(x, y) = 0.

Following theorem shows that strongly N(p) convergence implies st-N(p) convergence:

Theorem 2.3. If the sequence x = (xn) is strongly N(p) convergent to l then x = (xn) is st-N(p)
convergent to l.

Proof. Assume that (xn) is strongly N(p) convergent to l. That is

lim
n→∞

1
Pn

n∑
k=1

pn−k+1|xk − l| = 0.
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Also, the inequality

1
Pn

n∑
k=1

pk|xk − l| =
1
Pn

 ∑
k∈K(ε)

+
∑

k/∈K(ε)

 pn−k+1|xk − l|

≥ 1
Pn

n∑
k=1

pn−k+1|xk − l|χK(ε)(k) ≥ ε
1
Pn

n∑
k=1

pn−k+1χK(ε)(k)

= ε
1
Pn

n∑
k=1

pn−k+1χK(ε)(k).

holds. After taking limit each side of above inequality when n → ∞, then the desired result is
obtained.

Corollary 2.4. If xn → l (n→∞), then xn → l (st-N(p)).

Remark 2.5. The converse of Theorem 2.3 and Corollary 2.4 are not true in general.

For simplicity let α = 1. Consider the sequence x = (xn) and p = (pn) as follows:

xn :=

{
m3, n = m2, m ∈ N,
0, otherwise.

and pn = 1 for all n ∈ N. Therefore,

lim
n→∞

1
n

n∑
k=1

χK(ε)(k) = lim
n→∞

1
n

[|
√
n|]∑

m=1

1 = 0

is hold. But,

lim
n→∞

1
n

n∑
k=1

1|xk − 0| = lim
n→∞

1
n

[|
√
n|]∑

k=1

m3

= lim
n→∞

[|
√
n|]([|

√
n|] + 1)(2[|

√
n|] + 1)

6n
=∞.

Since the sequence is unbounded, then it is not convergence in usual case.
In the next theorem, it is proved if the sequence is bounded, then st-N(p) convergence implies

strongly N(p) convergence.

Theorem 2.6. If the sequence x = (xn) is bounded and st-N(p) convergent to l, then xn → l
(N(p)).

Proof. Assume x = (xn) bounded and

lim
n→∞

1
Pn

n∑
k=1

pn−k+1χK(ε)(k) = 0

holds for any ε > 0. Therefore, from the boundedness of (xn), there exists a positive M > 0
such that |xn − l| < M holds for all n ∈ N. By using this fact, the following inequality

1
Pn

n∑
k=1

pn−k+1|xk − l| =

 ∑
k∈K(ε)

+
∑

k/∈K(ε)

 pn−k+1|xk − l|

=
1
Pn

n∑
k=1

pn−k+1|xk − l|χK(ε)(k) +
1
Pn

n∑
k=1

pn−k+1|xk − l|χKc(ε)(k)

≤ M
1
Pn

n∑
k=1

pn−k+1χK(ε)(k) + ε
1
Pn

n∑
k=1

pn−k+1χKc(ε)(k)

holds. After taking limit when n→∞ in the above inequality the proof is obtained.
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Corollary 2.7. If the sequence x = (xn) is bounded and dp(x, y) = 0 where yn = l for all n ∈ N
then x = (xn) is N(p) convergent to l.

Theorem 2.8. st-N(p) convergence implies st-N(q) convergence if and only if there exists a posi-
tive constant M such that for every n,

|k1|Pn + |k2|Pn−1 + ...+ |kn|P1 ≤MQn (2.1)

and
lim

n→∞

kn
Qn

= 0 (2.2)

are hold.

Proof. Let (tpn) and (tqn) be st-N(p) and st-N(q) transformations of the sequence (xn) respec-
tively, i.e.,

tpn =
1
Pn

n∑
k=1

pn−k+1χK(ε)(k) and tqn =
1
Qn

n∑
k=1

qn−k+1χK(ε)(k)

for an arbitrary ε > 0. From this, we have

Qnt
q
n = qnχK(ε)(1) + qn−1χK(ε)(2) + ...+ q1χK(ε)(n)

and by using (1.3) we obtain

Qnt
q
n = knP1t

p
1 + kn−1P2t

p
2 + ...+ k1Pnt

p
n.

Therefore, the sequence (tqn) can be represent as follows:

tqn =
∞∑

m=1

bn,mt
p
m

where the matrix (bn,m) as

bnm :=

{
kn−m+1Pm

Qn
, m ≤ n,

0, m > n.

Under the sufficiency hypothesis of the theorem, limn→∞ bnm = 0 for every m, since

lim
n→∞

bnm = lim
n→∞

kn−m+1Pm

Qn
= lim

n→∞

kn−m+1Pm

Qn−m+1
= Pm lim

n→∞

kn
Qn

= 0.

Moreover, we have
∞∑

m=1

|bnm| =
|k1|Pn + ...+ |kn|P1

Qn
≤M

and finally
∞∑

m=1

bnm =
k1Pn + ...+ knP1

Qn
=
Qn

Qn
= 1

for every n.
Hence, B = (bnm) is a regular matrix; it is also easy to see that the conditions of the theorem

are necessary, and this completes the proof.

Theorem 2.9. st-N(q) convergence implies st-N(p) convergence if and only if there exists a posi-
tive constant M such that

|h1|Qn + |h2|Qn−1 + ...+ |hn|Q1 ≤MPn (2.3)

and
lim

n→∞

hn
Pn

= 0 (2.4)

are hold.

The proof can be obtained easily from the proof of Theorem 2.8. So it is omitted here.
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Theorem 2.10. st-N(q) (or st-N(p)) convergence implies st-N(p) (or st-N(q)) convergence if and
only if the associated series

∑∞
n=1 |kn| (or

∑∞
n=1 |hn|) is convergent.

Proof. "⇒" Since st-N(q) convergence implies st-N(p) convergence, then from (2.1) there exists
M > 0 such that

0 < k1Pn < MQn

hold for all n ∈ N. It is clear from the last inequality that the sequence
(

Pn

Qn

)
n∈N

is bounded.
So, from (2.1), we have

|k1|+ |k2|
Pn−1

Pn
+ ...+ |km|

Pn−m+1

Pn
≤MQn

Pn
.

for every m < n. Therefore,

|k1|+ |k2|+ ...+ |km| ≤M
Qn

Pn

because of
lim sup
n→∞

Pn−k

Pn
= 1,

for all k ∈ {1, 2, ...,m}. The last inequality gives that
∑∞

m=1 |km| is convergent.
"⇐" It is enough to show that (2.1) and (2.2) are hold for st-N(q) convergence implies st-N(p)

convergence.
From the assumption limn→∞ |kn| = 0 and this gives

lim
n→∞

kn
Qn

= 0.

Also, from (1.4),

Pn = Q1hn + ...+Qnh1 ≤ Qn

∞∑
n==1

|hn|

holds for all n ∈ N. So that

Pn|k1|+ Pn−1|k2|+ ...+ P1|kn| ≤ Qn

∞∑
n=1

|hn|
∞∑
n=1

|kn|

holds. This gives the expected result.
The other case can be proved by doing suitable changes above.

Corollary 2.11. If (pn) is increasing, then st-N(p) is stronger than statistical convergence.

If we consider monotone increasing (pn) and qn = 1, for all n ∈ N in Theorem 2.9, it is easy
to see that (2.3) and (2.4) are hold. So, the proof is omitted here.

Theorem 2.12. If the sequence (xn) is st-N(p) and st-N(q) convergent to l, then there exists a
sequence (rn) of positive integers such that (xn) is st-N(r) convergent to l.

Proof. Let us denote st-N(q) transformation of the sequence (xn) by (tqn). Take into consider
the sequence (rn) as follows:

rn := pnq1 + pn−1q2 + ...+ p1qn, (2.5)

for all n = 1, 2, .... The st-N(r) transformation of (xn) is

trn :=
1
Rn

n∑
k=1

rn−k+1χK(ε)(k)

where Rn = r1 + r2 + ...+ rn. From (2.5), we have

trn =
rnχK(ε)(1) + rn−1χK(ε)(2) + ...+ r1χK(ε)(n)

p1q1 + (p1q2 + p2q1) + ...+ (p1qn + ...+ pnq1)

=
p1q1χK(ε)(n) + (p1q2 + p2q1)χK(ε)(n− 1) + ...+ (pnq1 + ...+ p1qn)χK(ε)(1)

p1q1 + (p1q2 + p2q1) + ...+ (p1qn + ...+ pnq1)

=
p1(q1χK(ε)(n) + q2χK(ε)(n− 1) + ...+ qnχK(ε)(1)) + ....+ pnq1χK(ε)(1)

p1(q1 + ...+ qn) + ...+ pnq1

=
p1Qnt

q
n + ...+ pnQ1t

q
1

p1Qn + p2Qn−1 + ...+ pnQ1
.
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Therefore, if we consider the matrix T = (tnk) as

tnk :=

{
pn−k+1Qk∑n
i=1 pn−i+1Qi

, k ≤ n,
0, k > n.

then st-N(r) transformation of (xn) is the T -transformation of the sequence (tqn).
Now, it is enough for to completion of the proof the matrix T = (tnk) is regular. It is evident

that
n∑

k=1

tnk =
n∑

k=1

|tnk| = 1, n = 1, 2, ...

hold. Since,
∑n

i=1 pn−i+1Qi > KPn for K ≥ q1 > 0 and for all fixed k ∈ N,

0 ≤ lim
n→∞

pn−k+1Qn∑n
i=1 pn−i+1Qi

< lim
n→∞

pn−k+1Qn

KPn
= 0.

Therefore, the sequence (xn) is also st-N(r) convergent to l.
The st-N(r) convergency of (xn) when it is st-N(p) convergence can be obtain easily by

follows the proof.

Definition 2.13. It is said to be a properties u(n) is hold statistically almost all n (st-a.a.n) (or
statistically Nörlund almost all n (st-N(p) a.a.n)), if the set A = {n ∈ N | u(n) is not satisfied}
has natural density (or st-N(p) density) zero.

In the following theorems st-N(p) and Statistical convergence is compared under the same
restriction on p = (pn).

Theorem 2.14. Assume that pn ≥ 1 (st-a.a.n). Then, xn → l st-N(p) implies xn → l (st) if and
only if

lim sup
n→∞

Pn

n
<∞. (2.6)

Proof. From the assumption
δ(A) = 0

where A = {n ∈ N | pn < 1}. Therefore, following inequality

1
n

n∑
k=1

χK(ε)(k) =
1
n

 ∑
k∈K(ε)∩A

χK(ε)(k) +
∑

k∈K(ε)∩Ac

χK(ε)(k)


≤ 1

n

∑
k∈K(ε)∩A

χK(ε)(k) +
1
n

∑
k∈K(ε)∩Ac

χK(ε)(k)

≤ 1
n

∑
k∈K(ε)∩A

χK(ε)(k) +

(
Pn

n

)
1
Pn

∑
k∈K(ε)∩Ac

pn−k+1χK(ε)(k) (2.7)

hold. Since K(ε) ∩A ⊂ A and K(ε) ∩Ac ⊂ K(ε) then

1
n

∑
k∈K(ε)∩A

χK(ε)(k)→ 0 and
1
Pn

∑
k∈K(ε)∩Ac

pn−k+1χK(ε)(k)→ 0

when n→∞. So, if we take limit each side of (2.7), we obtain

lim
n→∞

1
n

∑
k∈K(ε)

χK(ε)(k) = 0

if and only if (2.6) holds.

Corollary 2.15. If pn ≥ 1 for every n ∈ N, then, xn → l(st-N(p)) implies xn → l(st) if and only
if (2.6) holds.

Theorem 2.16. Assume that pn < 1 (st-N(p) a.a.n). Then, xn → l (st) implies xn → l (st-N(p))
if and only if

lim sup
n→∞

n

Pn
<∞. (2.8)
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Proof. Let us consider the set
A = {n ∈ N | pn ≥ 1}.

Then, from the assumption δp(A) = 0.
Therefore, the following inequality

1
Pn

n∑
k=1

pn−k+1χK(ε)(k) =

=
1
Pn

(
n∑

k=1

pn−k+1χK(ε)∩A(k) +
n∑

k=1

pn−k+1χK(ε)∩Ac(k)

)

≤ 1
Pn

n∑
k=1

pn−k+1χK(ε)∩A(k) +
1
Pn

n∑
k=1

pn−k+1χK(ε)∩Ac(k)

≤ 1
Pn

n∑
k=1

pn−k+1χK(ε)∩A(k) +
n

Pn

1
n

n∑
k=1

pn−k+1χK(ε)(k)

hold for all n ∈ N.
So, the st-N(p) convergence of xn to l is obtained by st-convergence if and only if

lim sup
n→∞

n

Pn
<∞.

Corollary 2.17. If pn < 1 for all n ∈ N, then, xn → l(st) implies xn → l(st-N(p)) if and only if
(2.8) holds.

Definition 2.18. The real valued sequences x = (xn) and y = (yn) are called st-N(p) equivalent
if the set {n | xk 6= yk} has zero st-N(p) density. It is denoted by x � y(st-N(p)).

Theorem 2.19. If x � y(st-N(p)), then xn → l(st-N(p)) if and only if yn → l(st-N(p)).

Proof. Assume that x � y(st-N(p)) and xn → l(st-N(p)). If we consider the set A = {n | xn =
yn}, it is clear that δp(Ac) = 0. Also, let us denote the set for every ε > 0,

Kx = {k | k ≤ n, |xk − l| ≥ ε}

and
Ky = {k | k ≤ n, |yk − l| ≥ ε}

such that from the assumption we have

δp(Kx) = 0.

It is clear that
Ky = (Ky ∩A) ∪ (Ky ∩Ac) ⊆ Kx ∪Ac

and the inequality
δp(Ky) ≤ δp(Kx) + δp(A

c)

hold. If we take limit from each side above we obtain the proof of our assertion.
Similarly, it is proved that yn → l(st-N(p)) when xn → l(st-N(p)).

Remark 2.20. The converse of Theorem 2.19 is not true in general.

Let us consider the sequence x = (xn) and y = (yn) as follows:

xn = 1 +
1
n
, yn = 1− 1

n

for all n ∈ N. Since xn → 1, yn → 1 (n→∞), then xn → 1 (st-N(p)) and yn → 1 (st-N(p)) for
any regular N(p) method. But the set

A = {n | xn 6= yn} = N

and
δp(A) = 1.

Therefore, (xn) and (yn) are not st-N(p) equivalent.
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