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Abstract. Graphs from commutative rings are well studied through zero-divisor graphs,
total graphs and other several graph constructions. Through these constructions, the interplay
between algebraic structures and graphs are studied. Indeed, it is worthwhile to relate algebraic
properties of commutative rings to the combinatorial properties of assigned graphs. Near-rings
are generalized rings. In this paper, we introduce and study about annihilating ideal graphs of
near-rings and in turn they generalize the results obtained for commutative rings.

1 Introduction

Graph constructions from commutative rings was by the concept of zero-divisor graph intro-
duced and studied by Beck [8]. Subsequently several authors [1, 2, 3, 4, 5, 7, 14, 16, 17] have
extensively studied various graph constructions from commutative rings. Some of the worth-
while constructions from commutative rings are zero-divisor graphs,total graphs, annihilator
graphs and Cayley graphs.

Near-rings are generalized rings. In fact if we drop one of the distributive law and abelian
nature of addition in the axioms of a ring, then one gets a near-ring. If the near-ring satisfies
right distributive law, it is called a right near-ring. LetR be a commutative ring andZ∗(R)
is the set of all non-zero zero-divisors ofR. Badawi [5] defined and studied the annihilator
graphAG(R) of a commutative ringR. Note that, for a commutative ringR, AG(R) is the
simple undirected graph with verticesZ∗(R) and two distinct verticesx, y ∈ R are adjacent
if annR(xy) 6= annR(x) ∪ annR(y). In parallel to this notation, we introduce and study the
annihilator graph of a near-ring. Actually we construct three types of annihilator graphs of near-
rings and study about their fundamental properties.

Through out this paperN denotes a commutative right near-ring with non-zero identity and
Z(N) be its set of all zero-divisors. Forx ∈ Z(N), annN(x) = {y ∈ N/yx = 0}. For
convenience we denoteannN(x) by ann(x) for x ∈ N. For basic properties regarding near-
rings, one may refer Pilz [12] and basic properties on graph theory we refer [9].

2 Annihilator graph-I of near-rings

In this section, first we introduce and study about a class of annihilator graph corresponding to
near-rings. After introducing this definition, we study about the new graph and its inter link with
the zero-divisor graphs of near-rings.

Let N be a commutative near-ring. Theannihilator graph-Iof a near-ringN is the simple
undirected graph with vertex setN and two distinct verticesx andy in N are adjacent ifann(x)∩
ann(y) 6= {0}. This graph is denoted byΓ1(N).

Example 2.1. Consider the near-ringN defined on the Kelin’s 4-group{0, a, b, c} with multi-
plication corresponding to the scheme 15:(0,13,0,13), p. 340 Pilz [12]. One can see that for
this near-ringN , Γ1(N) = K4, the complete graph on vertices. Note that two non-isomorphic



ON ANNIHILATOR GRAPHS OF NEAR-RINGS 101

near-rings may have the same annihilator graph-I. For consider the near-rings considered in Ex-
ample2.1. For example the zero near-ring on the Kelin’s 4-group{0, a, b, c} and the near-ring
corresponding to the scheme 15:(0,13,0,13), p. 340 Pilz [12] are one and the same where as the
near-rings are not isomorphic.

First let us see a relation between the annihilator ideal graph-IΓ1(N) and the zero-divisor
graphΓ(N) of near-ringN .

Theorem 2.2. The graphsΓ(N) ∪ Γ1(N) andΓ(N)2 are identical.

Proof. Since the vertex set ofΓ(N) andΓ1(N) are same, it is enough to show the edge sets of
Γ(N) ∪ Γ1(N) andΓ(N)2 are also same.

For, letxy ∈ Γ(N) ∪ Γ1(N). This implies that eitherxy = 0 or ann(x) ∩ ann(y) 6= {0},
which implies eitherxy = 0 or there exists aw ∈ Z(N)∗ such thatxw = 0, yw = 0. From this
we haved(x, y) = 2 and hencexy ∈ E(Γ(N)2).

Next, consider an edgexy ∈ E(Γ(N)2). Thend(x, y) ≤ 2 in Γ(N). If d(x, y) = 1, then
xy = 0 and so,xy ∈ E(Γ(N)). If d(x, y) = 2, then there exists aw ∈ Z(N)∗ such that
xw = 0, yw = 0 and so,w ∈ ann(x) ∩ ann(y). From this we get thatxy ∈ E(Γ1(N)) which
implies thatxy ∈ Γ(N) ∪ Γ1(N).

Theorem 2.3. LetN be a commutative near-ring having no non-zero zero divisors of nilpotent
elements of order≥ 2. If Γ(N) is a bipartite graph, thenG1(N) has exactly two components.

Proof. Assume thatΓ(N) be a bipartite graph and is isomorphic toKm,n(say). LetX,Y be the
bipartition ofΓ(N), such thatX = {xi : i = 1,2, . . . ,m}, Y = {yj : j = 1,2, . . . , n}.

Claim (i). ann(xi) ∩ ann(yj) = {0} for all i andj.
Supposet ∈ ann(xi) ∩ ann(yj) for somei, j. Thentxi = 0, tyj = 0. SinceN has no non-

zero nilpotent element of index≥ 2, t 6= xi or t 6= yj . Now txi = 0 = tyj implies t ∈ X ∩ Y
which is a contradiction. Hence claim (i) is true.

Claim (ii). Γ1[X ] andΓ1[Y ], the induced subgraphs ofΓ1(N) are two components ofΓ1(N).
Let u, v ∈ X. Since the graphΓ(N) is connected, there exists au− v path, sayux1y1 · · · yrv

in Γ(N). Thenuy1y2 · · · v will be a path inΓ1(N). Sou andv belong to the same component.
Similarly for Γ1[Y ]. Hence the claim (ii) is true.

Theorem 2.4. LetN be a commutative near-ring without nilpotent elements. IfΓ(N) is a cycle
of lengthm, thenΓ1(N) is isomorphic toΓ(N), when m is odd. Otherwise it is isomorphic to
disjoint union of two even cycles of same length.

Proof. Case(i). m is odd.
Let Γ(N) = x1x2x3 · · ·xmx1. Sincex2

i 6= 0 for all i andx1 is adjacent tox2 andxm, the edge
x2xm must be inΓ1(N). Also, for all i = 2, xi has common neighboursxi−1 andxi+1. Hence
the edgesxi−1xi+1 should be inΓ1(N) for all i ≥ 2. Obviously, these edges together withx2xm

form a cycle of lengthm. So in this caseΓ(N) is isomorphic toΓ1(N).
Case(ii). m is even and saym = 2k.
Let Γ(N) = x1x2 · · ·x2kx1. As mentioned in the above case,x1 has common neighbours

x2 andx2k. From this the edgex2x2k exists inΓ1(N) andx2 has common neighboursx1 and
x3 in Γ(N), so the edgex1x3 exists. Proceeding like this, we get two sequences of edges
x1x3, x3x5, . . . , x2k−1x1 andx2x4, x4x6, . . . , x2kx2. These two sequences of edges form a dis-
joint union of two cycles inΓ1(N).

Lemma 2.5. LetN be a commutative near-ring without nilpotent elements of order≥ 2. If Γ(N)
is a path, thenΓ1(N) is a disjoint union of two paths.

Proof. Let Γ(N) = x1x2x3 · · ·xn be a path. By the definition ofΓ1(N), the edgesx1x3, x3x5,
. . . , andx2x4, x4x6, . . . , are in Γ1(N). It is clear that these two sequences form two distinct
paths.

Remark 2.6. Γ1(N) need not be connected always. For, whenN = (Z6,+6, .6), thenΓ1(N) is
the disjoint union of the complete graphsK1 andK2.
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Next, we give a necessary condition for the graphΓ1(N) to be connected.

Theorem 2.7. If N is a commutative near-ring such thatxn = 0 for all x ∈ N and for some
n ≥ 2, then the graphΓ1(N) is connected.

Proof. Let x, y ∈ V (Γ1(N)). Sincexn = 0, xn−1 ∈ ann(x) andyn−1 ∈ ann(y). If ann(x) ∩
ann(y) 6= {0}, the edgexy exists inΓ1(N). If ann(x) ∩ ann(y) = {0} consider the product
xn−1yn−1 ∈ N. If xn−1yn−1 = 0, thenxn−1yn−2 ∈ ann(y) andxn−2yn−1 ∈ ann(x). We have
yn−1 ∈ ann(y), xn−2 ∈ N, by the property of ideal,xn−2yn−1 ∈ ann(y). That is,xn−2yn−1 ∈
ann(x) ∩ ann(y). In this case also the edgexy exists. Ifxn−1yn−1 6= 0, thenx(xn−1yn−1) =
xnyn−1 = 0 andy(xn−1yn−1) = xn−1yn = 0 which implies thatxn−1yn−1 ∈ ann(x)∩ ann(y)
and hence, the edgexy exists. Sincex andy are arbitrary,Γ1(N) is connected.

Theorem 2.8. If Γ1(N) is connected andN has at most one nilpotent element of order≥ 2, then
diam(G1(N)) ≤ 3.

Proof. Let x andy be two distinct vertices inΓ1(N). If ann(x) ∩ ann(y) 6= {0}, then the edge
xy exists, and in this situationd(x, y) = 1.

If ann(x) ∩ ann(y) = {0}, then three cases may arise.
Case(i). x2 = 0, y2 = 0.
If xy = 0, thenx ∈ ann(y) together withx2 = 0 impliesx ∈ ann(x) which givesx ∈

ann(y) ∩ ann(x) which is a contradiction to our assumption. Hencexy 6= 0. On the other hand
x(xy) = x2y = 0 andy(xy) = xy2 = 0, which implies thatxy ∈ ann(x) ∩ ann(y), which is a
contradiction toann(x) ∩ ann(y) = {0}.

Case(ii). x2 = 0, y2 6= 0.
As proved in Case (i),xy 6= 0. But (xy)(xy) = x2y2 = 0 impliesxy ∈ ann(xy) and

x(xy) = x2y = 0 givesxy ∈ ann(x). Hencexy ∈ ann(x) ∩ ann(y) so the edgexxy exists.
Sinceann(y) 6= 0 andy2 6= 0, there existb( 6== y) ∈ ann(y). Consider the productbx ∈ N. But
bx 6= 0, for if bx = 0, thenb ∈ ann(x) which givesb ∈ ann(x)∩ ann(y), which is not possible.

Again (bx)y = x(by) = 0 givesbx ∈ ann(y) and(bx)(by) = x2by = 0 givesbx ∈ ann(xy).
That is the edgexyy exists. Hence a pathxxyy exists inΓ1(N). In this cased(x, y) = 2.

Case(iii). x2 6= 0, y2 = 0. One can get proof as in the case (ii).

3 Annihilator graph-II of near-rings

In this section, we construct a new class of annihilator graphs denoted byΓ2(N) called as anni-
hilator graph-II corresponding to the near-ringN . Some general properties satisfied by the graph
are obtained and some comparisons withΓ(N) are also studied.

We define the simple graphΓ2(N) with vertex setZ∗(N) of N and two distinct verticesx
andy are adjacent inΓ2(N) if ann(i) ⊆ ann(j) or ann(j) ⊆ ann(i). We call Γ2(N) as the
annihilator graph-IIof the near-ringN.

Theorem 3.1. If N is a commutative near-ring, thenΓ2(N) is a spanning subgraph ofΓ1(N).

Proof. Since the vertex set of bothΓ1(N) andΓ2(N) are same, we need only to consider only
the edge sets ofΓ1(N) andΓ2(N).

Let e = xy ∈ E(Γ2(N)). Thenann(x) ⊆ ann(y) or ann(y) ⊆ ann(x). Sincex, y ∈ Z∗(N),
ann(x), ann(y) 6= {0}. On the other handann(x) ⊆ ann(y) or ann(y) ⊆ ann(x) implies
ann(x) ∩ ann(y) 6= {0}. It follows thatxy ∈ E(Γ1(N)).

Theorem 3.2. LetN be a commutative near-ring. If an edgexy ∈ Γ2(N), thend(x, y) ≤ 2 in
Γ(N).

Proof. Supposee = xy ∈ E(Γ2(N)) and soann(x) ⊆ ann(y) or ann(y) ⊆ ann(x). Without
loss of generality, we may assume thatann(x) ⊆ ann(y). Sincex ∈ Z∗(N), we haveann(x) 6=
{0}. From this we have that there exists ann( 6= 0) ∈ ann(x) such thatnx = 0. Sinceann(x) ⊆
ann(y), n ∈ ann(y) and sony = 0.

If n = x, thenxy = 0. It follows e = xy ∈ E(Γ(N)) and sod(x, y) = 1 in Γ(N).
If n = y, thenxy = 0 which implies thatxy ∈ E(Γ(N)), and hence theorem follows.
If n 6= xandn 6= y, thennx = 0 andny = 0 which implies thatx− n− y is a path inΓ(N).

From this we have thatd(x, y) ≤ 2. Hence in all the casesd(x, y) ≤ 2.
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Theorem 3.3. The path of length two cannot be realized asΓ2(N)for some near-ringN.

Proof. If possible, letZ∗(N) = {i, j, k} and assumei − j − k be the path of length two viz.,
P2, which is Γ2(N). By the definition, we haveann(i) ⊆ ann(j)or ann(j) ⊆ ann(i) and
ann(j) ⊆ ann(k) or ann(k) ⊆ ann(j).

Case(i) Assume thatann(i) ⊆ ann(j) andann(j) ⊆ ann(k). Thenann(i) ⊆ ann(k), which
impliesi andk are adjacent inΓ2(N), which is not possible.

Case(ii) ann(i) ⊆ ann(j) andann(k) ⊆ ann(j). Then it follows thatann(i) ∪ ann(k) ⊆
ann(j). Sinceann(i) 6= {0}, assume thatn( 6= 0) ∈ ann(i). Thenni = 0 and by assumption,
n ∈ ann(j). That isnj = 0, which impliesn(i+ j) = 0. i.e, i+ j is a zero divisor.

If i+ j = 0 theni = −j and henceann(i) = ann(j). Thenann(i) = ann(j) andann(k) ⊆
ann(i) impliesi is adjacent tok, which is not possible.

If i+ j 6= 0, theni + j is a non- zero zero divisor. So the only possibility isi+ j = k. But
thennk = n(i+ j) = ni+ nj = 0. That is,r ∈ ann(k). Sincenis arbitrary,ann(i) ⊆ ann(k).
That is,i andk are adjacent, which is not possible.

The remaining cases reduce to the cases similar to (i) or (ii).

Theorem 3.4. Every simple graph with order less than or equal to three (exceptP3) can be
realized asΓ2(N)for some commutative near-ringN.

Proof. We know that there are only five non isomorphic simple graphs of order less than or equal
to three other thanP3. The existence of such near-rings are listed below:

K1 = Γ2(Z4), 2K1 = Γ2(Z2×Z2),K2 = Γ2(Z9),K1∪K2 = Γ2(Z6)andK3 = Γ2(
Z2[x]
<x3>

).

Remark 3.5. The proof of the theorem reveals that non isomorphic near-rings may have isomor-
phic graphs.

4 Annihilator graph-III of near-rings

In this section, we define another class of annihilator graphs of near-rings. This notion extends
the annihilator graph defined by Badawi []. This graph is denoted byΓ3(N). The annihilator
graphΓ3(N) for a near-ringN, is the (undirected) graphΓ3(N) with verticesZ(N)∗ and two
distinct verticesx andy are adjacent if and only ifann(xy) 6= ann(x) ∪ ann(y).

Remark 4.1. Note that each edge (path) ofΓ(N) is an edge (path) ofΓ3(N). For lete = xy ∈
E(Γ(N)). From this, we havexy = 0 andann(xy) 6= ann(x) ∪ ann(y). Hencexy ∈ Γ3(N).

Lemma 4.2. LetNbe a commutative near-ring. Then the following are hold.

(i) Let x, y be distinct elements ofZ(N)∗. Thenx − yis not an edge ofΓ3(N)if and only if
ann(xy) = ann(x) or ann(xy) = ann(y);

(ii) If x− y is an edge ofΓ(N) for some distinctx, y ∈ Z(N)∗, thenx− y is an edge ofΓ3(N).
In particular if P is a path inΓ(N), thenP is a path inΓ3(N);

(iii) If x− y is not an edge ofΓ3(N) for some distinctx, y ∈ Z(N)∗, thenann(x) ⊆ ann(y)or
ann(y) ⊆ ann(x);

(iv) If ann(x) 6⊆ ann(y) andann(y) 6⊆ ann(x) for some distinctx, y ∈ Z(N)∗, thenx − y is
an edge ofΓ3(N);

(v) If dΓ(N)(x, y) = 3 for some distinctx, y ∈ Z(N)∗, thenx− y is an edge ofΓ3(N);

(vi) If x − y is not an edge ofΓ3(N) for some distinctx, y ∈ Z(N)∗, then there existsw ∈
Z(N)∗ \ {x, y} such thatx−w− y is a path inΓ(N)and hencex−w− y is also a path in
Γ3(N).

Proof. (i) Suppose thatx − y is not an edge ofΓ3(N). By definition, ann(xy) = ann(x) ∪
ann(y). Sinceann(xy) is a union of two ideals, we have,ann(xy) = ann(x) or ann(xy) =
ann(y). Conversely, suppose thatann(xy) = ann(x) or ann(xy) = ann(y). Thenann(xy) =
ann(x) ∪ ann(y) and thusx− y is not an edge ofΓ3(N).
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(ii) Supposex−yis an edge ofΓ(N) for some distinctx, y ∈ Z(N)∗. Thenxy = 0 and hence
ann(xy) = N. Sincex 6= 0andy 6= 0, ann(x) 6= N andann(y) 6= N. Thusx− y is an edge of
Γ3(N). In particular statements is clearly true from this.

(iii) Supposex − y is not an edge ofΓ3(N) for some distinctx, y ∈ Z(N)∗. Thenann(x) ∪
ann(y) = ann(xy). Sinceann(xy)is a union of two ideals, we haveann(x) ⊆ ann(y) or
ann(y) ⊆ ann(x).

(iv) This statement is trivial consequence of (iii).
(v) Suppose thatdΓ(N)(x, y) = 3 for some distinctx, y ∈ Z(N)∗. Thenann(x) 6⊆ ann(y)

andann(y) 6⊆ ann(x). Hencex− y is an edge ofΓ3(N)by (iv).
(vi) Suppose thatx − y is not an edge ofΓ3(N) for some distinctx, y ∈ Z(N)∗. Then there

is aw ∈ ann(x) ∪ ann(y) such thatw 6= 0 by (iii). Sincexy 6= 0, we havew ∈ Z(N)∗ \ {x, y}.
Hencex− w − y is a path inΓ(N) and thusx− w − y is also a path inΓ3(N) by (iii).

In view of Lemma4.2, we have the following result.

Theorem 4.3. Let Nbe a commutative near-ring with|Z(N)∗| ≥ 2. ThenΓ3(N) is connected
and diam(Γ3(N)) ≤ 2.

Lemma 4.4. Let Nbe a commutative near - ring and letx, y be distinct non zero elements.
Suppose thatx − y is an edge ofΓ3(N) that is not an edge ofΓ(N) for some distinctx, y ∈
Z(N)∗. If there is aw ∈ ann(xy)\{x, y} such thatwx 6= 0andwy 6= 0, thenx−w−y is a path
in Γ3(N) that is not a path inΓ(N) and henceC : x − w − y − xis a cycle inΓ3(N) of length
three and each edge ofC is not an edge ofΓ(N).

Proof. Suppose thatx−y is an edge inΓ3(N) that is not an edge inΓ(N). Thenxy 6= 0. Assume
there exists aw ∈ ann(xy)\{x, y} such thatwx 6= 0 andwy 6= 0. Sincey ∈ ann(xw)\(ann(x)∪
ann(w)), we conclude thatx−w is an edge ofΓ3(N). Sincex ∈ ann(yw)\(ann(y)∪ann(w)),
we have thaty−w is an edge ofΓ3(N). Hencex−w− y is a path inΓ3(N). Sincexw 6= 0 and
yw 6= 0, we havex−w − y is not a path inΓ(N). It is clear thatC : x−w − y − x is a cycle in
Γ3(N) of length three and each edge ofC is not an edge ofΓ(N).

Theorem 4.5. Let N be a commutative near - ring. Suppose thatx − y is an edge ofAG(N)
that is not an edge ofΓ(N) for some distinctx, y ∈ Z(N)∗. If xy2 6= 0 andx2y 6= 0, then there
is aw ∈ Z(N)∗ such thatx − w − y is a path inΓ3(N) that is not a path inΓ(N) and hence
C : x−w− y−x is a cycle inΓ3(N) of length three and each edge ofC is not an edge ofΓ(N).

Proof. Suppose thatx − y is an edge ofΓ3(N) that is not an edge ofΓ(N). Thenxy 6= 0 and
there is aw ∈ ann(xy) \ (ann(x) ∪ ann(y)). We showw 6∈ {x, y}. Assumew ∈ {x, y}. Then
eitherx2y = 0 or y2x = 0, which is a contradiction. Thusw 6∈ {x, y}. Hencex − w − y is the
desired path inΓ3(N) by Lemma4.4.

Corollary 4.6. Let N be a reduced commutative near-ring. Suppose thatx − y is an edge of
Γ3(N) that is not an edge ofΓ(N) for some distinctx, y ∈ Z(N)∗. Then there is aw ∈ ann(xy)\
{x, y} such thatx − w − y is a path inΓ3(N) that is not a path inΓ(N) andΓ3(N) contains a
cycleC of length 3 such that at least two edgesC are not the edges ofΓ(N).

Proof. Suppose thatx − y is an edge ofΓ3(N) that is not an edge ofΓ(N) for some distinct
x, y ∈ Z(N)∗. SinceN is reduced, we have(xy)2 6= 0,∈ Γ. This impliesx2y 6= 0 andxy2 6= 0.
Thus the claim is now clear by Theorem4.5.

Corollary 4.7. LetN be a reduced commutative near- ring and suppose thatΓ3(N) 6= Γ(N) .
Then gr(G3(N)) = 3. moreover, there is a cycleC of length 3 inΓ3(N) such that at least two
edges ofC are not the edges ofΓ(N) .

Proof. SinceΓ3(N) 6= Γ(N) , there are some distinctx, y ∈ Z(N)∗ such thatx−y is an edge of
Γ3(N) that is not an edge ofΓ(N) . SinceN is reduced, we have(xy)2 6= 0,∈ Γ. This implies
x2y 6= 0 andxy2 6= 0. Thus the claim is now clear by Theorem4.5.

Theorem 4.8. Let N be a commutative near- ring and suppose thatΓ3(N) 6= Γ(N) with
gr(Γ3(N) ) 6= 3. Then there are some distinctx, y ∈ Z(N)∗ such thatx− y is an edge ofΓ3(N)
that is not an edge ofΓ(N) and there is no path of length 2 fromx to y in Γ(N) .
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Proof. SinceΓ3(N) 6= Γ(N) , there are some distinctx, y ∈ Z(N)∗ such thatx − y is an edge
of Γ3(N) that is not an edge ofΓ(N) . Assume thatx − w − y is a path of length 2 inΓ(N) .
Thenx − w − y is a path of length 2 inΓ3(N) by Lemma4.2(i). Thereforex − w − y − x is
a cycle of length 3 inΓ3(N) and hence gr(Γ3(N) )=3, a contradiction. Thus there is no path of
length fromx to y in Γ(N)

Lemma 4.9. LetN be a reduced near- ring that is not an gamma near-integral domain andlet
z ∈ Z(N)∗. Then

(i) ann(x) = ann(zn) for each positive integern ≥ 2;

(ii) If c + z ∈ Z(N) for somec ∈ ann(z) \ {0}, thenann(z + c) ⊂ ann(z). In particular if
Z(N) is an ideal ofN and c ∈ ann(x) \ {0}, thenann(z + c) is properly contained in
ann(z).

Proof. (i) Let n ≥ 2. It is clear thatann(z) ⊆ ann(zn). Let a ∈ ann(zn). Sincefzn = 0 andN
is reduced, we havefz = 0. Thusann(zn) = ann(z).

(ii) Let c ∈ ann(z) \ {0} and suppose thatc + z ∈ Z(N). Sincez2 6= 0, we havec + z 6= 0
and hencec+ z ∈ Z(N)∗. Sincec ∈ ann(z) andN is reduced, we havec 6∈ ann(c+ z). Hence
ann(c+ z) 6= ann)(z). Sinceann(c+ z) ⊂ ann(z(c+ z)) = ann(z2) andann(z2) = ann(z),
by(i), it follows thatann(c+ z) ⊂ ann(z).

Theorem 4.10. LetN be a reduced near- ring with|Min(N)| 6= 3 (possiblyMin(N) is infinite).
ThenΓ3(N) 6= Γ(N) and gr(Γ3(N)) = 3.

Proof. If Z(N) is an ideal ofN, by Theorem4.2, Γ3(N) 6= Γ(N). Hence assume thatZ(N) is
not an ideal ofN. Since|Min(N)| 6= 3, we have diam(Γ(N))=3 and thusΓ3(N) 6= Γ(N) by
Theorem4.2. SinceN is reduced andΓ3(N) 6= Γ(N), we have gr(Γ3(N)) = 3.

Theorem 4.11. LetN be a reduced near- ring that is not an gamma near-integral domain. Then
Γ3(N) = Γ(N) if and only if |Min(N)| = 2.

Proof. Suppose thatΓ3(N) =Γ(N) . SinceN is a reduced near- ring that is not an gamma
near-integral domain|Min(N)| = 2 by Theorem4.5.

Conversely, suppose that|Min(N)| = 2. Let P1, P2 be the minimal prime ideals ofN. Since
N is reduced, we haveZ(N) = P1 ∪ P2 andP1 ∩ P2 = {0}. Let a, b ∈ Z(N)∗. Assume that
a, b ∈ P1. SinceP1∩P2 = 0, neithera 6∈ P2 norb 6∈ P2 and thusab 6= 0. SinceP1P2 ⊆ P1∩P2 =
{0}, it follows that ann(ab) = ann(a) = ann(b) = P2. Thusa − b is not an edge ofΓ3(N).
Similarly, if a, b ∈ P2, thena − b is not an edge ofΓ3(N). If a ∈ P1, b ∈ P2, thenab = 0 and
thusa − b is an edge ofΓ3(N) . Hence each edge ofΓ3(N) is an edge ofΓ(N) and therefore
Γ3(N) = Γ(N).

For the remainder of this section, we study the case whenN is non reduced.

Theorem 4.12. LetN be a non reduced near- ring with|Nil(N)∗| ≥ 2 and letΓN3(N) be the
(induced) sub graph ofΓ3(N) with verticesNil(N)∗. ThenΓN3(N) is complete.

Proof. Suppose there are non zero distinct elementsa, b ∈ Nil(N) such thatab 6= 0,∈ Γ .
Assume thatann(ab) = ann(a) ∪ ann(b). Henceann(ab) = ann(a) or ann(ab) = ann(b).
Without loss of generality, we may assume thatann(ab) = ann(a). Let n be the least positive
integer such thatbn = 0. Suppose thatabk 6= 0, for eachk,1 ≤ k ≤ n. Thenbn−1 ∈ ann(ab) \
ann(a), a contradiction. Hence assume thatℓ , 1 ≤ ℓ ≤ n is the least positive integer such that
abℓ = 0. Sinceabi−1 6= 0,1 < i < n, we havebk−1 ∈ ann(ab) \ ann(a), a contradiction. Thus
a− b is an edge ofΓN3(N).

Theorem 4.13. Let N be a non reduced near- ring with|Nil(N)∗| ≥ 2 and let ΓN3(N) be
the induced sub graph ofΓ(N) with verticesNil(N)∗. ThenΓN3(N) is complete if and only if
Nil(N)2 = 0.

Proof. If Nil(N)2 = {0}, then it is clear thatΓN3(N) is complete. Conversely assume that
ΓN3(N) is complete. We need only show thatw2 = 0 for eachw ∈ Nil(N)∗. Let ∈ Nil(N)∗

and assume thatw2 6= 0. Let n be the least positive integer such thatwn = 0. Thenn ≥ 3. Thus
w(wn − 1+ w) = 0 andwn = 0. From these, we havew2 = 0 , which is a contradiction. Thus
w2 = 0 for eachw ∈ Nil(N).



106 T. Tamizh Chelvam and S. Rammurthy

Theorem 4.14. LetN be a near- ring such thatΓ3(N) 6= Γ(N) . Then the following statements
are equivalent:

(i) Γ(N) is a star graph;

(ii) Γ(N) = K1,2 ;

(iii) Γ3(N) = K3.

Proof. (i) =⇒ (ii). Since Γ(N) is a star graph, gr(Γ(N)) = ∞ andΓ3(N) 6= Γ(N). From
Theorem4.10, we haveN is non reduced and|Z(N)∗| ≥ 3. SinceΓ(N) is a star graph, there
are two setsA,B such thatZ(N)∗ = A ∪B with |A| = 1, A ∩ B = φ,AB = {0} andb1b2 6= 0
for everyb1, b2 ∈ B. Since|A| = 1, we may assume thatA = {w} for somew ∈ Z(N)∗. Since
each edge ofΓ(N) is an edge ofΓ3(N) andΓ3(N) 6= Γ(N) , there are somex, y ∈ B such
that xy is an edge ofΓ(N) , but not an edge ofAG(N). Sinceann(c) = w for eachc ∈ B
andann(xy) 6= ann(x) ∪ ann(y). From this we haveann(xy) 6= w. Thusann(xy) = B and
xy = w. SinceA = {xy} andAB = {0}, we have(xy)x = x2y = 0 and(xy)y = y2x = 0.
Now we show thatB = {x, y} and hence|B| = 2. Thus assume there is ac ∈ B such thatc 6= x
andc 6= y. From thiswc = xyc = 0.

We claim that(xc+xy) 6= x and(xc+xy) 6= xy (note thatxy = w). Suppose that(xc+xy) =
x. Then(xc+ xy)y = xcy + xy2 = 0 andxy = 0, a contradiction. Hencex 6= (xc+ xy). Since
x, c ∈ B, we havexc 6= 0 and thus(xc+ xy), xy are distinct elements ofZ(N)∗. Sincex2y = 0
andy ∈ B eitherx2 = 0 or x2 = xy or x2 = y. Suppose thatx2 = y. Sincexy = w 6= 0. We
havexy = x(x2) = x3 = w 6= 0. Sincex2y = 0, we havex4 = 0. Sincex4 = 0, andx3 6= 0,
we havex2, x3, x2 + x3 are distinct elements ofZ(N)∗, and thusx2 − x3 − x2 + x3 − x2 is a
cycle of length three inΓ(N) , which is a contradiction. Hence we assume that eitherx2 = 0 or
x2 = xy = w. In both cases, we havex2c = 0. Sincex, (xc + xy), xy are distinct elements of
Z(N)∗ andxy2 = yx2 = x2c = 0. Now we havex − (xc + xy) − xy − x is a cycle of length
three inΓ(N) , again a contradiction. ThusB = {x, y} and|B| = 2. HenceΓ(N) = K1,2.

(ii) =⇒ (iii). Note that each edge ofΓ(N) is an edge ofΓ3(N) andΓ3(N) 6= Γ(N) . Hence
from Γ(N) = K1,2, we have thatΓ3(N) must beK3.

(iii) =⇒ (i). Since|Z(N)∗| = 3, Γ(N) is connected andΓ3(N) 6= Γ(N) exactly one edge
of AG(N is not and edge ofΓ(N) . ThusΓ(N) is a star graph.
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