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Abstract. Graphs from commutative rings are well studied through zero-digsaphs,
total graphs and other several graph constructions. Through tbes&uctions, the interplay
between algebraic structures and graphs are studied. Indeed, itiswhide to relate algebraic
properties of commutative rings to the combinatorial properties of asdigraphs. Near-rings
are generalized rings. In this paper, we introduce and study aboihilating ideal graphs of
near-rings and in turn they generalize the results obtained for comneutatgs.

1 Introduction

Graph constructions from commutative rings was by the concept ofdigisor graph intro-
duced and studied by BecB][ Subsequently several authofs P, 3, 4, 5, 7, 14, 16, 17] have
extensively studied various graph constructions from commutative.riSggme of the worth-
while constructions from commutative rings are zero-divisor grafital graphs, annihilator
graphs and Cayley graphs.

Near-rings are generalized rings. In fact if we drop one of the didiviblaw and abelian
nature of addition in the axioms of a ring, then one gets a near-ring. Iféhenng satisfies
right distributive law, it is called a right near-ring. L& be a commutative ring and*(R)
is the set of all non-zero zero-divisors &f Badawi p] defined and studied the annihilator
graph AG(R) of a commutative ringk. Note that, for a commutative ring, AG(R) is the
simple undirected graph with vertices*(R) and two distinct vertices,y € R are adjacent
if anng(zy) # anng(z) U anng(y). In parallel to this notation, we introduce and study the
annihilator graph of a near-ring. Actually we construct three typesmihdator graphs of near-
rings and study about their fundamental properties.

Through out this papeN denotes a commutative right near-ring with non-zero identity and
Z(N) be its set of all zero-divisors. Far € Z(N), anny(z) = {y € N/yxz = 0}. For
convenience we denotewny(x) by ann(z) for x € N. For basic properties regarding near-
rings, one may refer PilZlP] and basic properties on graph theory we re@r [

2 Annihilator graph-I of near-rings

In this section, first we introduce and study about a class of annihilaé@hgrorresponding to
near-rings. After introducing this definition, we study about the newtgeaqal its inter link with
the zero-divisor graphs of near-rings.

Let N be a commutative near-ring. Tlaanihilator graph-lof a near-ringV is the simple
undirected graph with vertex sdtand two distinct vertices andy in N are adjacent ifinn(x)N
ann(y) # {0}. This graph is denoted Hy; (V).

Example 2.1. Consider the near-ringy defined on the Kelin's 4-groug0, a, b, ¢} with multi-
plication corresponding to the scheme 15:(0,13,0,13), p. 340 P}z [One can see that for
this near-ringN, ' (V) = K4, the complete graph on vertices. Note that two non-isomorphic
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near-rings may have the same annihilator graph-I. For consider #ngings considered in Ex-
ample2.1 For example the zero near-ring on the Kelin's 4-grd0pa, b, ¢} and the near-ring
corresponding to the scheme 15:(0,13,0,13), p. 340 PAgdre one and the same where as the
near-rings are not isomorphic.

First let us see a relation between the annihilator ideal grdpt{V) and the zero-divisor
graphl" (V) of near-ring\V.

Theorem 2.2. The graphd (N) U T 1(N) andl (V)? are identical.

Proof. Since the vertex set df(N) andl"1 (V) are same, it is enough to show the edge sets of
[(N)UT1(N)andrl(N)? are also same.

For, letzy € I'(N) U T1(N). This implies that eithety = 0 or ann(z) Nann(y) # {0},
which implies either:y = 0 or there exists @ € Z(N)* such thatrw = 0, yw = 0. From this
we haved(r,y) = 2 and hencey € E(F(N)?).

Next, consider an edgey € E(I'(N)?). Thend(z,y) < 2 in[(N). If d(x,y) = 1, then
zy = 0 and sozy € E(I'(N)). If d(z,y) = 2, then there exists @ € Z(N)* such that
zw = 0,yw = 0 and sow € ann(z) N ann(y). From this we get thaty € E(I'1(N)) which
implies thatzy € T (N) UT1(N). O

Theorem 2.3. Let N be a commutative near-ring having no non-zero zero divisors of nilpoten
elements of order 2. If (V) is a bipartite graph, ther7, (V) has exactly two components.

Proof. Assume thaf (V) be a bipartite graph and is isomorphicig, ., (say). LetX,Y be the
bipartition of [ (NV), suchthatX = {z; :i=1,2,....m},Y ={y; : j=1,2,...,n}.

Claim (i). ann(z;) Nann(y;) = {0} for all  andj.

Suppose € ann(z;) N ann(y;) for somes, j. Thentz; = 0,ty; = 0. SinceN has no non-
zero nilpotent element of index 2, ¢ # x; ort # y;. Now tz; = 0 = ¢y, impliest ¢ X NY
which is a contradiction. Hence claim (i) is true.

Claim (ii). '1[X] andl"1]Y], the induced subgraphs bf (V') are two components &, (V).

Letu,v € X. Since the graph (V) is connected, there existaia- v path, sayuziy; - - - y,v
in M (V). Thenuyyy, - -- v will be a path inC1(N). Sow andv belong to the same component.
Similarly for I'1[Y]. Hence the claim (ii) is true. O

Theorem 2.4. Let N be a commutative near-ring without nilpotent element§.(I¥) is a cycle
of lengthm, thenl 1 () is isomorphic to (IV), when m is odd. Otherwise it is isomorphic to
disjoint union of two even cycles of same length.

Proof. Case(i). m is odd.

Letl (N) = z1z023- - - T,x1. Sincez? # 0 for alli andz, is adjacent ta:, andz,,, the edge
Towy, Must be inf1(N). Also, for all i = 2, z; has common neighbours ; andz; 1. Hence
the edges; _1z;,1 should be i (V) for all : > 2. Obviously, these edges together witx,,,
form a cycle of lengthn. So in this casé€ (V) is isomorphic td 1 (V).

Case(ii). m is even and say, = 2k.

Let M(N) = zy22---z2,w1. AS mentioned in the above case, has common neighbours
xp andxy,. From this the edge,xy, exists inl"1(N) andz, has common neighbours and
x3 in T(N), so the edger;z3 exists. Proceeding like this, we get two sequences of edges
T173, T3Ts, . . ., Top_1x1 AN xoxa, T4T6, . . ., w2172, These two sequences of edges form a dis-
joint union of two cycles i 1 (V). i

Lemma2.5. Let N be a commutative near-ring without nilpotent elements of ord@r If I'(N)
is a path, ther; (V) is a disjoint union of two paths.

Proof. Let'(N) = x12p23 - - -z, be a path. By the definition df;(N), the edgesiz3, z3zs,
..., and xpwyg, w476, . . ., @re inC1(N). It is clear that these two sequences form two distinct
paths. ]

Remark 2.6.1(IV) need not be connected always. For, wién= (Zg, +s, .6), thenl1(N) is
the disjoint union of the complete graphs and K.
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Next, we give a necessary condition for the grépfuV) to be connected.

Theorem 2.7.If N is a commutative near-ring such that = 0 for all x € N and for some
n > 2, then the grapti' 1 (N) is connected.

Proof. Let z,y € V([1(N)). Sincez™ = 0,2"~1 € ann(z) andy™ ! € ann(y). If ann(x) N
ann(y) # {0}, the edgery exists in1(N). If ann(z) Nann(y) = {0} consider the product
2"yl e NIf 27~ 1yn=1 = 0, thena"1y"~2 € ann(y) andz"?y"~1 € ann(z). We have
Y"1 € ann(y),z"~? € N, by the property of ideak™2y"~1 € ann(y). That is,a"2y"~ ¢
ann(x) N ann(y). In this case also the edge exists. Ifz"~1y"~1 #£ 0, thenz(z" " 1y" 1) =
2"y" "1 = 0 andy(z" 1y~ 1) = 2" ~1y" = 0 which implies that:"~1y" = € ann(z) N ann(y)
and hence, the edge exists. Since: andy are arbitrary[";(N) is connected. |

Theorem 2.8. If ['1 (V) is connected an& has at most one nilpotent element of orde®, then
diam(G1(N)) < 3.

Proof. Let z andy be two distinct vertices i1 (N). If ann(z) N ann(y) # {0}, then the edge
xy exists, and in this situatiof(z, y) = 1.

If ann(x) Nann(y) = {0}, then three cases may arise.

Case(i). 22 = 0,42 = 0.

If 7y = 0, thenx € ann(y) together withz? = 0 impliesx € ann(x) which givesz €
ann(y) N ann(z) which is a contradiction to our assumption. Henge# 0. On the other hand
z(zy) = 2%y = 0 andy(xy) = 2y = 0, which implies thatry € ann(z) N ann(y), which is a
contradiction tainn(z) N ann(y) = {0}.

Case(ii). 22 = 0,9% # 0.

As proved in Case (i)zy # 0. But (zy)(zy) = 2%y? = 0 implieszy € ann(zy) and
z(zy) = 2%y = 0 giveszy € ann(z). Hencexy € ann(x) N ann(y) so the edgerxy exists.
Sinceann(y) # 0 andy? # 0, there exisb(#= y) € ann(y). Consider the produétz € N. But
bz # O, for if bz = 0, thenb € ann(z) which givesh € ann(z) N ann(y), which is not possible.

Again (bx)y = x(by) = 0 givesbz € ann(y) and(bx)(by) = x?by = 0 givesbx € ann(zy).
That is the edgeyy exists. Hence a pathryy exists in[1(N). In this casel(z, y) = 2.

Case(iii). 2 # 0,y? = 0. One can get proof as in the case (ii). O

3 Annihilator graph-I1 of near-rings

In this section, we construct a new class of annihilator graphs denotgg bj) called as anni-
hilator graph-I1l corresponding to the near-riNng Some general properties satisfied by the graph
are obtained and some comparisons WittV) are also studied.

We define the simple graph,(V) with vertex setZ*(N) of N and two distinct vertices
andy are adjacent iff () if ann(i) C ann(j) or ann(j) C ann(i). We calll2(N) as the
annihilator graph-1lof the near-ringV.

Theorem 3.1. If V is a commutative near-ring, thdfiy (V) is a spanning subgraph &% (V).

Proof. Since the vertex set of boffy (V) andl"y(N) are same, we need only to consider only
the edge sets df; (V) andlM (V).

Lete = zy € E(T'2(N)). Thenann(z) C ann(y) orann(y) C ann(x). Sincez,y € Z*(N),
ann(x),ann(y) # {0}. On the other handnn(z) C ann(y) or ann(y) C ann(z) implies
ann(z) Nann(y) # {0}. Itfollows thatzy € E(I'1(N)). i

Theorem 3.2. Let N be a commutative near-ring. If an edge € '>(N), thend(z,y) < 2in
I(N).

Proof. Suppose = zy € E(I'2(N)) and soann(z) C ann(y) of ann(y) C ann(x). Without
loss of generality, we may assume that(x) C ann(y). Sincex € Z*(N), we haveann(z) #
{0}. From this we have that there exists@af~ 0) € ann(z) such thatuz = 0. Sinceann(x) C
ann(y), n € ann(y) and sony = 0.

If n =z, thenzy = 0. It follows e = 2y € E(F'(N)) and sad(z,y) = 1inT(N).

If n =y, thenay = 0 which implies that:y € E(I'(N)), and hence theorem follows.

If n # xandn # y, thennz = 0 andny = 0 which implies thatr — n — y is a path i (V).
From this we have that(z,y) < 2. Hence in all the casefz,y) < 2. o
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Theorem 3.3. The path of length two cannot be realizedra$ .V )for some near-ringV.

Proof. If possible, letZ*(N) = {i,j,k} and assume — j — k be the path of length two viz.,
P,, which isT2(N). By the definition, we havenn(i) C ann(j)or ann(j) C ann(:) and
ann(j) C ann(k) or ann(k) C ann(j).

Case(i) Assume thatnn(i) C ann(j) andann(j) C ann(k). Thenann(i) C ann(k), which
implies: andk are adjacent ifi ,( V), which is not possible.

Case(ii) ann(i) C ann(j) andann(k) C ann(j). Then it follows thatann (i) U ann(k) C
ann(j). Sinceann(i) # {0}, assume that(# 0) € ann(:). Thenni = 0 and by assumption,
n € ann(j). Thatisnj = 0, which impliesn(i + j) = 0. i.e,i + j is a zero divisor.

If i + 7 = 0 theni = —j and hencemnn(i) = ann(j). Thenann(i) = ann(j) andann(k) C
ann(i) impliesi is adjacent td:, which is not possible.

If i +j # 0, theni + j is a non- zero zero divisor. So the only possibility is j = k. But
thennk = n(i + j) = ni +nj = 0. Thatis,r € ann(k). Sincenis arbitrary,ann(i) C ann(k).
That is,: andk are adjacent, which is not possible.

The remaining cases reduce to the cases similar to (i) or (ii). ]

Theorem 3.4. Every simple graph with order less than or equal to three (exdgptcan be
realized ad (N )for some commutative near-ring.

Proof. We know that there are only five non isomorphic simple graphs of ordsttten or equal
to three other thats. The existence of such near-rings are listed below:

K1 = T2(Z4), 2K1 = Tp(Zox Z3), K2 = T2(Zg), K1UK, = To(Zg)and K3 = (2 2] ). O

<z3>

Remark 3.5. The proof of the theorem reveals that non isomorphic near-rings @agyisomor-
phic graphs.

4 Annihilator graph-111 of near-rings

In this section, we define another class of annihilator graphs of negs-rirhis notion extends
the annihilator graph defined by Badawi []. This graph is denote@4§yv). The annihilator
graphl3(N) for a near-ringh, is the (undirected) graphs(N) with verticesZ(N)* and two
distinct verticesc andy are adjacent if and only iinn(zy) # ann(z) U ann(y).

Remark 4.1. Note that each edge (path) BfV) is an edge (path) dfs3(N). For lete = xy €
E(F'(N)). From this, we havey = 0 andann(zy) # ann(z) Uann(y). Hencezy € I'3(N).

Lemma4.2. Let Nbe a commutative near-ring. Then the following are hold.

(i) Letz,y be distinct elements of (N)*. Thenz — yis not an edge of 3(V)if and only if
ann(zy) = ann(z) or ann(zy) = ann(y);

(i) If z—yisanedge of (N) for some distinct,y € Z(N)*, thenz — y is an edge of 3(IV).
In particular if P is a path inl"(IV), then Pis a path in 3(N);

(iii) If z — yis not an edge of 3(V) for some distinctr, y € Z(N)*, thenann(z) C ann(y)or
ann(y) C ann(z);

(iv) If ann(z) € ann(y) andann(y) € ann(z) for some distinct:,y € Z(N)*, thenz — y is
an edge of 3(V);

(V) If dr(w)(z,y) = 3for some distinct:, y € Z(N)*, thenz — y is an edge of 3(N);

(vi) If z — y is not an edge of 3(IV) for some distincte,y € Z(N)*, then there existe €
Z(N)*\ {z,y} such thatt — w — y is a path in[ (N)and hence: — w — y is also a path in
M3(N).

ann(y). Sinceann(zy) is a union of two ideals, we havenn(zy) = ann(x) or ann(zy)
ann(y). Conversely, suppose thatn(zy) = ann(z) or ann(zy) = ann(y). Thenann(zy)
ann(z)Uann(y) and thuse — y is not an edge of 3(V).

Proof. (i) Suppose that: — y is not an edge of 3(N). By definition, ann(xzy) = ann(z) U
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(i) Supposer — yis an edge of (V) for some distinct:, y € Z(N)*. Thenzy = 0 and hence
ann(zy) = N. Sincex # 0andy # 0, ann(z) # N andann(y) # N. Thusz — y is an edge of
3(V). In particular statements is clearly true from this.

(iii) Supposer — y is not an edge of 3(V) for some distinct, y € Z(N)*. Thenann(z) U
ann(y) = ann(xy). Sinceann(zy)is a union of two ideals, we havenn(z) C ann(y) or
ann(y) C ann(z).

(iv) This statement is trivial consequence of (iii).

(v) Suppose thadry(z,y) = 3 for some distinct;,y € Z(N)*. Thenann(z) € ann(y)
andann(y) € ann(x). Hencex — y is an edge of 3(N)by (iv).

(vi) Suppose that — y is not an edge off 3(/V) for some distinct:, y € Z(N)*. Then there
is aw € ann(x) Uann(y) such thatw # 0 by (iii). Sincezy # 0, we havew € Z(N)* \ {z,y}.
Hencexr — w — y is a path in" (V) and thust — w — y is also a path i 3(V) by (iii). |

In view of Lemma4.2, we have the following result.

Theorem 4.3. Let Nbe a commutative near-ring witl (N)*| > 2. Thenl'3(N) is connected
and dianfl'3(N)) < 2.

Lemma 4.4. Let Nbe a commutative near - ring and lety be distinct non zero elements.
Suppose that — y is an edge of 3(N) that is not an edge df (V) for some distinct;,y €
Z(N)*. If there is aw € ann(zy)\ {z, y} such thatwz # Oandwy # 0, thenz —w — y is a path

in M3(V) that is not a path i (V) and hence” : z — w — y — zis a cycle in"3(N) of length
three and each edge 6f is not an edge of (V).

Proof. Suppose that—y is an edge i 3( V) that is not an edge if(V). Thenzy # 0. Assume
there exists @ € ann(xy)\{z,y} such thatvz # 0 andwy # 0. Sincey € ann(zw)\ (ann(z)U
ann(w)), we conclude that —w is an edge of 3(V). Sincex € ann(yw) \ (ann(y) Uann(w)),
we have thay — w is an edge of 3(N). Hencex —w — y is a path in 3(N). Sincezw # 0 and
yw # 0, we haver — w — y isnot a path il (N). Itis clearthatC' : z — w — y — x isa cycle in
3(N) of length three and each edge®fs not an edge of (N). O

Theorem 4.5. Let N be a commutative near - ring. Suppose that y is an edge ofAG(N)
that is not an edge df (V) for some distinct:, y € Z(N)*. If 2y? # 0 and2?y # 0, then there
isaw € Z(N)* such thatr — w — y is a path inl3(V) that is not a path i (V) and hence
C:z—w—y—=xisacycleinl3(N) of length three and each edge®@fis not an edge of (V).

Proof. Suppose that — y is an edge of 3(V) that is not an edge df(N). Thenzy # 0 and
there is aw € ann(zy) \ (ann(z) U ann(y)). We showw & {z,y}. Assumew € {z,y}. Then
eitherz?y = 0 ory?x = 0, which is a contradiction. Thus ¢ {z,y}. Hencer — w — y is the
desired path i 3(V) by Lemma4.4. o

Corollary 4.6. Let N be a reduced commutative near-ring. Suppose thaty is an edge of
3(N) thatis not an edge df( V) for some distinct, y € Z(N)*. Then thereis a € ann(zy)\
{z,y} such thatr — w — y is a path inl"3(V) that is not a path i (N) and["'3(V) contains a
cycleC of length 3 such that at least two edgésare not the edges (V).

Proof. Suppose that — y is an edge of 3(V) that is not an edge df (V) for some distinct
x,y € Z(N)*. SinceN is reduced, we havery)? # 0, € . This impliesz?y # 0 andxy? # O.
Thus the claim is now clear by Theoretb. ]

Corollary 4.7. Let N be a reduced commutative near- ring and supposefihay) # I'(N) .
Then gf{G3(N)) = 3. moreover, there is a cycl€ of length 3 inl"3(V) such that at least two
edges of” are not the edges 6f(V) .

Proof. Sincel'3(IV) # I'(N) , there are some distinety € Z(NV)* such that: — y is an edge of
[3(V) that is not an edge df(V) . SinceN is reduced, we havery)? # 0, € . This implies
2y # 0 andzy? # 0. Thus the claim is now clear by Theorehb. O

Theorem 4.8. Let N be a commutative near- ring and suppose thgtN) # (V) with
gr(F'3(N) )# 3. Then there are some distinety € Z(N)* such thatz — y is an edge of 3(IV)
that is not an edge df (V) and there is no path of length 2 fromto y in T (N) .
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Proof. Sincel 3(N) # (V) , there are some distinety € Z(N)* such thatr — y is an edge
of I'3(V) that is not an edge df(N) . Assume that: — w — y is a path of length 2 il (N) .
Thenz — w — y is a path of length 2 i 3(N) by Lemma4.2(i). Thereforezx — w —y — x is

a cycle of length 3 i 3(2V) and hence gf(3(N) )=3, a contradiction. Thus there is no path of
length fromz to y in (V) o

Lemma 4.9. Let N be a reduced near- ring that is not an gamma near-integral domainleind
z € Z(N)*. Then

(i) ann(xz) = ann(z") for each positive integet > 2;

(i) If c+ z € Z(N) for somec € ann(z) \ {0}, thenann(z + ¢) C ann(z). In particular if
Z(N) is an ideal of N andc¢ € ann(z) \ {0}, thenann(z + ¢) is properly contained in
ann(z).

Proof. (i) Letn > 2. Itis clear thatann(z) C ann(z"). Leta € ann(z"). Sincefz" = 0 andN
is reduced, we havgz = 0. Thusann(z"™) = ann(z).

(i) Let ¢ € ann(z) \ {0} and suppose that+ z € Z(N). Sincez? # 0, we havec + z # 0
and hence + z € Z(N)*. Sincec € ann(z) andN is reduced, we have¢ ann(c + z). Hence
ann(c+ z) # ann)(z). Sinceann(c + z) C ann(z(c+ z)) = ann(2?) andann(z?) = ann(z),
by(i), it follows thatann(c + z) C ann(z). O

Theorem 4.10. Let NV be a reduced near- ring with\/in(N)| # 3 (possiblyMin(N) is infinite).
Thenl3(N) # '(N) and gr(l3(N)) = 3.

Proof. If Z(N) is an ideal ofN, by Theoremd.2, '3(N) # (V). Hence assume that(V) is
not an ideal ofN. Since|Min(N)| # 3, we have diam{(V))=3 and thud 3(N) # (V) by
Theorem4.2 SinceN is reduced an@i3(N) # (), we have giT 3(N)) = 3. i

Theorem 4.11. Let N be a reduced near- ring that is not an gamma near-integral domaienTh
M3(N) =T (N)ifand only if Min(N)| = 2.

Proof. Suppose thaf3(~N) =I(N) . SinceN is a reduced near- ring that is not an gamma
near-integral domaipin(N)| = 2 by Theoren#.5.

Conversely, suppose thdt/in(N)| = 2. Let P, P, be the minimal prime ideals df. Since
N is reduced, we hav&(N) = PLU P, and Py N P, = {0}. Leta,b € Z(N)*. Assume that
a,b € P;. SinceP,N P, = 0, neithera ¢ P, norb ¢ P, and thusib # 0. SinceP,P, € PLNP, =
{0}, it follows thatann(ab) = ann(a) = ann(b) = P,. Thusa — b is not an edge of 3(N).
Similarly, if a,b € P, thena — b is not an edge of 3(N). If a € P1,b € P, thenab = 0 and
thusa — b is an edge of 3(IV) . Hence each edge o%(N) is an edge of (N) and therefore
|_3(N) = F(N) O

For the remainder of this section, we study the case whiénnon reduced.

Theorem 4.12. Let N be a non reduced near- ring wittvil(N)*| > 2 and letl’ N3(V) be the
(induced) sub graph df3(N) with verticesNil(N)*. Thenl N3(N) is complete.

Proof. Suppose there are non zero distinct elemenisc Nil(N) such thatub # 0,e T .
Assume thatinn(ab) = ann(a) U ann(b). Henceann(ab) = ann(a) or ann(ab) = ann(b).
Without loss of generality, we may assume that.(ab) = ann(a). Let n be the least positive
integer such thai” = 0. Suppose thatb* +# 0, for eachk,1 < k < n. Thenbv” ! € ann(ab) \
ann(a), a contradiction. Hence assume thatl < ¢ < n is the least positive integer such that
ab® = 0. Sinceab’~! # 0,1 < i < n, we haveb* 1 € ann(ab) \ ann(a), a contradiction. Thus
a — bis an edge of N3(N). |

Theorem 4.13. Let N be a non reduced near- ring withVil(N)*| > 2 and letl N3(N) be
the induced sub graph &f( V) with verticesNil(N)*. Thenl’ N3(N) is complete if and only if
Nil(N)?=0.

Proof. If Nil(N)? = {0}, then it is clear thaf N3(N) is complete. Conversely assume that
' N3(N) is complete. We need only show that = 0 for eachw € Nil(N)*. Let € Nil(N)*
and assume that® # 0. Let n be the least positive integer such thgt = 0. Thenn > 3. Thus
w(w™ — 1+ w) = 0 andw™ = 0. From these, we have? = 0 , which is a contradiction. Thus
w? = 0 for eachw € Nil(N). O
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Theorem 4.14. Let N be a near- ring such thdiz(N) # I'(N) . Then the following statements
are equivalent:

(i) T(N)is a star graph;
(i) T(N) = Kiz;
(i) M3(N)= Ks.

Proof. (i) = (ii). Sincel (N) is a star graph, gF (N)) = co andl'3(N) # ['(N). From
Theorem4.10, we haveN is non reduced anZ (N)*| > 3. Sincel (V) is a star graph, there
are two setsd, B such thatZ(N)* = Au B with |A| =1, An B = ¢, AB = {0} andbib, # 0
for everybs, b, € B. Since|A| = 1, we may assume that = {w} for somew € Z(N)*. Since
each edge of (V) is an edge of 3(IV) andl'3(N) # '(N) , there are some,y € B such
that zy is an edge of (V) , but not an edge ofi;(N). Sinceann(c) = w for eache € B
andann(zy) # ann(z) U ann(y). From this we havenn(zy) # w. Thusann(zy) = B and
ry = w. SinceA = {zy} andAB = {0}, we have(zy)z = 2%y = 0 and(zy)y = y?z = 0.
Now we show thaBB = {z, y} and henceéB| = 2. Thus assume there isca& B such that # x
andc # y. From thiswec = xyc = 0.

We claim that zc+zy) # x and(zc+ay) # xy (note thatry = w). Suppose thatzc+zy) =
x. Then(zc + zy)y = xcy + 2y? = 0 andzy = 0, a contradiction. Hence # (zc + zy). Since
r,c € B, we havexc # 0 and thugzc + zy), zy are distinct elements df (N)*. Sincex?y =0
andy € B eitherz? = 0 or 22 = zy or z° = y. Suppose that? = 3. Sincexy = w # 0. We
havery = x(2?) = 2° = w # 0. Sincez?y = 0, we havez* = 0. Sincez* = 0, and2® # 0,
we havez?, 23, 22 + 22 are distinct elements of (N)*, and thuse? — 2% — 22 + 2% — 2% is a
cycle of length three iff (V) , which is a contradiction. Hence we assume that eitAet 0 or
22 = zy = w. In both cases, we hav&c = 0. Sincex, (zc + zy), zy are distinct elements of
Z(N)* andzy? = ya? = 2%c = 0. Now we haver — (xc + xy) — 2y —  is a cycle of length
three inl"(V) , again a contradiction. Thud = {z,y} and|B| = 2. Hencel' (N) = K1 ».

(i) = (iii). Note that each edge 6f(/V) is an edge of 3(~NV) andl'3(N) # I'(V) . Hence
from(N) = K1, we have thal 3(NV) must beKs.

(i) = (i). Since|Z(N)*| = 3, (N) is connected anfiz(V) # I'(N) exactly one edge
of AG(N is notand edge df (N) . Thusl'(N) is a star graph. i
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