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Abstract. The primary goal of this paper is to present results related to the stability of elastic
beam models incorporating non-monotone boundary conditions with applications involving flexible
robot manipulators. Unlike monotone boundary conditions which give rise to a dissipative en-
ergy law, the classical energy formulation associated with elastic beams employing non-monotone
boundary conditions does not explicitly guarantee that the energy is dissipative. That condition nat-
urally gives rise to questions of stability and even well-posedness of finite energy solutions. The
Euler-Bernoulli beam has been studied extensively in the literature and a recent paper by Guiver
and Opmeer [11] demonstrates a lack of stability for the closely related Rayleigh and Timoshenko
beam models. We extend their results here by proving the well-posedness of the Rayleigh model
and provide a more extensive and illuminating computational analysis of the spectra associated
with four related beam models (Euler-Bernoulli, Timoshenko, shear, and Rayleigh.) The analyses
demonstrate significant differences in the spectra of each model, thereby suggesting different stabil-
ity properties. We also show that even though there are infinitely many (high frequency) unstable
modes for the Rayleigh and Timoshenko models, most if not all (low frequency modes) related to
physical applications of these models are stable.

1 Introduction

In the past few decades a great deal of attention has been given to the modeling, simulation, and
control of flexible robot arms and linkages. Among the many advantages flexible robots enjoy over
their rigid counterparts is higher speed, lighter weight, greater manueverability, high payload to
weight ratios, lower power consumptions, safer working environment, and the ability to work in
hazardous environments. Their low weight makes flexible manipulators ideal for space applications
such as the 17.6 m manipulator on the International Space Station. Large manipulators are also
employed to inspect hazardous waste storage facilities in which the manipulators must be able to
fit into a hole that is 0.1 to 1 m in diameter with a reach of 25 m or more [2]. In addition to
applications in space and hazardous waste, flexible robot manipulators are also used in high speed
industrial automation, large scale construction, mining, surface inspection in large structures such
as airplanes/submarines, etc. The trade-off for these advantages is that it is difficult to control the tip
of the arm due to structural flexibility in the arm segments and linkages, and increased susceptibility
to vibrations, especially in low weight, high speed applications. For a good summary of the current
state of research applied to flexible manipulators see the books [1, 2, 3].

Stabilizing oscillations in the arms can often be achieved most simply and with the fewest actua-
tors and sensors by applying a boundary control at the root of the arm. Luo and Guo [6] specifically
consider an Euler-Bernoulli beam with feedback of the form

ytt(x, t) + yxxxx(x, t) = −xθ′′(t)− s′′(t), x ∈ (0, 1) (1.1)
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along with suitable initial and boundary conditions y(0, t) = y′(0, t) = y′′(1, t) = y′′′(1, t) = 0.
The control is applied at x = 0, where θ′′ and s′′ are the angular and linear accelerations of the base,
respectively. Measuring the bending strain rate yxxt(0, t) and the shear strain rate yxxxt(0, t) at the
base, they consider, with slightly different notation, the feedback laws

θ′′(t) = k̄syxxt(0, t)− ksyxxxt(0, t) s′′(t) = −k̄myxxxt(0, t), (1.2)

where k̄s, k̄m, ks ≥ 0. Making the change of variable u(x, t) = yxx(1−x, t) leads to a homogeneous
beam equation

utt + uxxxx = 0 (1.3)

with boundary conditions

u(0, t) = ux(0, t) = 0, uxx(1, t)+ k̄muxt(1, t) = 0, uxxx(1, t)− k̄sut(1, t)−ksuxt(1, t) = 0.

Multiplying by ut leads to the energy relation

d

dt

∫ 1

0

1
2
(
u2
t + u2

xx

)
dx = −k̄mut(1, t)2 − k̄suxt(1, t)2 − ksuxt(1, t)ut(1, t), (1.4)

which is clearly dissipative if ks = 0 in which case the boundary conditions are called monotone.
The novelty occurs precisely for non-monotone boundary conditions when ks > 0 because it is not
obvious from (1.4) that the energy is dissipated. Here and throughout this paper, the gain parameters
in the boundary conditions are identified by a k with a subscript of m if feedback is applied to
the moment and a subscript of s if the feedback is applied to the shear. Moreover, to distinguish
between monotone and non-monotone boundary conditions, gain parameters that involve monotone
boundary conditions are indicated with an overbar (¯). A more general version of this model is
presented below.

The Euler-Bernoulli model is the simplest beam model one can use, but there are other popu-
lar models that include more aspects of the relevant physics. See [15] for example. In this paper,
we consider the spectral behavior of four related beam models with different monotone and non-
monotone boundary conditions: Euler-Bernoulli, Timoshenko, Rayleigh, and shear. Guiver and
Opmeer [11] proved the very interesting results that the Rayleigh and Timoshenko models are un-
stable with non-monotone boundary feedback controls and that there are countably infinite many
eigenvalues with positive real part in both cases. Since the Rayleigh and Timoshenko models are
often considered to be more faithful models of the real world, their work calls into question the
practical use of non-monotone boundary conditions and suggests that the surprising Gevrey regu-
larity of the Euler-Bernoulli model is a happy accident. However, there is more to be said on the
subject. For instance, in addition to their proof, the authors of [11] show a portion of the spectrum
as in Figure 1 for the Rayleigh model to indicate instability, but the authors appear to have chosen
γ, which is defined below in (3.3), to be one. However, as we demonstrate below, in practice γ is
very small which implies that all of the physically relevant modes are in fact stable. A similar result
holds for the Timoshenko model. We further extend the results of [11] by proving well-posedness
of the Rayleigh model.

In what follows, we consider each beam model in turn and demonstrate the radical differences
in the spectral behaviors between the four similar models. Known theoretical results are included
for each model, but the emphasis is on the numerical nature of the spectra and the relationship
to physics. Although we provide accurate estimates for the eigenvalues for all of the models and
accompanying boundary conditions, the stability of a partial differential equation (PDE) cannot be
determined solely from the location of the spectrum. While it is true that if any eigenvalue has
a positive real part, the system has a corresponding unstable mode, it is not possible in general to
conclude that a system is stable when all of the eigenvalues reside in the open left-half plane. Indeed,
it is well known that the location of the spectrum in the open left-half plane is only a necessary but
not sufficient condition for stability for PDEs.
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Figure 1. Portion of the spectrum for the Rayleigh beam with non-monotone moment (k̄m = k̄s =
ks = 0, km = 5, γ = 1) boundary conditions.

Our discussion begins with a general study of the Euler Bernoulli Beam model since it is the
simplest of the four models yet clearly exhibits the most significant differences between monotone
and non-monotone boundary conditions. A careful derivation of the Timoshenko model follows
in order to study the physical limitations of the models relative to stability properties. The Euler-
Bernoulli, Rayleigh and shear models are special cases of the Timoshenko model.

2 The Euler-Bernoulli Beam

A general form of the Euler-Bernoulli model defined for all x ∈ Ω ≡ (0, 1), and t > 0 is given by

uxxxx + utt = f(x, t). (2.1)

with boundary conditions

u(0, t) = ux(0, t) = 0 (2.2)

uxx(1, t)︸ ︷︷ ︸
−M(1,t)

+kmut(1, t) + k̄muxt(1, t) = 0 (2.3)

−uxxx(1, t)︸ ︷︷ ︸
S(1,t)

+ksuxt(1, t) + k̄sut(1, t) = 0, (2.4)

where M(1, t) and S(1, t) denote the boundary moment and shear force respectively. The energy
given by

E(t) =
1
2

∫ 1

0

(
u2
t + u2

xx

)
dx

satisfies the relation

d

dt
E(t) =

∫ 1

0
f(x, t)dx− (km + ks)uxt(1, t)ut(1, t)− k̄mu2

xt(1, t)− k̄su2
t(1, t). (2.5)

The finite energy space for this model is H2
cl(0, 1)× L2(0, 1) where

H2
cl(0, 1) =

{
v ∈ H2(0, 1)|v(0) = vx(0) = 0

}
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.
Boundary control of the Euler-Bernoulli beam has been studied extensively for both monotone

and non-monotone boundary conditions. With monotone boundary conditions (km = ks = 0), and
f = 0, the expression in (2.5) clearly shows that the energy is dissipative and the classical methods
of dissipative semigroups applies. Indeed, the model in (2.1) with f = 0 and moment control
(k̄s = 0), generates a contraction semigroup that is exponentially stable. Chen et al. [7] first proved
exponential stability of the Euler-Bernoulli system with k̄m = km = ks = 0, k̄s > 0 and [8] proved
exponential stability for km = k̄s = ks = 0, k̄m > 0. A similar result is also true in the case of
plates where the analysis is much more technical [20, 21].

However, with non-monotone boundary conditions, km > 0 or ks > 0, there is no apparent
dissipation in the energy expression (2.5). Moreover, the boundary terms do not exhibit any infor-
mation regarding additional boundary regularity of solutions which is always the case in problems
with monotone boundary dissipation, and they display an unboundedness on the boundary which
is not controlled by the energy. These issues have caused some researchers to rely on Reisz basis
techniques as in [9] in which exponential stability was proven in the case of non-monotone shear
control, km = k̄m = k̄s = 0, ks > 0. For non-monotone moment control, k̄m = ks = k̄s = 0,
km > 0, [5] used Reisz basis methods to show that the resulting semigroup of the dual problem is
of Gevrey’s class. A more general approach for achieving that same result was given in [12] which
used microlocal analysis. In particular, consider the operator A : D(A) ⊂ H → H given by

A(u, v) = (v,−uxxxx)

D(A) ≡ {u ∈ H2
cl(0, 1) ∩H4(0, 1), v ∈ H2

cl(0, 1), uxxx(1) = 0, uxx(1) = −kmv(1)}.

Belinskiy and Lasiecka [12] showed that the semigroup eAt is of Gevrey’s class with the following
approximation for the higher modes:

λn ≈

−
(2n−1)π

2 ln
(

1+km
1−km

)
± i
[
(2n−1)2π2

4 − 1
4 ln2

(
1+km
1−km

)]
0 ≤ km < 1

−nπ ln
(
km+1
km−1

)
± i
[
n2π2 − 1

4 ln2
(
km+1
km−1

)]
km > 1

(2.6)

and for km = 1, we have the exact result that

λn = −
[
(2n− 1)π

2

]2

, n ∈ N.

Asymptotically, the imaginary parts are roughly proportional to the square of the (negative) real
parts, which implies strong damping of the higher modes. Therefore, the non-monotone damping
provides surprisingly good decay rates.

The use of microlocal analysis has also been employed to address multidimensional problems,
see [13].

2.1 Numerical Results for the Euler-Bernoulli Beam

Extensive numerical results are given in [14], but we reproduce some of those results here for easy
comparison with the other theories. Figure 2 shows the spectral behavior of the Euler-Bernoulli
beam with monotone (km = ks = 0) boundary conditions. Like the shear and Rayleigh models,
the eigenvalues for moment control (k̄m > 0, k̄s = 0) move clockwise above the real axis and the
eigenvalues for shear control (k̄m = 0, k̄s > 0) move counter-clockwise. One notable distinction of
the Euler-Bernoulli theory is that the eigenvalues are quadratically spaced instead of linearly spaced
which is the case in the other models, and this is a well-known feature of the Euler-Bernoulli model.

Figure 3 shows the spectral behavior for non-monotone moment control (k̄m = k̄s = ks = 0,
km > 0). The paths in this case are very different than those elsewhere in this paper. Each complex
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Figure 2. Portion of the spectrum for the Euler-Bernoulli beam with monotone moment (left, k̄s =
km = ks = 0, k̄m = 0.1) and shear (right, k̄m = km = ks = 0, k̄s = 3) boundary conditions along
with the paths that the eigenvalues take as the gain parameter increases from zero (disks) to infinity
(open circles).

conjugate pair of eigenvalues becomes real for km = 1. For values of km slightly more than one,
each pair of eigenvalues is real with one moving left and the other moving right along the real axis.
For km slightly larger still, they become complex again and move back toward the imaginary axis as
km →∞. (This unusual behavior is discussed in more detail in [14].) The sample set of eigenvalues
indicated in Figure 3 correspond to km = 0.99999999. Note how far the higher eigenvalues have
to move to reach the real axis for km = 1. This demonstrates how sensitive the spectrum is to the
chosen value of km and it highlights again the need for increased precision in the calculations.

3 The Timoshenko Beam

In order to adequately incorporate more of the relevant physics associated with beams that is not
captured in the Euler-Bernoulli model, it is necessary to recall the basic equations of motion and
constitutive laws that lead to their development. To this end, we consider models for a long, homo-
geneous beam of length L with density ρ, constant cross-sectional area A, moment of inertia about
the principal axis I , Young’s and shear moduliE andG, respectively, and shear factor k that depends
on the shape of the cross section of the beam. Let U be a representative transverse displacement, let
Lx be the axial variable, and let L2

√
ρA/(EI)t be time. If Uu(x, t) is the displacement of the beam

and (U/L)α(x, t) is the angle of rotation, then the dimensionless equations of motion are

∂2u

∂t2
− ∂S

∂x
= p(x, t) (3.1)

γ
∂2α

∂t2
+
∂M

∂x
− S = m(x, t) (3.2)
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Figure 3. Portion of the spectrum for the Euler-Bernoulli beam with non-monotone moment (k̄m =
k̄s = ks = 0, km = 0.99999999) boundary conditions along with the paths that the eigenvalues take
as the gain parameter increases from zero (disks) to infinity (open circles). If km = 1, then all of
the eigenvalues are real and negative.

where (EIU/L2)M(x, t) is the moment, (EIU/L3)S(x, t) is the shear force, (EIU/L4)p(x, t) is
an applied transverse force per unit length, (EIU/L3)m(x, t) is an applied moment per unit length,

γ =
I

AL2 , and g =

(
kG

E

)
1
γ
. (3.3)

For a linearly elastic material, we have the constitutive laws

M = −∂α
∂x

and S = g

(
∂u

∂x
− α

)
. (3.4)

Substituting (3.3) and (3.4) into (3.1) and (3.2) yields the equations of motion of Timoshenko
beam theory:

utt − g (uxx − αx) = p (3.5)

γαtt − αxx − g (ux − α) = m, (3.6)

where (u, ut, α, αt) ∈ H2(0, 1)×H1(0, 1)×H2(0, 1)×H1(0, 1). With sufficient additional regu-
larity, the system (3.5)-(3.6) can be written in terms of displacement alone as

uxxxx −
(

1
g
+ γ

)
uxxtt +

γ

g
utttt + utt = f(x, t), (3.7)

which factors as(
∂2

∂x2 − γ
∂2

∂t2

)(
∂2

∂x2 −
1
g

∂2

∂t2

)
u+ utt = f(x, t), 0 < x < 1,
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where
f(x, t) :=

γ

g
ptt(x, t)−

1
g
pxx(x, t)−mx(x, t) + p(x, t).

However, working with displacements alone, as in (3.7), is inconvenient when we consider the
boundary conditions, at least one of which must include α. Specifically, at each end, we can specify
either u or S = g(ux − α) and either α or M = −αx.

Using ut and αt as multipliers for (3.5) and (3.6), respectively, we obtain the following general
energy relationship:

d

dt
Eγ,g(t) =

∫ 1

0
(put +mαt) dx+ (Sut −Mαt)|10 , (3.8)

where the total energy

Eγ,g(t) =

∫ 1

0

1
2

u2
t + γα2

t︸ ︷︷ ︸
kinetic

+ α2
x︸︷︷︸

bending

+ g (ux − α)2︸ ︷︷ ︸
shear

 dx. (3.9)

The subscripts γ and g will vary depending on which beam theory we are considering. For a Timo-
shenko beam, γ, g > 0. To recover the Euler-Bernoulli beam, we set γ = 0 and let g → ∞, so that
there is no moment of inertia or shear effects, and α = ux.

We take the beam to be clamped at the left end, and at the right end we impose boundary feedback
controls on the moment and shear.

u(0, t) = α(0, t) = 0 (3.10)

αx(1, t)︸ ︷︷ ︸
−M(1,t)

+kmut(1, t) + k̄mαt(1, t) = 0, km, k̄m ≥ 0 (3.11)

g (ux(1, t)− α(1, t))︸ ︷︷ ︸
S(1,t)

+ksαt(1, t) + k̄sut(1, t) = 0, ks, k̄s ≥ 0. (3.12)

The resulting energy relationship is

d

dt
Eγ,g(t) =

∫ 1

0
(put +mαt) dx− (km + ks)αt(1, t)ut(1, t)− k̄mα2

t(1, t)− k̄su2
t(1, t). (3.13)

If we set the applied loads p = m = 0 and all four gain parameters to zero (k̄m = k̄s = km =
ks = 0), then the energy is conserved and we recover the standard problem of a cantilevered beam,
clamped at x = 0 and free at x = 1. For monotone boundary conditions km = ks = 0, we have

d

dt
Eγ,g(t) = −k̄mu2

xt(1, t)− k̄su2
t(1, t) ≤ 0,

so the energy is clearly dissipative. In contrast, the non-monotone boundary conditions, k̄m = k̄s =
0, give

d

dt
Eγ,g(t) = −(km + ks)αt(1, t)ut(1, t),

in which case it is not clear whether or not the energy is dissipative as was the case for the Euler-
Bernoulli model, in (2.1)–(2.4). The specific problem with k̄m = k̄s = ks = 0 is dual to the problem
with k̄m = k̄s = km = 0, so we set ks = 0 in our examples for simplicity.

In general, well-posedness of finite energy solutions (u, ut, α, αt) is considered in the finite en-
ergy spaceH ≡ H1

pl(0, 1)×L2(0, 1)×H1
pl(0, 1)×L2(0, 1), whereH1

pl(0, 1) =
{
v ∈ H1(0, 1)|v(0) = 0

}
.
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For the monotone boundary conditions, well-posedness is typically established by showing that the
system generates an appropriate semigroup as in [10]. However, the non-monotone boundary condi-
tions ruin the dissipative properties of the underlying generator and calls into question the existence
of a dissipative energy law.

Before proceeding to our results, we want to emphasize that all of the beam models considered
in this paper have a common set of assumptions. Han et al. give a list of six assumptions on p.
928 of [15] that we do not repeat here in its entirety. Nevertheless, one of those assumptions is that
the beam is very long, which means that the thickness of the beam should be small in comparison
to its length. Since we have not specified the cross-sectional geometry of the beam, we use the
radius of gyration

√
I/A as a rough measure of the thickness. Therefore, for a beam model to apply

to a physical reality, √γ =
√
I/A/L must be very small. In fact, Han et al. [15] call 1/√γ the

slenderness ratio of the beam. Consequently, because of (3.3), g must also be very large.
As an example, let us consider a beam with a circular cross section composed of an isotropic

material. In that case, E = 2(1 + ν)G where −1 ≤ ν ≤ 1/2 is Poisson’s ratio. If the radius is R,
then k = 6(1 + ν)/(7 + 6ν), I = πR4/4, and A = πR2. Using ν = 1/3, which is appropriate for
typical engineering materials like copper, then

γ =

(
R

2L

)2

and g =
3
γ
.

For a long beam, R/L � 1, so γ and 1/g are both very small and are comparable in size. In the
numerical results that follow, we take g = 3/γ for simplicity.

The three other beam theories considered in this paper can be derived from the Timoshenko
theory by choosing extreme values for γ and g: the Euler-Bernoulli beam (γ = 0, g = ∞), the
Rayleigh beam (g =∞), and the shear beam (γ = 0). It was first demonstrated by Timoshenko [19]
that, in our notation, γ and 1/g are of comparable size. Nevertheless, all four theories are still used
and studied today.

One final limitation of beam theories is that they are no longer adequate models of reality if the
wavelengths are comparable in size to the thickness of the beam. For very high frequencies, a two
or three-dimensional elasticity theory is necessary. In an attempt to quantify the practical limits of
our analysis, consider a beam that is simply supported (u = αx = 0) at both ends. In that case, solu-
tions of the form eiωt sin(nπx), n ∈ N, are appropriate and the corresponding wavelength is 2L/n.
Measuring the beam thickness with√γL, we conclude that beam theories become inappropriate for
n = O(1/√γ). For the simply supported Euler-Bernoulli beam, ω = (nπ)2, for the Rayleigh beam,
ω ≈ nπ/

√
γ for large n, for the shear beam, ω ≈ nπ

√
g for large n, and for the Timoshenko beam,

ω ≈ nπ/√γ, nπ√g for large n. We can conclude that, roughly, beam eigenvalues are not reliable if
the imaginary part of the eigenvalue is O(1/γ) or O(

√
g/γ).

3.1 Numerical Results for the Timoshenko Beam

Solutions of the form

u(x, t) = r+e
λt

{
c

[
r+

(
1
g
λ2 − r2

−

)
sinh (r+x) + r−

(
r2
+ −

1
g
λ2
)

sinh(r−x)
]
+

r−

(
r2
+ −

1
g
λ2
)

cosh(r−x) + r−

(
1
g
λ2 − r2

+

)
cosh(r+x)

}
(3.14)
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and

α(x, t) =
1
g
eλt
(

1
g
λ2 − r2

+

)[
−cr+

(
r2
− −

1
g
λ2
)

cosh(r−x) + cr+

(
r2
− −

1
g
λ2
)

cosh(r+x)−

r2
−r+ sinh(r−x) + r−r

2
+ sinh(r+x)−

1
g
λ2r− sinh(r+x) +

1
g
λ2r+ sinh(r−x)

]
(3.15)

where c ∈ C and

r± =

√√√√√1
2
λ

(1
g
+ γ

)
λ±

√
λ2

(
1
g
− γ
)2

− 4


satisfy the PDEs (3.6) and the clamped boundary conditions (3.10) at x = 0 provided that λ 6=
0,±2/|(1/g) − γ|,±i

√
g/γ. For simplicity we apply the monotone and non-monotone boundary

conditions (3.11) and (3.12) separately. In the monotone (km = ks = 0) case, the feedback boundary
conditions at the right end give the following transcendental equation for the eigenvalues.

Ā+ B̄k̄m + C̄k̄s + D̄k̄mk̄s = 0 (3.16)

where

Ā = 2

[
−λ2

(
γ +

1
g

)
sinh(r−) sinh(r+) + r−r+ cosh(r−) cosh(r+)

(
λ2
(

1
g
− γ
)2

− 2

)
− 2r−r+

]
,

B̄ = λ

[
r+ sinh(r−) cosh(r+)

(
λ2
(

1
g
− γ
)2

+
(
r2
+ − r2

−
)(1

g
− γ
)
− 4

)

+r− cosh(r−) sinh(r+)

(
λ2
(

1
g
− γ
)2

−
(
r2
+ − r2

−
)(1

g
− γ
)
− 4

)]
,

C̄ =
1
λ

(
r2
− − r2

+

) [
r− cosh(r−) sinh(r+)

(
2− λ2

g2 +
γλ2 + r2

− − r2
+

g

)
−

r+ sinh(r−) cosh(r+)
(

2− λ2

g2 +
γλ2 − r2

− + r2
+

g

)]
,

and

D̄ = 2

[
λ2 sinh(r−) sinh(r+)

(
γ − 3

g
+
λ2

g

(
1
g
− γ
)2
)
− 2r−r+ cosh(r−) cosh(r+) + 2r−r+

]
.

Likewise, the non-monotone (k̄m = k̄s = 0) boundary conditions give

A+B(km + ks) + Ckmks = 0 (3.17)

where

A = r−r+ cosh(r−) cosh(r+)

[
λ2
(

1
g
− γ
)2

− 2

]
− λ2

(
γ +

1
g

)
sinh(r−) sinh(r+)− 2r−r+,
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B =

(
1
g
− γ
)
λr−r++λ

[
1
g
λ2
(

1
g
− γ
)
− 2
]

sinh(r−) sinh(r+)+λr−r+
(
γ − 1

g

)
cosh(r−) cosh(r+),

and

C = −λ2 sinh(r−) sinh(r+)
[
γ − 3

g
+
λ2

g2

(
1
g
− 2γ

)
+

1
g
γ2λ3

]
+2r−r+ cosh(r−) cosh(r+)−2r−r+.

Note that the form of (3.17) shows that the eigenvalues are the same for k̄m = k̄s = km = 0 and
k̄m = k̄s = ks = 0, as mentioned above. Again, for simplicity, we set ks = 0 in our examples.

Solving either (3.16) or (3.17) is simply a matter of root-finding, but there can be considerable
difficulty in finding suitable initial guesses in some cases. If all of the gain parameters are zero, then
all of the eigenvalues are purely imaginary and both equations (3.16) or (3.17) are relatively easy to
solve. Those solutions are used as initial guesses for problems where one of the gain parameters is
incremented. Continuing this process allows us to find the eigenvalues in general. We note that in
some situations, especially the non-monotone ones, the eigenvalues change considerably for even
the smallest of changes in the corresponding gain parameter, so great care and high precision were
necessary. All calculations were done in Mathematica with 50 decimal digits of precision.

Figure 4. Portion of the spectrum for the Timoshenko beam with monotone moment (left, k̄m = 0.1,
k̄s = km = ks = 0, γ = 0.01, 1/g = 0.03) and shear (right, k̄m = km = ks = 0, k̄s = 5,
γ = 0.01, 1/g = 0.03) boundary conditions along with the paths that the eigenvalues take as each
gain parameter increases from zero (filled) to infinity (open).

Kim and Renardy [10] proved exponential stability for the Timoshenko beam with monotone
(km = ks = 0) boundary conditions and samples of the spectra are shown in Figure 4. The choice
of γ = 0.01 is unrealistically large, but smaller values of γ make the figures too busy to be easily
understood. The curves start on the imaginary axis at the filled circles and finish on the imaginary
axis at the open circles. The connecting curves indicate the paths taken by each eigenvalue as the
gain parameter increases from 0 to∞. In both the monotone moment and monotone shear control
cases, the eigenvalues move into the left half-plane, some along clockwise and some along counter-
clockwise paths, with their complex conjugate pairs moving in the opposite way. Some of the
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eigenvalues move much further to the left than others, which is a unique feature of the Timoshenko
model, and is a result of the presence of both rotary and shear waves. In both cases, there appear to
be modes that are not damped, but close examination reveals that the real parts are very small but
negative for 0 < k̄m <∞.

In contrast to the monotone case, Guiver and Opmeer [11] proved that the Timoshenko beam is
unstable with non-monotone controls, but they did not publish any graphs of the spectra. Figure 5
shows two such graphs for non-monotone moment control. All of the paths begin on the imaginary
axis where km = 0, but some move into the left and some into the right half-plane. Some of the
paths return to the imaginary axis as in the monotone case, but some curves very curiously do not
seem to turn around. The graphs also suggest that there are an infinite number of unstable modes,
which was actually proved in [11]. However, it is important to note that the lower modes all appear
to be stable, so it is possible that all physically relevant modes are actually stable and that the
unstable ones are not adequately modeled by the beam theory. Using our criterion that frequencies
are suspect when they are O(1/γ) suggests that eigenvalues with imaginary parts less than 100 in
magnitude are adequately modeled, so there still appear to be a few unstable modes. However, our
criterion is only a rough estimate and further study would be necessary to determine whether or not
the suspect modes are adequately modeled by the Timoshenko theory.

Figure 5. Portion of the spectrum for the Timoshenko beam with non-monotone moment (k̄m =
k̄s = ks = 0, km = 5, γ = 0.01, 1/g = 0.03) boundary conditions along with the paths that the
eigenvalues take as the gain parameter increases from zero (disks) to infinity (open circles). Both
graphs contain the same information but are displayed on different vertical scales. Note the large
number of unstable modes.

We recall that choosing γ = 0.01 in Figure 5 is artificially large, so what happens for more
realistic values of γ? Figure 6 shows the magnitude of the imaginary part of the first unstable eigen-
value as a function of 1/γ for (km > 0). The graph appears to be roughly straight and it has an
approximate least-squares slope of 0.579, so our rough criterion of requiring ω < 1/γ suggests that
the Timoshenko model does have unstable modes that are adequately modeled by the theory. How-
ever, certainty will require a study that applies a higher dimensional elasticity theory or empirical
evidence.
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Figure 6. Graph of the magnitude of the imaginary part of the first unstable eigenvalue (for km > 0,
k̄m = k̄s = ks = 0) for the Timoshenko model (with g = 3/γ) as a function of 1/γ. The slope of
the line is approximately 0.579.

4 The Shear Beam

The equations for the shear beam were first proposed by Rankine [17] and they can be formally
obtained from the Timoshenko equations by ignoring the relationship between γ and g (3.3) and
setting γ = 0 while holding g constant. In equations (3.5) and (3.6), dropping the rotary inertia term
gives

utt − g (uxx − αx) = p (4.1)

αxx + g (ux − α) = m (4.2)

and the displacement equation (3.7) reduces to

uxxxx −
1
g
uxxtt + utt = f(x, t). (4.3)

The major difference between this and the Timoshenko theory is that (4.3) is only second order in
time. The boundary conditions (3.10)-(3.12) remain unchanged from the Timoshenko theory and
the resulting energy expression is also very similar,

d

dt
E0,g(t) = −(km + ks)αt(1, t)ut(1, t)− k̄mα2

t(1, t)− k̄su2
t(1, t), (4.4)

where Eγ,g is defined in (3.9).
The shear beam model has attracted much less attention in the literature, and to the knowledge

of the authors, there are currently no published results demonstrating well-posedness or exponential
stability for the model. Nevertheless, in spite of the similarities to the Timoshenko model, the
behavior of the shear beam is dramatically different. In the monotone shear (k̄m = km = ks = 0,
k̄s > 0) case, the eigenvalues approach a vertical asymptote for both large and small k̄s. Specifically,
for small k̄s,

λn = −k̄s ± i
(2n− 1)π

2
√
g, n ∈ N,

and
λn = −g/k̄s ± inπ

√
g, n ∈ N,

for large k̄s. This is reminiscent of the spectra of monotone Euler-Bernoulli problems where the
eigenvalues line up along a vertical asymptote in the left half-plane as shown in [14]. In contrast, in
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the monotone moment case (k̄s = km = ks = 0, k̄m > 0), there is no similar asymptotic behavior.
However, surprisingly, in the non-monotone case (k̄m = k̄s = ks = 0, km > 0), the eigenvalues are
all stable and can be approximated asymptotically as

λn ≈ −km
√
g ± i

[
(2n− 1)π√g

2

]
, n ∈ N, (4.5)

for small km and

λn ≈ −
√
g

km
± inπ√g, n ∈ N, (4.6)

for large km. The apparent stability in this case is radically different from the unstable spectra for
the Timoshenko beam with a non-monotone feedback control.

4.1 Numerical Results for the Shear Beam

The transcendental equations (3.16) and (3.17) for the Timoshenko beam apply for the shear beam
with γ = 0 and the solution process is the same as for the Timoshenko beam. Numerical results
for the shear beam with monotone boundary conditions are shown in Figure 7 and the eigenvalues
all have negative real parts. It is difficult to tell from the graph because the imaginary parts do
not change much, but, in the moment case, all of the paths are clockwise above the real axis and
counter-clockwise below. In contrast, in the shear case, all of the paths are counter-clockwise above
the real axis. Also, the sampled eigenvalues (k̄s = 5) almost look like they lie in a Gevrey sector,
but that is just an artifact of the way the graphs are presented.

Figure 7. Portion of the spectrum for the shear beam with monotone moment (left, km = k̄s =
ks = 0, k̄m = 0.1, 1/g = 0.03) and shear (right, k̄m = ks = km = 0, k̄s = 5, 1/g = 0.03) boundary
conditions along with the paths that the eigenvalues take as the gain parameter increases from zero
(disks) to infinity (open circles).

Figure 8 shows samples of the spectrum for non-monotone moment feedback (k̄m = k̄s = ks =
0) for three different values of km. For km = 0.5 the eigenvalues are close to the vertical asymptote
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given in (4.5). For km = 1, the visible eigenvalues are close to their left-most extreme points. In
the Euler-Bernoulli case [14], the eigenvalues are all real for km = 1, so the behavior of the shear
beam is significantly different. There is one complex conjugate pair of eigenvalues with real part
near −180 that become real (and repeated) for a value of km slightly higher than 1, and then they
stay real with one of them moving off toward negative infinity and the other moving toward the
origin. The graph with km = 1.5 shows that real eigenvalue very close to the origin as well as the
asymptotic behavior of the higher eigenvalues as shown in (4.6).

Figure 8. Portion of the spectrum for the shear beam with non-monotone moment (k̄m = k̄s = ks =
0 for km = 0.5, 1.0, 1.5, 1/g = 0.03) boundary conditions along with the paths that the eigenvalues
take as the gain parameter increases from zero (disks) to infinity (open circles).

We emphasize that the shear beam model is very similar to the Timoshenko model – it is obtained
by setting a small number (γ) to zero – but, unlike the Timoshenko case, it appears to be stable for
all monotone and non-monotone boundary conditions considered herein. The behavior of the shear
beam is much more like the Euler-Bernoulli beam than the Timoshenko beam. One additional
similarity to the Euler-Bernoulli case is the rapid change of the eigenvalues. The graphs in Figure
8 for km = 0.5 and km = 1.5 look very similar. That is because the majority of the eigenvalue
paths occur between those two values. It is situations like this that require precision above standard
machine precision.
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5 The Rayleigh Beam

Lord Rayleigh’s model [18] can be obtained from (3.5)-(3.6) by holding γ constant and taking
g →∞ so that there is no shear strain in the beam. Consequently, (3.4) implies that α = ux, so it is
quite natural to work only with displacements, in which case (3.7) reduces to

uxxxx − γuxxtt + utt = f(x, t), (5.1)

which is structurally the same as the displacement equation for the shear beam (4.3). Unlike the
shear beam, however, the boundary conditions can easily be written entirely in terms of u. Specifi-
cally, if m(1, t) = 0, then

u(0, t) = ux(0, t) = 0 (5.2)

uxx(1, t)︸ ︷︷ ︸
−M(1,t)

+kmut(1, t) + k̄muxt(1, t) = 0 (5.3)

γuxtt(1, t)− uxxx(1, t)︸ ︷︷ ︸
S(1,t)

+ksuxt(1, t) + k̄sut(1, t) = 0 (5.4)

The resulting energy expression in the absence of applied loads and moments (p = m = 0) is

d

dt
Eγ,∞(t) = −(km + ks)αt(1, t)ut(1, t)− k̄mα2

t(1, t)− k̄su2
t(1, t), (5.5)

where α = ux. For the displacement forms of the Rayleigh and shear models, the energy space
is H2

cl(0, 1) × H1(0, 1), where H2
cl(0, 1) =

{
v ∈ H2(0, 1)|v(0) = vx(0) = 0

}
. The fact that the

velocity ut ∈ H1(0, 1) makes it possible to obtain well-posedness in the monotone cases using
semigroup theory, but well-posedness for the non-monotone cases are not so obvious as we show in
the proof of the following theorem.

Theorem 5.1. The Raleigh Beam (5.1) with f = 0 and any set of boundary feedbacks parametrized
by (non-negative) km, ks, k̄m, k̄s in (5.2)–(5.4) generates a strongly continuous semigroup on the
finite energy space H = H2

cl(Ω)×H1(Ω).

Proof. When km, ks are zero, the problem is monotone and monotone semigroup theory yields the
result [22]. Thus it suffices to consider only the case km 6= 0 or ks 6= 0. By the principle of
superposition it is enough to consider each feedback separately.

Let’s start with ks = 0. We begin by writing the semigroup representation of the solution

Mγutt +Au− kmAGut(1) = 0 (5.6)

where Au = uxxxx, D(A) = {u ∈ H4(Ω);u(0) = ux(0) = 0, uxx(1) = uxxx(1) = 0} and

Gg = v, iff vxxxx = 0, v(0) = vx(0) = 0, vxx(1) = g, vxxx(1) = 0, (Green’s map).

The map
Mγu = u+ γANu

is defined by duality:

(M1/2ut,M
1/2vt) = (ut, vt) + γ(∇ut,∇vt) ∀ut, vt ∈ H1(Ω),

where AN is the Neumann Laplacian operator, ANu = −∆u with zero Neumann data and N is a
classical Neumann map, see [22] page 16 formula (2.4.14). See also [25] page 154. By Green’s
formula
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N∗ANu = u|Γ
(see [22]) where the adjoint is taken with respect to L2 topologies. With the above notation we can
write for U = [u, v]

AU =

[
0 I

M−1
γ A −kmM−1

γ AGN∗AN

][
u

v

]
Our goal is to show that A is the generator. To this end we define A = A0 + P where

A0U =

[
0 I

M−1
γ A 0

][
u

v

]
,

PU =

[
0 0
0 −kmM−1

γ AGN∗AN

][
u

v

]
,

It is known that A0 is a group generator on H ≡ D(A1/2) × D(M1/2) ∼ H2
cl(Ω) × H1(Ω) with

clamped boundary conditions. In fact, we define

(U, Û)H ≡ (uxx, ûxx) + (M1/2v,M1/2v̂) = (uxx, ûxx) + γ(∇u,∇û)

and denote

Lg ≡
∫ t

0
eA0(t−s)Bg(s)ds

where Bg ≡ [0,M−1AG]. With the above notation the solvability of the abstract evolution

Ut = AU

is equivalent to the solvability of the integral equation

U(t) = eA0tU(0) + L(N∗ANv). (5.7)

Lemma 5.2. The operator

N∗AN : H1(Ω)→ H1/2(Γ) ⊂ L2(Γ)

is bounded.

Proof. The result follows from the representation of N∗AN and associated trace theory.

Step 1.
The first step in the proof of Theorem 5.1 is to show that L is bounded from

L2(0, T × Γ)→ C(0, T ;H).

In fact, this (Lemma 5.2) will imply boundedness of the compositionL(N∗AN ) : L2(0, T ;H1(Ω))→
C(0, T ;H). As a consequence

L(N∗ANP2) : L2(0, T ;H)→ C(0, T ;H) (5.8)

which is the key in applying the contraction mapping principle in order to solve the integral equation
(5.7). Here P2 simply means a projection of U on the second coordinate. In view of the above it
remains to establish:
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Lemma 5.3. L is bounded from

L2(0, T × Γ)→ C(0, T ;H)

Proof. By Green’s formula it follows that

G∗Au =
∂

∂ν
u = ux(1) (5.9)

where the adjoint is taken with respect to L2 topologies.

Lemma 5.4. The adjoint of B satisfies the identity,

B∗U =
∂

∂ν
v = vx(1).

Proof. The result follows by duality and (5.9). In particular,

(Bg,U)H = (M−1AGg,Mv) = (AGg, v) =< g,G∗A >=< g,
∂

∂ν
v > .

Hence < g,B∗U >=< g, ∂∂ν v > and B∗U = ∂
∂ν v = vx(1).

Lemma 5.5. Let U(t) = eA0tU(0). Then∫ T

0
|utx(1, t)|2dt ≤ CT |U(0)|2H .

Remark 5.6. Note that the inequality in the lemma is a “hidden regularity" type of result. Finite
energy data do not have traces uxt defined on the boundary. However, the dynamics provide some
regularizing effect.

Proof. We shall use the multiplier xux. Consider∫ T

0
(−γuttxx + utt + uxxxx, xux)dt = 0

with the boundary conditions:

u(0) = ux(0) = 0 and uxx(1) = 0,−γuttx(1) + uxxx(1) = 0. (5.10)

Integration by parts gives

(uxxxx, xux) = (uxx, uxx)− (uxxx, xuxx)+ < uxxx, xux > − < uxx, ux >

−γ(uttxx, xux) = −γ < uttx, xux > +γ(uttx, xuxx + ux)− (utt, xux).

Adding the above, and integrating in time t yields

∫ T

0
[(uxx, uxx)−(uxxx, xuxx)+ < uxxx, xux > − < uxx, ux > −γ < uttx, xux > −γ(utx, xutxx+utx)]dt

= γ(utx, xuxx + ux)|T0 +

∫ T

0
(utt, xux)dt = γ(utx, xuxx + ux)|T0 + (ut, xux)|T0 −

∫ T

0
(ut, xuxt)dt.
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After applying the boundary conditions we have∫ T

0
[(uxx, uxx)− (uxxx, xuxx)− γ(utx, xutxx + utx)]dt = γ(utx, xuxx + ux)|T0 .

Noting that
(utx, xutxx) = 1/2(Dx(u

2
txx), 1)− 1/2(utx, utx),

we obtain ∫ T

0
|uxt(1)|2dt ≤ C|U(T )2|H + C|U(0)|2H +

∫ T

0
|U(t)|2dt ≤ CT |U(0)|2H

as desired.

Step 2.
The lemma above translates via duality [24] into∫ T

0
|B∗eA

∗
0 tU0|2dt ≤ C|U0|2H ,

and the above condition is equivalent [24] to the boundedness of the operatorLwhich proves Lemma
5.3.

Step 3.
Using the variation of parameters formula we rewrite the original problem as

U(t) = eA0tU(0) + (LN∗ANP2U)(t)

where U(t) is the solution of the original problem with U = [u, v]. The above is a fixed point
problem which can be solved by the contraction mapping principle on C(0, T ;H). Here the method
is identical to [23]. The key is the boundedness of L. The contraction constant is created by taking
time T small. Since the problem is linear we can walk in finitely many steps. We then construct
the continuous flow U(t) on H . Ball’s Theorem applied as in [23] implies the generation of the
semigroup. The proof in the case ks = 0 is thus completed. The case km = 0 is even simpler. This
follows from the fact that utx(1) is a lower order perturbation of the boundary operator uttx(1).
Since the regularity of solutions depends only on the principal of the operator, the term ksutx plays
no role in the analysis.

5.1 Numerical Results for the Rayleigh Beam

The transcendental equations (3.16) and (3.17) for the Timoshenko beam apply for the Rayleigh
beam with g →∞. In the monotone cases, the beam is stable and we see a vertical asymptote in the
moment case in Figure 9. Indeed, asymptotic analysis reveals that with monotone moment feedback
(k̄s = km = ks = 0, k̄m > 0), for small k̄m,

λn ≈ −
1
k̄m
± i
(
nπ
√
γ

)
, n ∈ N,

and for large k̄m,

λn ≈ −
k̄m
γ
± i
(
(2n− 1)π

2√γ

)
, n ∈ N.

However, for monotone shear feedback (k̄m = km = ks = 0, k̄s > 0), the eigenvalues do not
line up along vertical asymptotes. Similar to the shear beam model, the eigenvalues above the real
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axis move along clockwise paths for the moment (k̄m > 0) feedback and counter-clockwise for the
shear (k̄s > 0) feedback. We invite the reader to compare the spectral behaviors of the shear (Figure
7 and Rayleigh beams (Figure 9) with monotone feedback. They are similar, but the spectrum
for the monotone moment feedback for the shear beam is qualitatively more like the spectrum for
the Rayleigh beam with monotone shear feedback, and vice versa. This similarity is especially
interesting when we note that both models are governed by essentially the same displacement PDE,
(4.3) and (5.1). The difference between the models is in the boundary conditions.

Figure 9. Portion of the spectrum for the Rayleigh beam with monotone moment (left, k̄s = km =
ks = 0, k̄m = 0.15, γ = 0.01) and shear (right, k̄m = ks = km = 0, k̄s = 3, γ = 0.01) boundary
conditions along with the paths that the eigenvalues take as the gain parameter increases from zero
(disks) to infinity (open circles).

In the non-monotone case, the shear and Rayleigh models are even more dissimilar. Recall that
the shear beam is stable, but [11] showed that the Rayleigh beam is unstable. Like Figure 1 in which
γ = 1, with γ = 0.01, the eigenvalues are still clearly unstable as shown in Figure 10. However,
the lower modes are stable and we have to ask ourselves, as we did in the Timoshenko case, if the
unstable eigenvalues correspond to modes that are adequately modeled by a beam theory. Figure
11 shows the magnitude of the imaginary part of the first unstable eigenvalue as a function of 1/γ.
Unlike the Timoshenko case, the graph in Figure 11 appears to have polynomial growth, so for
realistic values of γ, the unstable modes are all unlikely to be well-modeled by the theory. So, in
the Rayleigh beam, even though there are an infinite number of unstable modes, all of the ones to
which a beam theory may apply are all stable.

6 Conclusion

We have demonstrated very different stability and spectral behavior for four popular beam models
that are, in some ways, all very similar models. All of the models are stable for monotone boundary
conditions, but the margin of stability varies considerably between models. Recall that in the Timo-
shenko case, Figure 4, some of the eigenvalues remain extremely close to the imaginary axis. In the
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Figure 10. Portion of the spectrum for the Rayleigh beam with non-monotone moment (k̄s = k̄m =
ks = 0, km = 5,γ = 0.1) boundary conditions along with the paths that the eigenvalues take as the
gain parameter increases from zero (disks) to infinity (open circles). Note that many of the higher
modes are unstable.

Figure 11. Graph of the magnitude of the smallest unstable eigenvalue (when km > 0) for the
Rayleigh model as a function of 1/γ.

case of non-monotone feedbacks, the shear and Euler-Bernoulli models have stable eigenvalues; the
eigenvalues tend to lie along vertical asymptotes for the shear beam and on parabolic arcs for the
Euler-Bernoulli beam. The Timoshenko and Rayleigh models, on the other hand, are unstable, but
only for higher modes.

The discrepancies in the stability profiles of each model make physical interpretation very diffi-
cult. Remembering that beam models can only be applied for lower modes of vibration, it remains
for further study to determine what actually happens to real beams with non-monotone moment or
shear boundary conditions. This study could be done either by employing two- or three-dimensional
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elasticity solutions or by empirically testing beams in a laboratory. Finally, the current results apply
only to beams, but other applications, such as boundary control of solar panels, may require similar
analyses for plates or shells and the results in those cases may be even more variable due to the extra
degrees of freedom in plate and shell models.
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