
Palestine Journal of Mathematics

Vol. 3(1) (2014) , 77–93 © Palestine Polytechnic University-PPU 2014

Some Sharper Estimations of Growth Relationships of
Composite Entire Functions on the Basis of Their Maximum

Terms

SANJIB KUMAR DATTA, TANMAY BISWAS and MANAB BISWAS

Communicated by P. K. Banerji

MSC 2010 Classifications: 30D30,30D35.

Keywords and phrases: Order, lower order, (p,q) th order, (p,q) th lower order , entire function, maximum term, compo-
sition, growth.

Abstract. In this paper we discuss the growth rates of the maximum term of composition of
entire functions with their corresponding left and right factors.

1 Introduction, Definitions and Notations.

Let f be an entire function defined in the open complex plane C. The maximum term

µ (r, f) of f =
∞∑
n=0

anz
n on |z| = r is defined by µ (r, f) = max

n≥0
(|an| rn). We do not explain the

standard definitions and notations in the theory of entire function as those are available in [7] .
In the sequel the following two notations are used :

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, · · · ;

log[0] x = x

and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1, 2, 3, · · · ;

exp[0] x = x.

To start our paper we just recall the following definitions:

Definition 1.1. The order ρf and lower order λf of an entire function f are defined as follows:

ρf = lim sup
r→∞

log[2]M (r, f)

log r
and λf = lim inf

r→∞

log[2]M (r, f)

log r
.

Definition 1.2. [4]Let l be an integer ≥ 2. The generalised order ρ[l]f and generalised lower order

λ
[l]
f of an entire function f are defined as

ρ
[l]
f = lim sup

r→∞

log[l]M (r, f)

log r
and λ[l]f = lim inf

r→∞

log[l]M (r, f)

log r
.

When l = 2 , Definition 2 coincides with Definition 1.
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Juneja, Kapoor and Bajpai[2] defined the (p, q) th order and (p, q) th lower order of an entire
function f respectively as follows:

ρf (p, q) = lim sup
r→∞

log[p]M (r, f)

log[q] r
and λf (p, q) = lim inf

r→∞

log[p]M (r, f)

log[q] r
,

where p, q are positive integers with p > q.
For p = 2 and q = 1, we respectively denote ρf (2, 1) and λf (2, 1) by ρf and λf .
Since for 0 ≤ r < R,

µ (r, f) ≤M (r, f) ≤
R

R− r
µ (R, f) {cf. [6] }

it is easy to see that

ρf = lim sup
r→∞

log[2] µ (r, f)

log r
, λf = lim inf

r→∞

log[2] µ (r, f)
log r

;

ρ
[l]
f = lim sup

r→∞

log[l] µ (r, f)

log r
, λ

[l]
f = lim inf

r→∞

log[l] µ (r, f)
log r

;

and

ρf (p, q) = lim sup
r→∞

log[p] µ (r, f)

log[q] r
, λf (p, q) = lim inf

r→∞

log[p] µ (r, f)

log[q] r
.

Definition 1.3. Let “a” be a complex number, finite or infinite. The Nevanlinna’s deficiency of
“a” with respect to a meromorphic function f are defined as

δ (a; f) = 1− lim sup
r→∞

N (r, a; f)
T (r, f)

= lim inf
r→∞

m (r, a; f)
T (r, f)

.

In this paper we wish to prove some results relating to the growth rates of maximum terms of
composition of two entire functions with their corresponding left and right factors on the basis
of (p, q) th order ( (p, q) th lower order ) where p, q are positive integers with p > q.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [5] Let f and g be any two entire functions with g(0) = 0. Then for all sufficiently
large values of r,

µ (r, f ◦ g) ≥
1
2
µ

(
1
8
µ
( r

4
, g
)
− |g(0)| , f

)
.

Lemma 2.2. [1] If f and g are any two entire functions then for all sufficiently large values of r,

M(r, f ◦ g) ≤M (M (r, g) , f) .

Lemma 2.3. [3] Let g be an entire function with λg <∞ and assume that ai(i = 1, 2, ....n;n ≤

∞) are entire functions satisfying T (r, ai) = ◦{T (r, g)}. If
n∑
i=1
δ(ai, g) = 1, then

lim
r→∞

T (r, g)

logM(r, g)
=

1
π
.
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Lemma 2.4. Let f be an entire function with non zero finite generalised order ρ[l]f (non zero finite

generalised lower order λ[l]f ). If p−q = l−1, then the (p, q)- th order ρf (p, q) (lower (p, q)- th order λf (p, q))
of f will be equal to 1. If p− q 6= l − 1, then ρf (p, q) ( λf (p, q) ) is either zero or infinity.

Proof. From the definition of generalised order of an entire function f we have for all sufficiently
large values of r,

log[l] µ (r, f) ≤
(
ρ
[l]
f + ε

)
log r (2.1)

and for a sequence of values of r tending to infinity,

log[l] µ (r, f) ≥
(
ρ
[l]
f − ε

)
log r. (2.2)

Next let a and b be any two positive integers.
Now from (2.1) we have for all sufficiently large values of r,

log[l+a] µ (r, f) ≤ log[1+a] r +O(1)

i.e.,
log[l+a] µ (r, f)

log[1+b] r
≤ log[1+a] r +O(1)

log[1+b] r
. (2.3)

If we take l+ a = p and 1 + b = q ,then p− q = (l − 1) + (a− b).
We discuss the following three cases:
Case I. Let a = b. Then from (2.3) we get for all sufficiently large values of r,

log[p] µ (r, f)
log[q] r

≤ 1 +
O(1)

log[1+a] r

i.e., lim sup
r→∞

log[p] µ (r, f)
log[q] r

≤ 1. (2.4)

Similarly from (2.2) we have for a sequence of values of r tending to infinity,

log[p] µ (r, f)
log[q] r

≥ 1 +
O(1)

log[1+a] r

i.e., lim sup
r→∞

log[p] µ (r, f)

log[q] r
≥ 1. (2.5)

Now from(2.4) and (2.5) we have

ρf (p, q) = 1 when p− q = l − 1.

Case II. Let a > b (i.e., p− q 6= l − 1). Then from (2.3) we have for all sufficiently large values
of r,

lim sup
r→∞

log[p] µ (r, f)
log[q] r

≤ 0

i.e., ρf (p, q) = 0 when p− q 6= l − 1.

Case III. Also let us choose a and b such that a < b and l + a > 1 + b (i.e., p− q 6= l − 1) .
Then from (2.2) it can be proved for a sequence of values of r tending to infinity that

lim sup
r→∞

log[p] µ (r, f)
log[q] r

≥ ∞

i.e., ρf (p, q) = ∞ when p− q 6= l − 1.
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Therefore combining Case II and Case III (not violating the condition p > q), it follows that
ρf (p, q) is either zero or infinity.
Similarly we may prove the conclusion for λf (p, q).
This proves the lemma.

3 Theorems.

In this section we present the main results of the paper.

Theorem 3.1. Let f, g, h and k be four entire functions such that 0 < ρf (p, q) <∞, λh (a, b) >
0 , 0 < ρ

[l]
k < ∞ and ρg(m,n) < ρ

[l]
k , where m,n, a, b p, q are all positive integers with m > n;

a > b; p > q and l > 1. Then

(i) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ(r, f ◦ g) + log[m] µ (r, g)

= ∞

if b = l − 1 and q > m;

(ii) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m−q−1] µ (r, f ◦ g) + log[m] µ (r, g)

= ∞

if b = l − 1 and q < m;

(iii) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

= ∞

if q > m and l < b+ 1 < n+ l;

(iv) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

≥
ρ
[l]
k λh (a, b)

(ρf (p, q) + 1) ρg (m,n)

if q ≥ m, b = l and n = 1;

(v) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

≥ λh (a, b)

(ρf (p, q) + 1) ρg (m,n)

if q ≥ m and b− l+ 1 = n > 2;

(vi) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

=∞

if q < m and l < b+ 1 < n+ l;

(vii) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

≥
ρ
[l]
k λh (a, b)

1 + ρg (m,n)

if q < m , b = l and n = 2

and

(viii) lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

≥ λh (a, b)

1 + ρg (m,n)

if q < m and b− l+ 1 = n > 2.
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Proof. Since for 0 ≤ r < R,

µ (r, f) ≤M (r, f) ≤
R

R− r
µ (R, f) {cf. [6] } , (3.1)

In view of Lemma 2.2 and the above inequality we obtain for all sufficiently large values of r
that

µ (r, f ◦ g) 6 M(r, f ◦ g) ≤M (M (r, g) , f)

log[p] µ (r, f ◦ g) 6 log[p]M (M (r, g) , f)

i.e., log[p] µ (r, f ◦ g) 6 (ρf (p, q) + ε) log[q]M (r, g) . (3.2)

Now the following cases may arise :
Case I. Let q > m. Then we have from (3.2) for all sufficiently large values of r,

log[p] µ (r, f ◦ g) 6 (ρf (p, q) + ε) log[m−1]M (r, g) . (3.3)

Now from the definition of (m,n) th order of g we get for arbitrary positive ε and for all suffi-
ciently large values of r,

log[m]M (r, g) 6 (ρg(m,n) + ε) log[n] r (3.4)

i.e., log[m]M (r, g) 6 (ρg(m,n) + ε) log r. (3.5)

Also for all sufficiently large values of r it follows from (3.5) that

log[m−1]M (r, g) 6 r(ρg(m,n)+ε). (3.6)

So from (3.3) and (3.6) it follows for all sufficiently large values of r that

log[p] µ (r, f ◦ g) 6 (ρf (p, q) + ε) r(ρg(m,n)+ε). (3.7)

Case II. Let q < m. Then we get from(3.2) for all sufficiently large values of r that

log[p] µ (r, f ◦ g) 6 (ρf (p, q) + ε) exp[m−q] log[m]M (r, g) . (3.8)

Again from (3.5) for all sufficiently large values of r,

exp[m−q] log[m]M (r, g) 6 exp[m−q] log r(ρg(m,n)+ε)

i.e., exp[m−q] log[m]M (r, g) 6 exp[m−q−1] r(ρg(m,n)+ε). (3.9)

Now from (3.8) and (3.9) we obtain for all sufficiently large values of r that

log[p] µ (r, f ◦ g) 6 (ρf (p, q) + ε) exp[m−q−1] r(ρg(m,n)+ε)

i.e., log[p+1] µ (r, f ◦ g) 6 exp[m−q−2] r(ρg(m,n)+ε)

i.e., log[p+m−q−1] µ (r, f ◦ g) 6 log[m−q−2] exp[m−q−2] r(ρg(m,n)+ε)

i.e., log[p+m−q−1] µ (r, f ◦ g) 6 r(ρg(m,n)+ε). (3.10)

Since ρg(m,n) < ρ
[l]
k , we can choose ε(> 0) in such a way that

ρg(m,n) + ε < ρ
[l]
k − ε. (3.11)
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By Lemma 2.1 we obtain for a sequence of values of r tending to infinity,

log[a] µ (r, h ◦ k) ≥ log[a] µ
(

1
8
µ
( r

4
, k
)
, h

)
+O(1)

i.e., log[a] µ(r, h ◦ k) ≥ (λh (a, b)− ε) log[b] µ
( r

4
, k
)
+O(1)

i.e., log[a] µ(r, h ◦ k) ≥ (λh (a, b)− ε) log[b−l+1] log[l−1] µ
( r

4
, k
)
+O(1). (3.12)

Now the following two cases may arise :
Case III. Let b = l−1. Then from (3.12) we get for a sequence of values of r tending to infinity
that

log[a] µ(r, h ◦ k) ≥ (λh (a, b)− ε)
( r

4

)(ρ[l]k −ε
)
+O(1). (3.13)

Case IV. Let b− l+1 = d > 0. Then from (3.12) it follows for a sequence of values of r tending
to infinity that

log[a] µ(r, h ◦ k) ≥ (λh (a, b)− ε) log[d]
( r

4

)(ρ[l]k −ε
)
. (3.14)

Now from the definition of (m,n) th order of g we have for arbitrary positive ε and for all
sufficiently large values of r,

log[m] µ (r, g) 6 (ρg(m,n) + ε) log[n] r. (3.15)

Let q > m. Then we have from (3.2) and (3.4) for all sufficiently large values of r,

log[p] µ (r, f ◦ g) ≤ (ρf (p, q) + ε) (ρg(m,n) + ε) log[n] r. (3.16)

Now if b = l − 1 and q > m , we get from (3.7) , (3.13) , (3.15) and in view of (3.11) for a
sequence of values of r tending to infinity,

log[a] µ(r, h ◦ k)
log[p] µ(r, f ◦ g) + log[m] µ (r, g)

≥
(λh (a, b)− ε)

(
r
4

)(ρ[l]k −ε
)
+O(1)

(ρf (p, q) + ε) r(ρg(m,n)+ε) + (ρg(m,n) + ε) log[n] r

i.e., lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ(r, f ◦ g) + log[m] µ (r, g)

=∞,

which proves the first part of the theorem.
Again we obtain from (3.10) , (3.11) ,(3.13) and (3.15) , for a sequence of values of r tending
to infinity when b = l − 1 and q < m

log[a] µ(r, h ◦ k)
log[p+m−q−1] µ(r, f ◦ g) + log[m] µ(r, g)

≥
(λh (a, b)− ε)

(
r
4

)(ρ[l]k −ε
)
+O(1)

r(ρg(m,n)+ε) + (ρg(m,n) + ε) log[n] r

i.e., lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m−q−1] µ (r, f ◦ g) + log[m] µ (r, g)

=∞.
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This proves the second part of the theorem.
When b > l− 1 and q ≥ m , from (3.14) , (3.15) , and (3.16) we get for a sequence of values of
r tending to infinity,

log[a] µ(r, h ◦ k)
log[p] µ(r, f ◦ g) + log[m] µ(r, g)

≥
(λh(a, b)− ε) log[d]( r4 )

(ρ
[l]
k −ε)

(ρf (p, q) + ε)(ρg(m,n) + ε) log[n] r + (ρg(m,n) + ε) log[n] r

i.e., lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

=∞ if l < b+ 1 < n+ l;

again

lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

≥
ρ
[l]
k λh(a, b)

(ρf (p, q) + 1)ρg(m,n)
if b = l, n = 1;

and also

lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p] µ (r, f ◦ g) + log[m] µ (r, g)

≥ λh (a, b)

(ρf (p, q) + 1) ρg (m,n)
if b− l+ 1 = n > 2.

This respectively proves the third , fourth and fifth part of the theorem.
Again when b > l−1 and q < m, combining (3.10) , (3.14) and (3.15) we obtain for a sequence
of values of r tending to infinity,

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

≥
(λh(a, b)− ε) log[d]( r4 )

(ρ
[l]
k −ε)

log[n] r + (ρg(m,n) + ε) log[n] r

i.e., lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

=∞ if l < b+ 1 < n+ l;

also

lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ (r, g)

≥
ρ
[l]
k λh(a, b)

1 + ρg(m,n)
if b = l, n = 1

and again

lim sup
r→∞

log[a] µ(r, h ◦ k)
log[p+m+n−q−1] µ(r, f ◦ g) + log[m] µ(r, g)

≥ λh(a, b)

1 + ρg(m,n)
if b− l+ 1 = n > 2,

from which the sixth , seventh and eighth part of the theorem follows respectively .
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Remark 3.2. The condition ρg(m,n) < ρk and ρf (p, q) < ∞ in Theorem 3.1 are essential as
we see in the following examples:

Example 3.3. Let
f = g = h = k = exp z.

Also let
p = m = a = 2 and q = n = b = 1.

Then
ρf = 1, ρg = 1 = ρk and λh = 1.

Now in view of the inequality µ (r, f) ≤ M (r, f) ≤ R
R−rµ (R, f) {cf. [6] } and T (r, g) ≤

log+M(r, g), we get that

logµ(r, h ◦ k) ≤ logM(r, h ◦ k)

≤ 3T (2r, h ◦ k) ∼ 3 exp (2r)

(4π3r)
1
2

i.e., log[2] µ(r, h ◦ k) ≤ 2r − 1
2

log r +O(1)

and

logµ(r, f ◦ g) ≥ logM(
r

2
, f ◦ g) +O(1)

≥ T (
r

2
, f ◦ g) +O(1) ∼

exp
(
r
2

)(
2π3 r

2

) 1
2

i.e., log[2] µ(r, f ◦ g) ≥ r

2
− 1

2
log r +O(1).

So

lim sup
r→∞

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

≤ lim sup
r→∞

2r − 1
2 log r +O(1)

r
2 −

1
2 log r +O(1) + log r

2

i.e., lim sup
r→∞

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

≤ lim sup
r→∞

2r − 1
2 log r +O(1)

r
2 + 1

2 log r +O(1)
= 1,

which is contrary to Theorem 3.1.

Example 3.4. Let
f = exp[2] z , g = h = exp z and k = exp

(
z2)

and
p = m = a = 2 and q = n = b = 1.

Then
ρf =∞, ρg = 1 < 2 = ρk and λh = 1.
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Now

logµ(r, h ◦ k) ≤ logM(r, h ◦ k) = log exp[2] (r2)
i.e., logµ(r, h ◦ k) ≤ exp

(
r2) ,

and logµ(r, f ◦ g) ≥ logM
( r

2
, f ◦ g

)
i.e., logµ(r, f ◦ g) ≥ log exp[3]

( r
2

)
= exp[2]

( r
2

)
and log[2] µ(r, g) ≥ log[2]M(

r

2
, g) = 1.

Therefore

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

≤
log exp

(
r2
)

log exp[2]
(
r
2

)
+O(1) + log[2] exp r

i.e.,
log[2] µ(r, h ◦ k)

log[2] µ(r, f ◦ g) + log[2] µ(r, g)
≤ r2

exp
(
r
2

)
+ log r +O(1)

i.e., lim sup
r→∞

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

= 0,

which is contrary to Theorem 3.1.

Remark 3.5. The condition ρg (m,n) < λk in Theorem 3.1 is necessary which is true in general
only if ρf (p, q) > 0 otherwise the condition ρg (m,n) < ρk will be violated.The following
example ensures this comment:

Example 3.6. Let
f = h = k = exp z and g = exp

(
z3) .

Also let
p = 3 , m = a = 2 and q = n = b = 1.

Then
−
ρf = ρf (3, 1) = 0 <∞, ρg = 3 > 1 = ρk and λh = 1.

Now

logµ(r, h ◦ k) ≥ logM(
r

2
, h ◦ k) +O(1)

≥ T (
r

2
, h ◦ k) +O(1) ∼

exp
(
r
2

)(
2π3 r

2

) 1
2

i.e., log[2] µ(r, h ◦ k) ≥ r

2
− 1

2
log r +O(1).

logµ(r, f ◦ g) ≤ logM(r, f ◦ g) = exp r3

i.e., log[2] µ(r, f ◦ g) ≤ 3 log r.

and log[2] µ(r, g) ≤ log[2]M(r, g) = 3 log r.
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Therefore

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

≥
r
2 −

1
2 log r +O(1)

6 log r

i.e., lim
r→∞

log[2] µ(r, h ◦ k)
log[2] µ(r, f ◦ g) + log[2] µ(r, g)

= ∞.

Theorem 3.7. Let f and g be any two entire functions such that λf (p, q)and λg are both finite
and p, q are any two positive integers with p > q. Also suppose that there exist entire functions
ai(i = 1, 2, ....n;n ≤ ∞) satisfying
(A) T (r, ai) = ◦{T (r, g)} as r →∞ and

(B)
n∑
i=1
δ(ai, g) = 1. Then for any R > 2r,

lim inf
r→∞

log[p] µ (r, f ◦ g)
logµ(R, g)

6
3λf (p, q)

π
.

Proof. In view of (3.1) we have from Lemma 2.2, for all sufficiently large values of r,

log[p] µ (r, f ◦ g) 6 log[p]M (M (r, g) , f) . (3.17)

Since ε(> 0) is arbitrary and T (r, g) ≤ log+M(r, g) ≤ 3T (2r, g), from (3.17) and in view of
(3.1) we get for a sequence of values of r tending to infinity that

log[p] µ (r, f ◦ g) 6 (λf (p, q) + ε) log[q]M (r, g)

i.e., log[p] µ (r, f ◦ g) 6 (λf (p, q) + ε) logM (r, g)

i.e., log[p] µ (r, f ◦ g) 6 3(λf (p, q) + ε)T (2r, g)

i.e.,
log[p] µ (r, f ◦ g)

logµ(R, g)
6

3(λf (p, q) + ε)T (2r, g)
logM(2r, g)

. (3.18)

Since ε (> 0) is arbitrary , by Lemma 2.3 it follows from (3.18) that

lim inf
r→∞

log[p] µ (r, f ◦ g)
logµ(R, g)

6
3λf (p, q)

π
.

This proves the theorem.

Theorem 3.8. Let f and g be any two entire functions such that ρf (p, q)and λg are both finite
and p, q are any two positive integers with p > q .Also suppose that there exist entire functions
ai(i = 1, 2, ....n;n ≤ ∞) satisfying
(A) T (r, ai) = ◦{T (r, g)} as r →∞ and

(B)
n∑
i=1
δ(ai, g) = 1. Then for any R > 2r,

lim sup
r→∞

log[p] µ (r, f ◦ g)
logµ(R, g)

6
3ρf (p, q)

π
.

The proof of Theorem 3.8 is omitted as it can be carried out in the line of Theorem 3.7.

Theorem 3.9. Let f be an entire function such that ρf (p, q) <∞, where p, q are positive integers
with p > q > 1. Also let g be entire.If λf◦g(p, q) =∞ then for every positive number β,

lim
r→∞

log[p] µ(r, f ◦ g)
log[p] µ(rβ , f)

=∞.
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Proof. Let us suppose that the conclusion of the theorem does not hold.Then we can find a
constant α > 0 such that for a sequence of values of r tending to infinity

log[p] µ(r, f ◦ g) ≤ α log[p] µ(rβ , f). (3.19)

Again for q > 1, from the definition of ρf (p, q) it follows that for all sufficiently large values of
r

log[p] µ(rβ , f) ≤ (ρf (p, q) + ε) log[q] (rβ)
i.e., log[p] µ(rβ , f) ≤ (ρf (p, q) + ε) log[q] r +O(1). (3.20)

Thus from (3.19) and (3.20) we have for a sequence of values of r tending to infinity that

log[p] µ(r, f ◦ g) ≤ α (ρf (p, q) + ε) log[q] r +O(1)

i.e.,
log[p] µ(r, f ◦ g)

log[q] r
≤ α (ρf (p, q) + ε) log[q] r +O(1)

log[q] r

i.e., lim inf
r→∞

log[p] µ(r, f ◦ g)
log[q] r

= λf◦g(p, q) <∞.

This is a contradiction.
This proves the theorem.

Remark 3.10. Theorem 3.9 is also valid with “limit superior” instead of “limit” if λf◦g(p, q) =
∞ is replaced by ρf◦g(p, q) =∞ and the other conditions remaining the same.

Corollary 3.11. Under the assumptions of Remark 3.10,

lim sup
r→∞

log[p−1] µ(r, f ◦ g)
log[p−1] µ(rβ , f)

=∞.

Proof. From Remark 3.10, we obtain for all sufficiently large values of r and for K > 1,

log[p] µ(r, f ◦ g) > K log[p] µ(rβ , f)

i.e., log[p−1] µ(r, f ◦ g) >
{

log[p−1] µ(rβ , f)
}K

,

from which the corollary follows.

Corollary 3.12. Under the same conditions of Theorem 3.9 if q = 1

lim
r→∞

log[p] µ(r, f ◦ g)
log[p] µ(rβ , f)

=∞.

Corollary 3.13. Under the same conditions of Remark 3.10 if q = 1

lim sup
r→∞

log[p] µ(r, f ◦ g)
log[p] µ(rβ , f)

=∞.

Remark 3.14. The condition λf◦g(p, 1) = ∞ in Corollary 3.12 is necessary as we see in the
following example.
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Example 3.15. Let f = exp z, g = z and p = 2, q = 1,β = 1.
Then ρf (p, 1) = λf◦g(p, 1) = 1.
Now

logµ(r, f ◦ g) ≤ logM(r, f ◦ g) = logM(r, exp z) = r

and
logµ(r, f ◦ g) ≥ logM(

r

2
, f ◦ g) = logM(

r

2
, exp z) =

r

2
.

Then

lim
r→∞

log[p] µ(r, f ◦ g)
log[p] µ(rβ , (f)

≤ lim
r→∞

log[2] µ (r, f ◦ g)
log[2] µ(r, f)

≤ lim
r→∞

log r
log r

2

≤ 1 6=∞,which is contrary to Corollary 3.12.

Remark 3.16. Considering f = exp z, g = z and p = 2, q = 1,β = 1 one can easily verify that
the condition ρf◦g(p, 1) =∞ in Corollary 3.13 is essential.

Theorem 3.17. Let f and g be any two entire functions such that ρg(m,n) = 1 < λf (p, q) ≤
ρf (p, q) < ∞, where p, q,m, n are positive integers with p > q and m − n = 1.Then for any
R > r,

(i) lim
r→∞

{
log[p] µ(exp[n−1] r, f ◦ g)

}2

log[p−1] µ(exp[q−1] r, f) log[q] µ(exp[n−1]R, g)

= 0 if q ≥ m

and

(ii) lim
r→∞

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p] µ(exp[n−1] r, f ◦ g)

log[p−1] µ(exp[q−1] r, f) log[q] µ(exp[n−1]R, g)

= 0 if q < m.

Proof. From the definition of (p, q) th lower order of f we have for arbitrary positive ε and for
all sufficiently large values of r,

log[p] µ(exp[q−1] r, f) ≥ (λf (p, q)− ε) log[q] exp[q−1] r

i.e., log[p] µ(exp[q−1] r, f) ≥ (λf (p, q)− ε) log r

i.e., log[p−1] µ(exp[q−1] r, f) ≥ r(λf (p,q)−ε). (3.21)

Again in view of (3.1) we obtain from Lemma 2.2, for all sufficiently large values of r that

log[p] µ(exp[n−1] r, f ◦ g) ≤ log[p]M(M(exp[n−1] r, g), f)

i.e., log[p] µ(exp[n−1] r, f ◦ g)

≤ (ρf (p, q) + ε) log[q]M(exp[n−1] r, g). (3.22)
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Now the following two cases may arise :
Case I. Let q ≥ m.Then from (3.22), we get for all sufficiently large values of r that

log[p] µ(exp[n−1] r, f ◦ g)

≤ (ρf (p, q + ε) log[m−1]M(exp[n−1] r, g). (3.23)

Now for all sufficiently large values of r,

log[m]M(exp[n−1] r, g) ≤ (ρg (m,n) + ε) log r

i.e., log[m−1]M(exp[n−1] r, g) ≤ rρg(m,n)+ε. (3.24)

From(3.23) and (3.24) it follows for all sufficiently large values of r,

log[p] µ(exp[n−1] r, f ◦ g) ≤ (ρf (p, q + ε)rρg(m,n)+ε. (3.25)

Case II. Let q < m.Then from(3.22) we have for all sufficiently large values of r that

log[p] µ(exp[n−1] r, f ◦ g)

6 (ρf (p, q) + ε) exp[m−q] log[m]M(exp[n−1] r, g). (3.26)

Now for all sufficiently large values of r,

log[m]M
(

exp[n−1] r, g
)

6 (ρg(m,n) + ε) log[n] exp[n−1] r

i.e., log[m]M
(

exp[n−1] r, g
)

6 (ρg(m,n) + ε) log r

i.e. exp[m−q] log[m]M
(

exp[n−1] r, g
)

6 exp[m−q] log r(ρg(m,n)+ε)

i.e. exp[m−q] log[m]M
(

exp[n−1] r, g
)

6 exp[m−q−1] r(ρg(m,n)+ε). (3.27)

Now from(3.26) and (3.27), we get for all sufficiently large values of r that

log[p] µ(exp[n−1] r, f ◦ g)

6 (ρf (p, q) + ε) exp[m−q−1] r(ρg(m,n)+ε)

i.e., log[p+1] µ(exp[n−1] r, f ◦ g) 6 exp[m−q−2] r(ρg(m,n)+ε)

i.e., log[p+m−q−1] µ
(

exp[n−1] r, f ◦ g
)

6 log[m−q−2] exp[m−q−2] r(ρg(m,n)+ε)

i.e., log[p+m−q−1] µ
(

exp[n−1] r, f ◦ g
)
6 r(ρg(m,n)+ε). (3.28)

As ρg(m,n) < λf (p, q), we can choose ε(> 0) in such a way that

ρg(m,n) < λf (p, q)− ε. (3.29)

Now combining (3.25) of Case I and (3.21) we have for all sufficiently large values of r,

log[p] µ(exp[n−1] r, f ◦ g)
log[p−1] µ(exp[q−1] r, f)

≤ (ρf (p, q + ε)r(ρg(m,n)+ε)

r(λf (p,q)−ε)
.
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In view of (3.29), we get from above that

lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[p−1] µ(exp[q−1] r, f)

= 0

i.e., lim
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[p−1] µ(exp[q−1] r, f)

= 0. (3.30)

Again combining (3.28) of Case II and (3.21) it follows for all sufficiently large values of r that

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p−1] µ(exp[q−1] r, f)

≤ r(ρg(m,n)+ε)

r(λf (p,q)−ε)
.

Now in view of (3.29) we obtain from above that

lim sup
r→∞

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p−1] µ(exp[q−1] r, f)

= 0

i.e., lim
r→∞

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p−1] µ(exp[q−1] r, f)

= 0. (3.31)

Since M (r, g) ≤ R
R−rµ (R, f), from(3.22) we have for all sufficiently large values of r that

log[p] µ(exp[n−1] r, f ◦ g) ≤ (ρf (p, q + ε) log[q] µ(exp[n−1]R, g)

i.e.,
log[p] µ(exp[n−1] r, f ◦ g)

log[q] µ(exp[n−1]R, g)
≤ (ρf (p, q + ε).

Since ε(> 0) is arbitrary, we get from above that

lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g)

≤ ρf (p, q). (3.32)

From (3.30) and (3.32) we obtain for all sufficiently large values of r that

lim sup
r→∞

{
log[p] µ(exp[n−1] r, f ◦ g)

}2

log[p−1] µ(exp[q−1] r, f) log[q] µ(exp[n−1]R, g)

= lim
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[p−1] µ(exp[q−1] r, f)

.lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g)

≤ 0.ρf (p, q) = 0.

This proves the first part of the theorem.
Again from (3.31) and (3.32) we get for all sufficiently large values of r that

lim sup
r→∞

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p] µ(exp[n−1] r, f ◦ g)

log[p−1] µ(exp[q−1] r, f) log[q] µ(exp[n−1]R, g)

= lim
r→∞

log[p+m−q−1] µ(exp[n−1] r, f ◦ g)
log[p−1] µ(exp[q−1] r, f)

.lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g)

≤ 0.ρf (p, q) = 0
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i.e., lim
r→∞

log[p+m−q−1] µ
(
exp[n−1] r, f ◦ g

)
log[p] µ(exp[n−1] r, f ◦ g)

log[p−1] µ(exp[q−1] r, f) log[q] µ(exp[n−1]R, g)
= 0.

Thus the second part of the theorem is established.

Theorem 3.18. Let f and g be any two entire functions such that ρf (p, q) <∞ and ρf◦g(a, b) <
∞ where p, q; a, b are all positive integers with p > q and a > b. Also let λg <∞. Then for any
two positive integers m,n with m− n = 1, m > 2 and any R > r,

lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g). log[a] µ(exp[b−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g). log[m] µ(exp[n−1] r, g)

≤ ρf (p, q)ρf◦g(a, b).

Proof. For all sufficiently large values of r we have

log[a] µ(exp[b−1] r, f ◦ g) ≤ (ρf◦g(a, b) + ε) log[b] exp[b−1] r

i.e., log[a] µ(exp[b−1] r, f ◦ g) ≤ (ρf◦g(a, b) + ε) log r. (3.33)

Again for all sufficiently large values of r, it follows that

log[m] µ(exp[n−1] r, g) ≥ (λg(m,n)− ε) log[n] exp[n−1] r

i.e., log[m] µ(exp[n−1] r, g) ≥ (λg(m,n)− ε) log r. (3.34)

Now combining (3.33) and (3.34) we have for all sufficiently large values of r that

log[a] µ(exp[b−1] r, f ◦ g)
log[m] µ(exp[n−1] r, g)

≤ ρf◦g(a, b) + ε

λg(m,n)− ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→∞

log[a] µ(exp[b−1] r, f ◦ g)
log[m] µ(exp[n−1] r, g)

≤ ρf◦g(a, b)

λg(m,n)
. (3.35)

Now from (3.32) and (3.35) we obtain that

lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g). log[a] µ(exp[b−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g). log[m] µ(exp[n−1] r, g)

≤ lim sup
r→∞

log[a] µ(exp[b−1] r, f ◦ g)
log[m] µ(exp[n−1] r, g)

.lim sup
r→∞

log[p] µ(exp[n−1] r, f ◦ g)
log[q] µ(exp[n−1]R, g)

≤ ρf◦g(a, b)ρf (p, q)

λg(m,n)
.

Thus in view of Lemma 2.4, the theorem follows from above.

Corollary 3.19. Under the same conditions of Theorem 3.18 when m = 2,

lim sup
r→∞

log[p]µ(r, f ◦ g) log[a] µ(exp[b−1] r, f ◦ g)
log[q] µ(R, g) log[2] µ(r, g)

≤ ρf◦g(a, b)ρf (p, q)

λg
.
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Theorem 3.20. Let f and g be any two entire functions such that λf (p, q)and λg are both finite
and p, q are any two positive integers with p > q. Then for any R > r,

(i) lim inf
r→∞

log[p+1] µ (r, f ◦ g)
log[q+1] µ(R, g)

6 1

and

(ii) lim inf
r→∞

log[p] µ (r, f ◦ g)
log[q] µ(R, g)

≤ λf (p, q).

Proof. In view of (3.1) we get from (3.17) for a sequence of values of r tending to infinity that

log[p] µ (r, f ◦ g) 6 (λf (p, q) + ε) log[q]M (r, g)

i.e., log[p] µ (r, f ◦ g) 6 (λf (p, q) + ε) log[q] µ(R, g) (3.36)

i.e., log[p+1] µ (r, f ◦ g) 6 log[q+1] µ(R, g) +O(1)

i.e.,
log[p+1] µ (r, f ◦ g)

log[q+1] µ(R, g)
6

log[q+1] µ(R, g) +O(1)

log[q+1] µ(R, g)
. (3.37)

Also from (3.36), it follows for a sequence of values of r tending to infinity that

log[p] µ (r, f ◦ g)
log[q] µ(R, g)

≤ (λf (p, q) + ε) log[q] µ(R, g)

log[q] µ(R, g)
. (3.38)

Since ε (> 0) is arbitrary, it follows from (3.37) that

lim inf
r→∞

log[p+1] µ (r, f ◦ g)
log[q+1] µ(R, g)

6 1.

This proves the first part of the theorem.
As ε (> 0) is arbitrary, we obtain from (3.38) that

lim inf
r→∞

log[p] µ (r, f ◦ g)
log[q] µ(R, g)

≤ λf (p, q).

Thus the second part of the theorem follows.

In the line of Theorem 3.20, the following theorem may be deduced.

Theorem 3.21. Let f and g be any two entire functions such that ρf (p, q)and λg are both finite
and p, q are any two positive integers with p > q. Then for any R > r,

(i) lim sup
r→∞

log[p] µ (r, f ◦ g)
log[q] µ(R, g)

≤ ρf (p, q)

and

(ii) lim sup
r→∞

log[p+1] µ (r, f ◦ g)
log[q+1] µ(R, g)

6 1.
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