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Abstract In a manuscript of Ramanujan, published with his Lost Notebook [18] there are
forty identities involving the Rogers- Ramanujan functions. In this paper, we establish modular
relations involving the Rogers-Ramanujan functions, the Rogers-Ramanujan type functions of
order ten and the Rogers-Ramanujan-Slater type functions of order fifteen which are analogues
to Ramanujan forty identities. We also give partition theoretic interpretations of our modular
relations.

1 Introduction

Throughout the paper, we assume |¢| < 1 and for positive integer n, we use the standard notation

(a;q)o =1, (a;q),:= 1:[(1 —ag’) and (a;q)e := H(l —aq"™).
=0 n=0

In [18], Ramanujan stated that

H(@){G(@)}" — *G(a){H(q)}" =1+ 11¢{G(q)H(q)}°,

where ,
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are the famous Rogers-Ramanujan functions. In 1975, B. J. Birch [10] published 40 identities
conjectured by Ramanujan involving the functions G(¢) and H(q), which are called Ramanu-
jan’s forty identities. In 1921, H. B. C. Darling [14] proved one of the identities in the pro-
ceedings of London Mathematical Society. In the same issue of the journal, L. J. Rogers [20]
established 10 of the 40 identities including the one proved by Darling. In 1933, G. N. Watson
[24] proved 8 of the 40 identities, 2 of which had been previously established by Rogers. In
1977, D. Bressoud [12] in his doctoral thesis, proved 15 more from the list of 40. In 1989, A. F.
J. Biagioli [9] proved 8 of the remaining 9 identities by invoking the theory of modular forms.
Recently, B. C. Berndt et al. [8] have found new proofs for 35 of the forty identities in the spirit
of Ramanujan.

S.-S. Huang [16] and S. -L. Chen and Huang [13] have established several modular relations
for the Gollnitz-Gordan functions by techniques which have been used by Rogers, Watson and
Bressoud to prove some of Ramanujan’s 40 identities. In 2008, N. D. Baruah, J. Bora and N.
Saikia [6] have given alternative proofs some of them by using Schroter’s formulas and some
simple theta functions identities of Ramanujan. In 2003, H. Hahn [15] has established sev-
eral modular relations for the septic analogues of the Rogers-Ramanujan functions. In 2007,
Baruah and Bora [5] have established several modular relations for the nonic analogues of the
Rogers-Ramanujan functions as well as relations that are connected with the Rogers-Ramanujan,
Gollnitz-Gordan and septic analogues of Rogers-Ramanujan type functions. In 2007, Baruah
and Bora [4] have established several modular relations involving two functions analogues to the
Rogers-Ramanujan functions. Some of these relations are connected with Rogers-Ramanujan,
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Gollnitz-Gordan, septic and nonic analogues of Rogers-Ramanujan type functions.

In 2008, C. Adiga, K. R. Vasuki and B. R. Srivatsa Kumar [3] have established modular
relations involving two functions of Rogers-Ramanujan type. In 2010, Vasuki, G. Sharath and
K. R. Rajanna [23] have established modular relations for cubic functions and are shown to be
connected to the Ramanujan cubic continued fraction. In 2012, Adiga, Vasuki and N. Bhaskar
[2] have established modular relations for cubic functions. Vasuki and P. S. Guruprasad [22] have
established certain modular relations for the Rogers-Ramanujan type functions of order twelve
of which some of them are proved by Baruah and Bora [4] on employing different method.
Recently, Adiga and N. A. S. Bulkhali [1] have established several modular relations for the
Rogers-Ramanujan type functions of order ten, namely,

n(n+l1)/2
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Almost all of these functions which have been studied so far are due to Rogers [19] and L. G.
Slater [21].

o (1.4)

In [18, p. 33], Ramanujan stated the following identity:

2
flad®, a™'¢®) P (a7 'q; ¢P)n (—aq; @P)n

ermp® | (-

(4% @*)2n
The preceding result of Ramanujan yields infinitely many identities of Rogers-Ramanujan-Slater
type when a is set to +¢" for r € Q. In [17, p. 20] J. Mc Laughlin, A. V. Sills and P. Zimmer
have listed the following Rogers-Ramanujan-Slater type mod15 identities:
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The main purpose of this paper is to establish several modular relation involving A(q), B(q),
C(q) and D(q), which are analogues of Ramanujan’s forty identities and further we extract
partition theoretic interpretations of our results.
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2 Definitions and Preliminary results

In this section, we present some basic definitions and preliminary results on
Ramanujan’s theta functions. Ramanujan’s general theta function is

fla,b) = Y a2 pnin=l2 gh| < 1. 2.1)
Then it is easy to verify that
f(a,b) = f(b,a), (2.2)
f(1,a) =2f(a,d’), (2.3)
f(=1,a) =0. (2.4)

The well-known Jacobi triple product identity is given by
f(a,b) = (—a;ab)oo (—b;ab)so (ab; ab)oe (2.5)
and, if n is an integer,
fa,b) = @™+ D/2 pr(=1/2 ¢ (ab)™ bab) ™). (2.6)

The three most interesting special cases of (2.1) are

oa) = flaa= D ¢ =) 2P (2.7
_ 3y N a2 _ (@10 2.8
olg) = fle,q) gq P (2.8)
and
f=0) = fl=a,=)= > (=1)"¢"" V= (g:0). (2.9)

Also, after Ramanujan, define
X(0) == (—¢:¢")oo- (2.10)

Throughout the paper, we shall use f,, to denote f(—g"). The following lemma is a consequence
of (2.5) and Entry 24 of [7, p. 39].

Lemma 2.1. We have

_ 5 _Lzz B _fi v _ N
so(q)—flz 7 w<q>—f1, o( q)—fz, Y(—q) = o
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The following lemma is a consequence of (2.5) and the simple identity

gy = 2
( q,q)oo—fl.

Lemma 2.2. We have
(=) _h A
x(=¢)  fife

fla,d) =
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3 Main Results

In this section, we prove the following four modular relations involving A(q), B(q), C(q)
and D(q), Rogers-Ramanujan functions G(¢) and H(q) and Rogers-Ramanujan type functions
J(q) and K (q) of order ten. For Simplicity, for a positive integer k, we set Ay := A(q"),
By = B(qk), Ck = C(qk), Dy = D(qk), Gk = G(qk), Hy = H(qk), Ji = J(qk) and
Ky := K(qk)

f2f6f3

A4A| + ¢*ByB) + ¢°C4Cy + "Dy D —q, 3.1
41Q41Q41Q41f1f5f12f20q (3.1)
A3Ay 4+ ¢*B3By 4 ¢°C3Cy + ¢"D3Dy = __ Bk (3.2)
fifsfiofisfis
AyGy — qByHy — ¢*CyGy — ¢*DrHy = s , (3.3)
fef10
2fs  faf?
A1J1+quK1+quJ1—q DK, = 2 . 3.4
fshi foff

3.1 Proofs of (3.1) - (3.4):

We will prove relations (3.1) - (3.4) by using ideas similar to those of Watson [24]. In all proofs,
one expresses the left sides of the identities in terms of theta functions by using (2.5). After
clearing fractions, we see that the right side can be expressed as a product of two theta functions,
say with summations indices m and n. One then tries to find a change of indices of the form

am+ pn=5M +a and ym+ dn=5N +b,

so that the product on the right side decomposes into the requisite sum of two products of theta
functions on the left side.

Theorem 3.1. The identity (3.1) holds.

Proof. Using (1.6) - (1.9), we may rewrite (3.1) in the form

F=?, —a®) (=", —¢®) + A f(—g™, —'®) f(—q'', —¢*)
+¢° f(=¢*, =) [(=* —4") + d' f(=a°, =¢*) f(=da"*. =)
= f(a:4) f(=¢" —¢°) = f(=@°) f(=d") q. (3.5)
Set
m+n=5M+a and m—4n=5N+10
where a and b will have values from the set {0, £1,+2 }. Then

m=4M + N+ (4a+b)/5 and n=M — N+ (a—b)/5.

It follows easily that a = b, and som = 4M + N +aandn = M — N, where -2 < a < 2.
Thus there is a one-to-one correspondence between the set of all pairs of integers (m,n), —oco <
m,n < oo, and triple of integers (M, N,a), —oco < M,N < oo, —2 < a < 2. Using (2.1) and
(2.7), we obtain

f(q,qz) </J(—q6) = Z (-=1)" q(Sm +m+12n°)/2

m,n=—o0

2 e’}

(3a24a) 60M2+(24a+4) M
E § M 4 ———

a=—2 M=—oc0

>0 N 15N24(6a+1) N
x Y (-DNg 2

_ Z (3a*+a /2 q32+12a7 _q28—12a) f(—ng“, _q7—3a)
a=—2
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= (=" —¢") (=, —a") + ¢ f(=a®, =¢*) f(=¢*. —¢"")
+ f(=a?, =) f(=d", =) + ¢ f(—=a*, —¢"°) f(=4¢"". —¢")
+4' f(=a* —¢") f(=¢",—q)
which is nothing but (3.5). This completes the proof of the theorem. O
Theorem 3.2. The identity (3.2) holds.

Proof. Using (1.6) - (1.9), we may rewrite (3.2) in the form
F=a =) f(=4'°,=d") + @ f (=P, —¢") f(=¢*,—¢")
+¢ f(—4¢°,—a”) f(=¢",~¢) + d' f(=a*, &) F(—=a**, ~¢*)
= f(a.4") f(=,=¢") = F(=4"") f(=d") q. (3.6)
Set
m+2n=5M+a and m —3n=5N +b
where a and b will have values from the set {0, +1, 42 }. Then

m=3M+2N + (3a+2b)/5 and n=M — N+ (a — b)/5.

It follows easily that a = b, and so m = 3M + 2N +aandn = M — N, where =2 < a < 2.
Thus there is a one-to-one correspondence between the set of all pairs of integers (m,n), —oco <
m,n < oo, and triple of integers (M, N,a), —oo < M, N < co, —2 < a < 2. Using (2.1) and
(2.7), we obtain

o0

fla.¢) o(—¢°) = Z (= 1) gBm+m+18n%)/2

m,n=—o0

oo

2 (3a+a) 45M2 (18013 M
_ a’ta M a3
= E q E (,1) q 2

a=—2 M=—oc0

o0

30N24(12a42) N
x Y (=DNg 2

N=—oc0
2

2
_ Z q(3a +a)/2 f(_q24+9a7_q2179a) f(_ql6+6a7_q1476a)

a=-2

= f(=¢°,—”) F(=¢", =) + 0 f(=4", =) f(=4", —¢*)
+ (= =) f(=4" =a") + @ F (=47, —4") [(=a, —d")
+d' f(=q? =) f(=¢*, —)
which is nothing but (3.6). This completes the proof of the theorem. O
Theorem 3.3. The identity (3.3) holds.
Proof. Using (1.1), (1.2) and (1.6) - (1.9), we may write (3.3) in the form
J(=4"=d") f(=&* —¢*) = af (=¢*, =) f(=a, —4")
~f (=" =) J (¢ =) = (=&, ) [(~a,—a")
= f(=¢.-9) f(¢. 7). 3.7

Set
m+4+n=5M+a and 2m —3n=5N+b

where a and b will have values from the set {0, +1, 42 }. Then
m=3M+ N+ (3a+b)/5 and n=2M — N + (2a — b)/5.

It follows that values of a and b are associated as in the following table:

al 0] £1 | £2
b 10| £2| 71
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When a assumes the values -2, -1, 0, 1, 2 in succession, it is easy to see that the corresponding
values of 2m? + 3n2 + n are, respectively,

30M? — 22M +5N* + N + 4,
30M?* — 10M +5N? —5N +2,
30M? +2M +5N? — N,

30M? + 14M + 5N? — 3N + 2,
30M? 4 26M + 5N? — 3N + 6.

Hence, by using (2.7), (2.1) and (2.4) we get

[ee]

e(—q) f(q, qz) = Z (_l)mqwznz*"

m,n=—o0

=—f(=¢", ) [~ =) + f(=a", =¢"°) (=, =¢")
—af(=d*,=a*) f(~a,~¢") = @ f(=¢*, —**) f(~a,—q")
which is nothing but (3.7). This completes the proof of the theorem. O

Remark 3.4. This result can also be proved by applying a formula proved by R. Bleckmith, J.
Brillhart and I. Gerst [11, Theorem 2].

Theorem 3.5. The identity (3.4) holds.

Proof. Using (1.3), (1.4) and (1.6) - (1.9), we may write (3.4) in the form
f(=d', =) f(=a’,=d") + af(—=¢*,—=4¢"") f(=q,—4")
+af(=¢*,—4") f(=¢*,=d") = (=", =) f(=’,—q)
= (1, @) f(= —=¢") = f(=d", =) f(=&’, =) (3.8)
Set
m+2n=5M+a and m —3n=5N +b
where a and b will have values from the set {0, £1,+2 }. Then

m=3M+2N + (3a+2b)/5 and n=M — N + (a—b)/5.

It follows easily that a = b, and so m = 3M + 2N +aandn = M — N, where =2 < a < 2.
Thus there is a one-to-one correspondence between the set of all pairs of integers (m,n), —oco <
m,n < oo, and triple of integers (M, N,a), —oo < M, N < oo, —2 < a < 2. Using (2.1), (2.9)
and (2.6), we obtain

oo

fALg) f(= =)= D (=) g6 2m) /2

m,n=—0o0

2 00

(a%+a) 15M24(6a+15) M
= E q 2 E (_I)Mq 2

a=-2 M=—0c0

oo

2 a
« Z (_1)qu()N;r4N

N=—o0

2
2 —Jla a —zZa
_ Z g\ ra)? F(—q!03a, —g5-3a) f(—g5+2e, _g5-2a)

a=—2

=qf(—¢",—¢") f(=¢.—¢) + (=", =") f(=¢*. ")
+ (=0, —) f(=4"°, =) + af (- —4") f(=¢'.—d))
- f(=q.—¢") f(=d’,—q)

which is nothing but (3.8). This completes the proof of the theorem. O
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4 Applications to the theory of partitions

In this section, we present partition theoretic interpretations of (3.1)-(3.4). For simplicity, we
adopt the standard notation

(a1,02, .. n; Qoo = H(aj;q)oo

and define

where r and s are positive integers and r < s.

We also need the notation of colored partitions. A positive integer n has k color if there are k
copies of n available and all of them are viewed as distinct objects. Partitions of positive integer
into parts with colors are called “colored partitions".

For example, if 1 is allowed to have two colors, say r (red), and g (green), then all colored parti-
tionsof 3are 3,2+ 1,,2+ 1,41, + 1, +1,, 1, + 1, + 14,1, + 15+ 15, and 1, + 1, + 1,.

An important fact is that

I S
(g% qv)k,

is the generating function for the number of partitions of n, where all the parts are congruent to
u (mod v) and have k colors.

Theorem 4.1. Let Pi(n) denote the number of partitions of n into parts not congruent to +7,
+8, +15, £22, +23, £28 (mod 60), parts congruent to £3, £9, £12, +20, +21, +24, +27, 30
(mod 60) with two colors and parts congruent to +6, 18 (mod 60) with three colors.

Let P;(n) denote the number of partitions of n into parts not congruent to +4, £11, £15, £16,
+19, £26 (mod 60), parts congruent to +3, +9, +12, 420, +21, +24, 427, 30 (mod 60) with
two colors and parts congruent to +6, 18 (mod 60) with three colors.

Let P5(n) denote the number of partitions of n into parts not congruent to £2, +£8, +13, £15,
+17, £28 (mod 60), parts congruent to +3, +9, +12, 420, +21, +24, +27, 30 (mod 60) with
two colors and parts congruent to 6, 18 (mod 60) with three colors.

Let Py(n) denote the number of partitions of n into parts not congruent to +1, +4, £14, £15,
+16, £29 (mod 60), parts congruent to +3, +9, 12, +20, +21, +24, £27, 30 (mod 60) with
two colors and parts congruent to £6, £18 (mod 60) with three colors.

Let Ps(n) denote the number of partitions of n into parts not congruent to +6, +12, +15, +18,
+24,30 (mod 60), parts congruent to +1, 5, £7, £11, £13, 17, £19, £20, +23, +25, +29,
(mod 60) with two colors each.

Let Pg(n) denote the number of partitions of n into parts not congruent to +5, +£10, +15, +20,
+25, (mod 60), parts congruent to +£3, £9, £12, £21, £24, £27, 30 (mod 60) with two colors
and parts congruent to +6, +18 (mod 60) with three colors. Then, for any positive integer
n > 7, we have

Pi(n)4+ Py(n—2)+ Ps(n—5) + Py(n—7) = Ps(n) — Ps(n —1).
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Proof. Using (1.6)-(1.9) and (2.5) in (3.1) and simplifying we obtain

1
4

1+ 2+ 3+ 3+ 4+ 5+ 6+ 46+

1
(qIZ:t, q13:t’ q14:|:, q16:l:’ q17:t’ qIS:I:’ q18:|:’ q18:t7 q19:t7 q20:|:, qZO:I:; q60)oo

1
(qZ]i7 q21i7 q24i7 q24i’ QZSi’ q26i7 q27i, q27i’ q29i7 q307 q30; q60)Oo

(", @5, 3%, PF, ¢4, OF, ¢0F, ¢0F, ¢OF, OF, OF, ¢10F g1+, ¢12%; ¢90)

X

q2

(q]i’ q2i7 q3i7 q3i7 qSi7 q6i’ q6i7 q6i7 q7i7 qSi) q9i’ q9i7 qui, q]Zi; q60)Oo
1
(qIZ:t’ q13:i:7 ql4:|:7 ql7:|:’ q18:i:7 q18:t7 q18:|:, q2():i:’ q2():i:7 q21:|:, q21:|:; q
1

(q22:i:, (]23:&7 q24:|:, q24:|:’ (]25i, q27:|:’ q27:|:’ q28:i:7 ngi, q30, q30; q60>oo

+

60)OO

q5

+
(qli7 qSi’ q3i’ q4i7 q5i’ q6i7 q6i’ qGi’ q7i7 q9i’ q9i7 q10i7 qlli’ qIZi; qGO)OO

1
(q]Zi’ q14i7 qléi, q]8i7 q18i’ qlSi7 q19i, qZOi’ q20i7 qZIi, qZIi; q60)oo

1
(q22:i:’ q23:i:7 q24:|:7 q24:|:’ q25:i:’ (]26:&7 q27:|:’ L]ZH:, ngi, q307 q30; q60)00

q7

+
(q2i7 q3i7 q3i’ q5i7 q6i7 q6i7 q6i7 q7i’ q8i7 q9i7 q9i7 q10i7 qlli, qIZi; q60)oo

1
(qIZi’ q13i7 ql7i,ql8i7 qISi’ q18i7q19i, qZOi’ qui, qui,qui;q60)oo

1
26+

(q22:i:’ q23:i:7 q24:|:7 q24:|:’ q25:i:’ q 7(]27:|:, q27:i:’ q28:i:7 q307 q30; q60)OO

1
g

1+ 41+ 2+ 43+ 4+ 5+ 5+ 4,7+

1
(q13i’ q13i’ q14i7 q16i’ q17i’ q17i7 q19i7 q19i’ qui, q20i7 q21i; q60)oo

1
((122i7 qu’»i7 qZSi7 qZSi7 q25i, q26i’ q27i7 q28i7 q29i’ q29i; QGO)OO

7+ 48+ 9+ 410+ 11+ 11+,

(", "%, %, @+, ¢, ¢, % g L @8F, POF, 0% ¢1E ¢11E;¢00)

X

X

q
("%, %5, 3%, PF, ¢*F, ¢0F, ¢0F, ¢F, 7%, 3%, OF, OF, g1+ ¢12%; ¢90)

1
(qIZ:I:, ql3:|:’ q14:I:7 q16:|:7 ql7:|:’ q18:I:’ q18:i:7 q18:|:, ql9:|:’ q21:I:7 q21:|:; qﬁo)oo

1
(q22:|:, q23:|:’ q24:i:7 q24:|:’ q26:|:’ q27:i:’ q27:i:’ ngi, ngi, q307 q30; q60>oo

X

X

Note that the six quotients of the above represent the generating functions for Py (n), P»(n),
Ps(n), Py(n), Ps(n) and Ps(n) respectively. Hence, it is equivalent to

ZPI n)q" +qzsz n)q" +qSZP3 n)q" +q7ZP4
=> Pi(n)g" —q Y _ Ps(n)q"
n=0

n=0

where we set P;(0) = P(0) = P5(0) = P4(0) = P5(0) = P4(0) = 1. Equating coefficients of
q" (n > 7) on both sides yields the desired result. i
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Example 4.2. The following table illustrates the case n = 7 in the Theorem (4.1)

P(7) =22 6-41, 6,41, 6+ 1,542 5+1+1, 4+3,, 443,
44241, 4414141,3,43,+1, 3, +3,+1, 3,43, + 1,
3, 4242 3,42+42, 3, +24+141,3,+2+1+1,
3o+l +1+1+1,3,+1+1+1+1,242+2+1,
242+ 14141, 2414+1+1+141, 141+1+1+14+1+1

Py (5) =38 53.+2, 3,+2, 3, +1+1,3,+1+1,
24241, 2414141, 1+14+14+1+1

P3(2) =1 1+1
P(0) = 1 1
P5(7) = 48 o Tar 50 +2,5, 42, 5, 4 1, + 1, 5, + 1, + 1,

Setly+1y, 5y+ 141y, Sy+ 1,41, 5,4 1,+ 1y, 443,
44241, 442+ 1, 4+ 1L+ 1+ 1, 4+ 1, + 1, + 1,
A4 1+ 1+ 1y, 441+ 1+ 15, 34341, 3+3+1,,

3424 141, 3424 1,41, 34241, + 1,
34+l + L+ + 1, 34+ L+ 1+ 1, + 1,
3+l Lot L+ 1y, 341+ 1+ 1, + 1,
341,41+ 1+ 15 34242, 2424241, 2+2+42+1,,
24241, 41,41, 242+ L+ Lo+ 15, 242+ 1, + 1, + 1y,
24241, F 11y, 24 L, + 1, + 1, + 1, +1,,

24l Lo Lot Lo+ 1y, 24 1+ L4 Lo+ 1y + 1,
24l Lo L1y, 24 L4 1+ 1, + 1, + 1,
241+ g+ 1g+ g+ 1, L+ L+ 1+ L+ L+ 1, + 1,
Lot L Lo Lo Lo L, Lo Lok L L+ L4 1+ 1,
L+l Lo+ L+ g+ 4 1 Lo L+ Lo T+ 1+ 1+ 1,
Ll g+l + 1+ 1,41, Lo+, + 1+ 1+ 1+ 1, + 1,
L+ g+ g+ 1g4 1,4 1,41,

Ps(6) = 16 6r, 69y 6wy 4+2, 4+ 1+1,3,+3, .3, +3, .3, +3, .
3, 4241,3, 4241, 3, +1+14+1,3, +1+1+1,24+2+2
24241+ 1,241+ 1+14+1, I+1+1+1+1+1

Theorem 4.3. Let P (n) denote the number of partitions of n into parts not congruent to +1, +5,
+7, £11, £13, £14, £16, £17, +£19, £21, £23, £24, £25, +£29, +31, +35, £37, £41, £43,
+44, (mod 90), parts congruent to £18, £36, 45 (mod 90) with two colors and parts congruent
to 9, 27 (mod 90) with three colors.

Let P,(n) denote the number of partitions of n into parts not congruent to £1, £5, £7, £8, £11,
+12, +£13, £17, £19, +22, 423, +25, +29, +31, +33, +35, +37, £38, +41, +43, (mod 90),
parts congruent to +18, 36, 45 (mod 90) with two colors and parts congruent to +9, +27
(mod 90) with three colors.

Let P5(n) denote the number of partitions of n into parts not congruent to +1, +4, +5, +6, +7,
+11, £13, £17, £19, £23, £25, £26, £29, £31, £34, +35, +£37, £39, +41, £43, (mod 90),
parts congruent to +18, +36, 45 (mod 90) with two colors and parts congruent to +9, +27
(mod 90) with three colors.

Let Py(n) denote the number of partitions of n into parts not congruent to £1, £2, 3, £5, £7,
+11, £13, £17, £19, +23, 425, +28, +29, +31, +32, +35, +37, +41, +42, +43, (mod 90),
parts congruent to +18, 36, 45 (mod 90) with two colors and parts congruent to +9, +27
(mod 90) with three colors.

Let Ps(n) denote the number of partitions of n into parts not congruent to +3, £6, +£9, £12,
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+15, £18, +21, £24, £27, £33, £36, £39, £42, 45 (mod 90).

Let Pg(n) denote the number of partitions of n into parts not congruent to +1, +5, +7, +10,
+11, +13, +£15, £17, £19, +20, £23, +25, +29, +30, +31, +35, +£37, +40, +41, +43,
(mod 90), parts congruent to +18, £36, 45 (mod 90) with two colors and parts congruent to
+9, +27 (mod 90) with three colors. Then, for any positive integer n > 1, we have

Pi(n)4+ Py(n—2)+ Ps(n—5) + Ps(n—7) = Ps(n) — Ps(n —1).
Proof. Using (1.6)-(1.9) and (2.5) in (3.2) and simplifying we obtain

1
9:|:, qu:I:’ q12:i:’ q15:|:7 q18:|:’ q18:i:; q90)oC

1
(qui, q22:i:7 q26:|:’ q27:|:, q27:i:7 q27:|:, ngi, q30:i:’ q32:i:7 q33:|:, q34:|:; (190)0O

1
(q36i7 q36i7 q38i7 q39i’ q40i’ q42i7 q457 q45; q90)oo

24+ 3£ 4L 0+ 8% 9 9%

(%, %, ¢, ¢, ¢3F,¢°F, 7% ¢

X

X

q2

+
(QZi, q3i7 q4i7 q6i’ q9i7 q9i’ q9i7 qui, q14i’ qlﬁi’ q16i7 q18i’ q181; q90)OC

1
(QZO:I:’ q21:t7 q24:|:, q26:|:’ q27:i:7 q27:|:7 q27:|:, q28:t’ q30:i:7 q32:|:, q34:|:; q90)oo

1
(q36:i:’ q36:i:7 q39:|:’ q40:|:’ q42:i:7 q44:|:, q45’ q45; q‘)O)OO

X

X

q5

+
(qZ:I:’ q3:t7 qS:I:, q9:i:7 q9:|:, q9:|:’ qIO:t’ q12:|:, q14:|:, qIS:i:’ q16:i:7 qIS:I:’ q18:|:; q90)OO

1
33+.
(612017 q21i7 q22i7 q24i’ q27i’ q27i7 q27i, qZSi7 qBOi7 q32i7 q i’ q90)oo

1
(q36:t’ q36:i:7 q38:|:, q40:|:’ q42:t7 q44:|:7 q457 q45; q90)oc

X

X

q7

+ (q4i’ q6i7 qSi7 q9i7 q9i’ q9i’ qui, qIZi’ q14i’ q15i7 q16i7 qISi, qISi; q90)oo

1
(qZOi’ q21i7 q22i, (124i7 q26i’ q27i7 q27i, q27i’ q30i7 q33i, q34i; q90)oo

1
(q36:i:’ q36:i:7 q38:|:, q39:|:’ q40:i:’ q44:|:7 q45, q45; q90)oo

X

X

1
- (qlzt’ q2:|:, q4:i:7 qS:I:, q7:i:’ q8:|:’ qIO:I:’ qllﬂ:’ q13:i:7 q14:|:’ q16:|:’ q17:i:7 q19:|:, q20:|:; q90)oo

1
3 .
(q22i, q23i’ qZSi7 q26i7 q28i, ngi, q30i7 q3li, q32i’ q 4i7 q35i7 q37i’ q90)oo

1
(q38i, q40i’ q4li’ q43i7 q44i; q90)oo

X

X

q
(qu) q3i’ q4i7 q6i7 q8i7 q9i, q9i’ q9i7 qui, q]4i’ ql6i7 q18i7 q]Si; q90)Oo

1
(qZI:I:, q22:|:’ q24:i:7 q26:|:7 q27:|:’ L]27i, qu:, q28:|:, q32:|:’ q33:i:7 q34:|:; q90)oo

1
(q36:|:, q36:|:’ q33:i:7 q39:|:, q42:|:’ q44:i:’ q457 q45; q90)OO

X

X

Note that the six quotients of the above represent the generating functions for Pj(n), Pa(n),
Ps(n), Py(n), Ps(n) and Ps(n) respectively. Hence, it is equivalent to

ZP] n)q" +qZZP2 n)q" +qSZP3 n)q" +q7ZP4

n=0 n=0 n=0

= i Ps(n)q" —q i Ps(n)q"
n=0 n=0
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where we set P;(0) = P»(0) = P3(0) = P4(0) = Ps(0) = Ps(0) = 1. Equating coefficients of
q™ (n > 7) on both sides yields the desired result. i

Example 4.4. The following table illustrates the case n = 9 in the Theorem(4.3)

P(9) =17 9, 9y, 9, 6+3, 4+3+2,
343+3,3+2+42+2

Py(7) =2 443,3+2+42

Py(4) = 1 242

P(2)=0 0

P5(9) = 16 8+1,7+2 T+1+1,5+4 5+2+2,

542+ 1+1,54+1+14+1+1,4+4+1,
A42+ 14141, 4414+1+1+141,4424+2+1,
242424241, 24242+ 1+1+1,
242+ 1+ 14+14+1+1 2+ 1+14+14+1+1+1+1,
1+ 1414141 +1+14+1+1
Ps(8) = 6 8, 6+2 4+4, 4+2+2,
343+2,2+2+42+42

Theorem 4.5. Let Pi(n) denote the number of partitions of n into parts not congruent to +2,
+5, +7, £8, £10, £13, +14 (mod 30), parts congruent to £3, +6, 15 (mod 30) with two colors
and parts congruent to +9 (mod 30) with three colors.

Let P5(n) denote the number of partitions of n into parts not congruent to +1, +4, +5, +8,
+10, £11, £14 (mod 30), parts congruent to +9, £12, 15 (mod 30) with two colors and parts
congruent to +3 (mod 30) with three colors.

Let Ps(n) denote the number of partitions of n into parts not congruent to +2, +4, £5, £7,
+8, £10, £13 (mod 30), parts congruent to £3, £6, 15 (mod 30) with two colors and parts
congruent to +9 (mod 30) with three colors.

Let Py(n) denote the number of partitions of n into parts not congruent to +1, £2, +4, £5,
+10, £11, £14 (mod 30), parts congruent to £9, +12, 15 (mod 30) with two colors and parts
congruent to +3 (mod 30) with three colors.Then, for any positive integer n > 3, we have

Pi(n) — Py(n—1)— P3(n—2) — Py(n—3) =0.
Proof. Using (1.1), (1.2), (1.6)-(1.9) and (2.5) in (3.3) and simplifying we obtain

1
(', 3, @F, ¢*F, ¢0F, ¢0F, ¢°F, ¢°F, OF, ¢"1F, ¢17F, 13,415, ¢%0) oo

q
(%, 3, 3%, ¢PF, 5%, 7%, 7% ¢

q12:|:’ q12:t? q13:t7 q15, qIS; q30)OO

("5, A%, 3, ¢0F, ¢, ¢OF g

9+
) )
2
q
9i7 qu’ qlli’ q12i7 q14i7 q157 qIS; q30)oo
3
_ q
(q3i7 q3i7 C]3i, q6i’ q7i7 q8i7 q9i7 q9i’ qIZi’ q12i7 qlSi7 q157 qIS; q30)oo

=1.

Note that the four quotients of the above represent the generating functions for P (n), Pa(n),
Ps(n) and Py(n) respectively. Hence, it is equivalent to

Y Pn)g" —q Y Pr(n)g"— ¢ ) Pi(n)g" — ¢’y Pa(n)g" =1
n=0 n=0 n=0 n=0

where we set P (0) = P,(0) = P53(0) = P4(0) = 1. Equating coefficients of ¢" (n > 3) on both
sides yields the desired result. O
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Example 4.6. The following table illustrates the case n = 8 in the Theorem (4.5)

P(8) =12 6+ 141, 6+ 1+1, 444 4+3,+1,
443,41, 441 +14+1+1,3,+3,+1+1,
3,43, +1+1,3,+3,+1+1,3, +1+1+14+1+1,
B+l +1+14+14+1, I+ 14+14+1+14+1+141,

P(7) =4 7,3, 4242, 3,+2+2, 3, +2+2,
P3(6) =8 67“’ 6ga 3r+3r7 3T+3g7 39+3g7

3, +1+14+1, 3, +14+1+1, 1+1+14+1+1+1,
P(5) =0 0

Theorem 4.7. Let Py (n) denote the number of partitions of n into parts not congruent to +3, +7
(mod 30), parts congruent to +1, £2, +4, +6, +11, £12, +14, 15 (mod 30) with two colors
and parts congruent to +5 (mod 30) with three colors.

Let P,(n) denote the number of partitions of n into parts not congruent to £9, £11 (mod 30),
parts congruent to £2, +6, 7, £8, £12, +13, +14, 15 (mod 30) with two colors and parts
congruent to +5 (mod 30) with three colors.

Let P5(n) denote the number of partitions of n into parts not congruent to £3, £13 (mod 30),
parts congruent to +1, +4, +£6, £8, +11, £12, +14, 15 (mod 30) with two colors and parts
congruent to +5 (mod 30) with three colors.

Let Py(n) denote the number of partitions of n into parts not congruent to £1, +9 (mod 30),
parts congruent to +2, +4, +6, +7, £8, +11, +13, 15 (mod 30) with two colors and parts
congruent to +5 (mod 30) with three colors.

Let Ps(n) denote the number of partitions of n into parts not congruent to £2, +4, +£6, +8, £10,
+12, +14 (mod 30), parts congruent to +3, £9 (mod 30) with two colors, parts congruent to
+1, £7, £11, £13 (mod 30) with three colors and parts congruent to =5, 15 (mod 30) with
four colors.

Let Ps(n) denote the number of partitions of n into parts not congruent to +5, £10, 15 (mod 30),
parts congruent to £1, £2, +£4, +6, +7, £8, £11, £12, +13, £14 (mod 30) with two colors .
Then, for any positive integer n > 2, we have

Pi(n)+ Py(n—1)+ Ps(n—1) — Ps(n —2) =2Ps(n) — Ps(n).

Proof. Using (1.3), (1.4) (1.6), (1.9) and (2.5) in (3.4) and simplifying we obtain

1

(qli’ qu:7 qu7 q2i7 q4i7 q4i’ q5i7 qSi7 q5i7 q6i7 q6i’ qu:7 q9i; q30)Oo
y 1

(qIOi’ ql li7 q11i7 qIZi, qIZi’ ql3i7 ql4i) ql4i’ q157 q15; q30)oo
N q

(qli, qu’ q2i7 q3i7 q4i7 qSi, qﬁi’ q5i7 q6i7 q6i7 q7i, q7i’ qSi, qSi; q30)oo
y 1

(qu:I:’ qui, q12:|:7 ql3:|:’ q13:i:’ q14:i:7 (]14:‘:, ql5’ q15; q30)oo

q

+
("%, @', ¢, 4, ¢, 0%, ¢, @F, ¢0F, ¢0F, 7F, 3, 3F, 0F 30) oo

1
X

(qIO:I:’ qll:i:7 qll:I:7 q12:|:, q12:i:7 q14:i:7 ql4:|:, qIS’ qIS; q30)oo
(@75, %, @, ¢*F, ¢, %, @PF, OF, ¢, 0% 7, 7F 3, 3 ¢0)
1
X

(qui7 qlli7 q11i7 qIZi, q13i7 qlSi7 q14i7 qIS’ qIS; q30)oo
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1
5t S5E PE F,

(', ¢"F, '+, @3F, ¢F, % g

1
(qlli’ qlli’ q11i7 C]13i7 qISi7 (]13i, q157 q15’ qlS7 qIS; q30)oo

1
(", @', ¢, %, 3%, % ¢, ¢ ¢F, 7%, 7F ¢, 3, 0F 5 30) oo

1
(qll:I:7 qll:I:’ q12:i:’ q12:i:7 ql3:|:, q13:i:’ q14:i:7 ql4:|:; qS())oo

A F, O OF )

X

X

Note that the six quotients of the above represent the generating functions for Pj(n), Py(n),
Ps(n), Py(n), Ps(n) and Ps(n) respectively. Hence, it is equivalent to

i Pi(n)g" +q i Py(n)q" +q i Pi(n)q" — ¢ i Py(n)q"
n=0 n=0

n=0 n=0

=2) Ps(n)g" =) Ps(n)q"
n=0 n=0

where we set P;(0) = P(0) = P5(0) = P4(0) = P5(0) = P4(0) = 1. Equating coefficients of
q" (n > 2) on both sides yields the desired result. i

Example 4.8. The following table illustrates the case n = 4 in the Theorem (4.7)

Pi(4) =16 by By 20+ 20, 20+ 24, 20+ 24, 20+ 1+ 1y,
2.+ 1, + 14, 2, + 1,4+ 1g, 2, + 1. + 1,
20+ 1, +1,, 2,4+ 1,+1,, L, + 1, +1,+1,,
Lo+ 1.+ 1, + 1, Lo+ 1,4+ 1, + 1,
L4+l + 1,4+ 1, 1,+1,+1,+1,

P(3)=4 3,2, +1,2,+1, 1 +1+1,

P(3)=6 241, 2+ 1, 1, +1,+1,
L+1,4+ 1, L+ 1,+1,, 1,4+ 1,+1,

Py(2)=2 2, 24

Ps(4) =21 3+ 1, 3.4+ 1y, 30+ 1y, 3,4+ 1., 3,4+ 1, 3, + Lo,

Lo L4 LA 1y Lt Lot Lo+ Ly, Lo+ Lo+ 1+ Ly,
Lo Lo g+ 1g, Lo+ 1o+ 1+ 1y, Lot Lo Ly + 1y,
Lo+ 1y + 1+ 1y, L Ly + 1+ Ly, 1 1y + 1y + Ly,
Lot L+ Lo+ Loy Ty Ly 1+ 1y, 14 1,4 1, + L,
g+ 1+ Ly 4 Ly, g+ Ly 4 Ly + Ly, Ly + Ly 4+ 1y + 1,
Ps(4) = 18 4ey by, 341, 341y, 2, +2,, 2, +24, 2,42,
2o+ L+ 1, 2+ L Ly, 2+ 1+ 1, 20+ 1+ 1,
20+ 1o+ 1g, 20+ 1+ 1gy Lo+ 1+ 1, 4 1,
L Lo+ L+ 1, L L 1y + 1, Lo T+ 1+ 1,
ly+1,+1,+1,
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