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Abstract. Let f : A −→ B be a ring homomorphism and let J be an ideal of B. In this
paper, we investigate the transfer of the notion of valuation ring and arithmetical ring to the
amalgamationA ./f J. IfA andB are integral domains, then we provide necessary and sufficient
conditions for A ./f J to be an arithmetical ring and Prüfer domain.

1 Introduction

Throughout this paper all rings considered are assumed to be commutative, and have identity
element and all modules are unitary.

Following Kaplansky [12], a ring R is said to be a valuation ring if for any two elements in
R, one divides the other. By an arithmetical ring is understood a ringR for which the ideals form
a distributive lattice [11], i.e. for which

(a+ b) ∩ c = (a ∩ c) + (b ∩ c) for all ideals of R.

In [11], it is shown that R is an arithmetical ring if and only if each localization Rm at a maximal
ideal m is a valuation ring. Note that an arithmetical domain is a Prüfer domain. See for instance
[1, 2, 9, 10].

Let A and B be rings, J an ideal of B and let f : A −→ B be a ring homomorphism. The
following subring of A×B :

A ./f J = {(a, f(a) + j) ; a ∈ A, j ∈ J}

is said to be amalgamation of A with B along J with respect to f introduced and studied by
D’Anna, Finocchiaro and Fontana in [6] and in [7]. In particular, they have studied amalgma-
tions in the frame of pullbacks which allowed them to establish numerous (prime) ideal and
ring-theoretic basic properties for this new construction. This construction is a generalization
of the amalgamated duplication of a ring along an ideal (introduced and studied by D’Anna and
Fontana in [3, 4, 5]). The interest of amalgamation resides, partly, in its ability to cover several
basic constructions in commutative algebra, including pullbacks and trivial ring extensions (also
called Nagata’s idealizations). See for instance [3, 4, 5, 6, 7].

In this paper, we investigate the transfer of the notion of valuation ring and arithmetical ring
to the amalgamation A ./f J. If A and B are integral domains, then we provide necessary and
sufficient conditions for A ./f J to be an arithmetical ring and Prüfer domain.

2 Main Results

We first develop a result on the transfer of the valuation property to amalgamation rings.

Theorem 2.1. Let A and B be a pair of rings, J an ideal of B and let f : A −→ B be a ring
homomorphism. Then:

(1) If f is not injective, then A ./f J is a valuation ring if and only if A is a valuation ring and
J = (0).
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(2) If f is injective, then A ./f J is a valuation ring if and only if f(A) + J is a valuation ring
and f(A) ∩ J = (0).

Proof. (1) Assume that A ./f J is a valuation ring. Since f is not injective, there is some
0 6= a ∈ ker f. We claim that J = (0).
Let x ∈ J. Then (a, 0) = (a, f(a)) ∈ A ./f J and (0, x) ∈ A ./f J. Hence (0, x) ∈(
A ./f J

)
(a, 0) (since a 6= 0) and so (0, x) = (a, 0)(b, f(b)+j) for some (b, f(b)+j) ∈ A ./f J .

Hence x = 0, and so J = (0).
It remains to show that A is a valuation ring. Let (α, β) ∈ A2. Since A ./f J is a valuation
ring then (α, f(α)) ∈

(
A ./f J

)
(β, f(β)) or (β, f(β)) ∈

(
A ./f J

)
(α, f(α)). We conclude that

α ∈ Aβ or β ∈ Aα, as desired.
Conversely, assume that J = (0) and A is a valuation ring. Then A ./f J is isomorphic to A and
so A ./f J is a valuation ring.

(2) Let ϕ : A ./f J −→ f(A) + J be the ring homomorphism defined by

ϕ(a, f(a) + j) = f(a) + j.

We have
A ./f J

f−1(J)× (0)
' f(A) + J, since ϕ is surjective and kerϕ = f−1(J) × (0). Assume

that f is injective. If f(A) ∩ J = (0) and f(A) + J is a valuation ring, then f−1(J) = (0) and
A ./f J ' f(A)+J. It follows that A ./f J is a valuation ring. Conversely, assume that A ./f J
is a valuation ring. Since ϕ is a surjective ring homomorphism, then f(A) + J is a valuation
ring. Now suppose that f(A) ∩ J 6= (0), and choose an element f(a) 6= 0 in J , where a ∈ A.
We have (a, 0) ∈ A ./f J , and so (a, 0) ∈

(
A ./f J

)
(0, f(a)) or (0, f(a)) ∈

(
A ./f J

)
(a, 0), a

contradiction. This completes the proof of Theorem 2.1.

Remark 2.2. Let f : A −→ B be an injective ring homomorphism and let J be an ideal of B. If
A ./f J is a valuation ring and J 6= (0), then A is a valuation domain.

Proof. Suppose that the statement is false, and choose an element (a, b) ∈ A2 such that a 6=
0, b 6= 0 and ab = 0. For each x ∈ J there is (c, f(c)+ y) ∈ A ./f J such that (b, f(b))(c, f(c)+
y) = (0, x). Then bc = 0 and f(b)y = x, therefore f(a)x = 0 and f(a) ∈ (0 : J). For each
x ∈ J,we can write (a, f(a))(d, f(d)+z) = (0, x),where (d, f(d)+z) is an element ofA ./f J.
Hence x = f(a)z = 0 which contradicts J 6= (0).

Corollary 2.3. Let A be a ring and let I be an ideal of A. Then A ./ I is a valuation ring if and
only if A is a valuation ring and I = (0).

Now, we are able to give our main result about the transfer of arithmetical property to amal-
gamation of rings.

Theorem 2.4. Let A and B be a pair of integral domains, f : A −→ B a ring homomorphism
and let J be a proper ideal of B. Then:

(1) If A ./f J is an arithmetical ring then A is an arithmetical ring.

(2) If f is injective, thenA ./f J is an arithmetical ring if and only if f(A)+J is an arithmetical
ring and f(A) ∩ J = (0).

(3) If f is not injective, then A ./f J is not an arithmetical ring.

The proof of this theorem draws on the following results.

Lemma 2.5. Let f : A −→ B be a ring homomorphism, J an ideal of B and let m be a maximal
ideal of A. Set S = f(A \ m) + J. Then S is a closed subset of B and the correspondence

F : Am −→ S−1B, defined by F
(a
s

)
=
f(a)

f(s)
for all

a

s
∈ Am is a ring homomorphism.
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Proof. Let s, t ∈ A \m and x, y ∈ J, we have the equality

(f(s) + x)(f(t) + y) = f(st) + (f(s)y + f(t)x+ xy).

Then S is a closed subset of B. Let a, b ∈ A and s, t ∈ A \m, such that
a

s
=
b

t
. Then there exists

u ∈ A \m such that uta = usb and so f(u)f(t)f(a) = f(u)f(s)f(b). Hence,
f(a)

f(s)
=
f(b)

f(t)
and

so F is a mapping. Let
a

s
,
b

t
∈ Am. It is easy to get successively that

F

(
a

s
+
b

t

)
= F

(a
s

)
+ F

(
b

t

)
, F

(
a

s

b

t

)
= F

(a
s

)
F

(
b

t

)
and F (1) = 1. We deduce that F is a ring homomorphism.

Lemma 2.6. With the notations of the above lemma, set

M = m ./f J = {(a, f(a) + j) ; a ∈ m, j ∈ J}.

Then the correspondence between the ring
(
A ./f J

)
M

and Am ./F S−1J, ϕ :
(
A ./f J

)
M
−→

Am ./F S−1J where

ϕ

(
(a, f(a) + x)

(s, f(s) + y)

)
=

(
a

s
,
f(a) + x

f(s) + y

)
is a ring isomorphism.

Proof. We begin by showing that ϕ is a mapping. Then M := m ./f J, is a maximal ideal of

A ./f J by [7, Proposition 2.6]. For each
(a, f(a) + x)

(s, f(s) + y)
∈
(
A ./f J

)
M

, we have the following

equalities:

F
(a
s

)
+
f(s)x− f(a)y
f(s)(f(s) + y)

=
f(a)(f(s) + y) + f(s)x− f(a)y

f(s)(f(s) + y)
=
f(a) + x

f(s) + y
.

Therefore,
(
a

s
,
f(a) + x

f(s) + y

)
∈ Am ./F S−1J. Let a, a′ ∈ A, s, s′ ∈ A \ m, and x, y, x′, y′ ∈ J,

such that
(a, f(a) + x)

(s, f(s) + y)
=

(a′, f(a′) + x′)

(s′, f(s′) + y′)
. Then there exists (t, f(t) + z) ∈ S such that

(t, f(t) + z)(s′, f(s′) + y′)(a, f(a) + x) = (t, f(t) + z)(s, f(s) + y)(a′, f(a′) + x′)

and so {
ts′a = tsa′

(f(t) + z)(f(s′) + y′)(f(a) + x) = (f(t) + z)(f(s) + y)(f(a′) + y).

We deduce that
a

s
=

a′

s′
and

f(a) + x

f(s) + y
=

f(a′) + x′

f(s′) + y′
. It follows that ϕ is map of the ring(

A ./f J
)
M

into the ring Am ./F S−1J. From the definition of ϕ, we have ϕ(1) = 1. Let X =
(a, f(a) + x)

(s, f(s) + j)
, Y =

(b, f(b) + y)

(s, f(s) + j)
be elements of

(
A ./f J

)
M
, we have clearly the equalities

ϕ(X+Y ) = ϕ(X)+ϕ(Y ) and ϕ(XY ) = ϕ(X)ϕ(Y ). It follows that ϕ is a ring homomorphism.

We need only show that ϕ is bijective. Let X =
(a, f(a) + x)

(s, f(s) + y)
∈ kerϕ then

a

s
= 0 and

f(a) + x

f(s) + y
= 0. There is some (t, f(u)+j) ∈ Am×S such that ta = 0 and (f(u)+j)((f(a)+x) =

0. Multiplying the above equality by f(t) we get that (tu, f(tu) + f(t)j)(a, f(a) + x) = 0. It
follows that X = 0 and kerϕ = (0), so ϕ is injective. Let a ∈ A, s, t ∈ A \m and let x, y ∈ J.
Then we have the following equality:(

a

s
, F
(a
s

)
+

x

f(t) + y

)
=

(
at

st
,
f(at) + f(a)y + f(s)x

f(st) + f(s)y

)
.
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We put b = at, u = st, z = f(a)y + f(s)x and j = f(s)y. From the previous equalities we
deduce that (

a

s
, F
(a
s

)
+

x

f(t) + y

)
= ϕ

(
(b, f(b) + z)

(u, f(u) + j)

)
.

Consequently, ϕ is surjective. We conclude that ϕ is a ring isomorphism. This completes the
proof of Lemma 2.6.

Proof. of Theorem 2.4.

(1) straightforward.

(2) Assume that A ./f J is an arithmetical ring. Since f−1(J)  A there exists a max-
imal ideal m of A containing f−1(J). Let S be as in Lemma 2.5. By [7, Proposition 2.6],
M = m ./f J is a maximal ideal of A ./f J. Thus

(
A ./f J

)
M

is a valuation ring. We can now
apply Lemma 2.6 to obtain thatAm ./F S−1J is a valuation ring, where F : Am −→ S−1B is the

ring homomorphism defined by F
(a
s

)
=
f(a)

f(s)
. Let

a

s
∈ kerF, there is some (t, j) ∈ (A\m)×J

such that (f(t)+j)f(a) = 0. If f(t)+j = 0 then t ∈ f−1(J) which contradicts the containment
f−1(J) ⊆ m. Hence, f(a) = 0 since B is an integral domain. It follows that a = 0 and so F
is injective. By applying statement (2) of Theorem 2.1, we get that F (Am) ∩ S−1J = (0) and
F (Am) + S−1J is a valuation ring. Now, we wish to show that f(A) ∩ J = (0). Let a be an

element A such that f(a) ∈ J . We have clearly F
(a

1

)
=
f(a)

1
∈ F (Am) ∩ S−1J = (0) and so

f(a)

1
= 0. From the previous part of the proof, we deduce that a = 0 and so f(A)∩J = (0). On

the other hand, the natural projection of A ./f J ⊆ A× B into B, ϕ is injective (since so is f ).
Hence A ./f J ' f(A) + J. Consequently, f(A) + J is an arithmetical ring and the necessary
condition follows.
From the previous part of the proof, we get the sufficient condition.

(3) Suppose that A ./f J is an arithmetical ring, and choose 0 6= j ∈ J. Let m be a maximal
ideal of A, S = f(A \ m) + J and let F : Am −→ S−1B be the ring homomorphism defined

by F
(a
s

)
=

f(a)

f(s)
(by Lemma 2.5). It is easy to see that 0 6= a

1
∈ kerF, if 0 6= a ∈ ker f.

Hence F is not injective. By applying Lemma 2.6 and condition (1) of Theorem 2.1, we get
successively that Am is a valuation ring and S−1J = (0). Hence there exists f (tm) + jm ∈ S
such that (f (tm) + jm) j = 0. From the assumption, we can write f (tm)+ jm = 0. Let I be the
ideal of A generated by all tm. For every maximal ideal m of A, we have I * m since tm ∈ I \m,
therefore I = A. We can write 1 = t1x1 + · · · + tnxn, where xi ∈ A, ti ∈ A \ mi for some
maximal ideal mi of A. It follows that

1 = f(t1)f(x1) + · · ·+ f(tn)f(xn).

We conclude that J = B, since f(ti) ∈ J. We have the desired contradiction. This completes
the proof of Theorem 2.4.

Remark 2.7. Let f : A −→ B be a ring homomorphism and let J be an ideal of B.

• If J = (0) then A ./f J is an arithmetical ring if and only if A is an arithmetical ring.
• If J = B then A ./f J is an arithmetical ring if and only if A and B are arithmetical rings.

Proof. Since the product A × B is an arithmetical ring if and only if A and B are arithmetical
rings, the conclusion is straightforward.

Corollary 2.8. Let A be an integral domain and let I be a proper ideal of A. Then A ./ I is never
an arithmetical ring.

Now, we are able to give the transfer of Prüfer domain to amalgamation of rings.
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Corollary 2.9. Let A and B be a pair of integral domains, f : A −→ B a ring homomorphism
and let J be a proper ideal of B. Then A ./f J is a Prüfer domain if and only if f(A) + J is a
Prüfer domain and f(A) ∩ J = (0).

Proof. By Theorem 2.4 and [6, Proposition 5.2].
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