Arithmetical property in amalgamated algebras along an ideal

Mohammed Kabbour and Najib Mahdou
Dedicated to Patrick Smith and John Clark on the occasion of their 70th birthdays. Communicated by Ayman Badawi

MSC 2010 Classifications: 13D05, 13D02.
Keywords and phrases: valuation ring, arithmetical ring, Prüfer domain, amalgamation of rings.

Abstract

Let $f: A \longrightarrow B$ be a ring homomorphism and let J be an ideal of B. In this paper, we investigate the transfer of the notion of valuation ring and arithmetical ring to the amalgamation $A \bowtie^{f} J$. If A and B are integral domains, then we provide necessary and sufficient conditions for $A \bowtie^{f} J$ to be an arithmetical ring and Prüfer domain.

1 Introduction

Throughout this paper all rings considered are assumed to be commutative, and have identity element and all modules are unitary.

Following Kaplansky [12], a ring R is said to be a valuation ring if for any two elements in R, one divides the other. By an arithmetical ring is understood a ring R for which the ideals form a distributive lattice [11], i.e. for which

$$
(\mathfrak{a}+\mathfrak{b}) \cap \mathfrak{c}=(\mathfrak{a} \cap \mathfrak{c})+(\mathfrak{b} \cap \mathfrak{c}) \text { for all ideals of } R
$$

In [11], it is shown that R is an arithmetical ring if and only if each localization $R_{\mathfrak{m}}$ at a maximal ideal \mathfrak{m} is a valuation ring. Note that an arithmetical domain is a Prüfer domain. See for instance [1, 2, 9, 10].

Let A and B be rings, J an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. The following subring of $A \times B$:

$$
A \bowtie^{f} J=\{(a, f(a)+j) ; a \in A, j \in J\}
$$

is said to be amalgamation of A with B along J with respect to f introduced and studied by D'Anna, Finocchiaro and Fontana in [6] and in [7]. In particular, they have studied amalgmations in the frame of pullbacks which allowed them to establish numerous (prime) ideal and ring-theoretic basic properties for this new construction. This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana in $[3,4,5])$. The interest of amalgamation resides, partly, in its ability to cover several basic constructions in commutative algebra, including pullbacks and trivial ring extensions (also called Nagata's idealizations). See for instance [3, 4, 5, 6, 7].

In this paper, we investigate the transfer of the notion of valuation ring and arithmetical ring to the amalgamation $A \bowtie^{f} J$. If A and B are integral domains, then we provide necessary and sufficient conditions for $A \bowtie^{f} J$ to be an arithmetical ring and Prüfer domain.

2 Main Results

We first develop a result on the transfer of the valuation property to amalgamation rings.

Theorem 2.1. Let A and B be a pair of rings, J an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. Then:
(1) If f is not injective, then $A \bowtie^{f} J$ is a valuation ring if and only if A is a valuation ring and $J=(0)$.
(2) If f is injective, then $A \bowtie^{f} J$ is a valuation ring if and only if $f(A)+J$ is a valuation ring and $f(A) \cap J=(0)$.

Proof. (1) Assume that $A \bowtie^{f} J$ is a valuation ring. Since f is not injective, there is some $0 \neq a \in \operatorname{ker} f$. We claim that $J=(0)$.
Let $x \in J$. Then $(a, 0)=(a, f(a)) \in A \bowtie^{f} J$ and $(0, x) \in A \bowtie^{f} J$. Hence $(0, x) \in$ $\left(A \bowtie^{f} J\right)(a, 0)$ (since $\left.a \neq 0\right)$ and so $(0, x)=(a, 0)(b, f(b)+j)$ for some $(b, f(b)+j) \in A \bowtie^{f} J$. Hence $x=0$, and so $J=(0)$.
It remains to show that A is a valuation ring. Let $(\alpha, \beta) \in A^{2}$. Since $A \bowtie^{f} J$ is a valuation ring then $(\alpha, f(\alpha)) \in\left(A \bowtie^{f} J\right)(\beta, f(\beta))$ or $(\beta, f(\beta)) \in\left(A \bowtie^{f} J\right)(\alpha, f(\alpha))$. We conclude that $\alpha \in A \beta$ or $\beta \in A \alpha$, as desired.
Conversely, assume that $J=(0)$ and A is a valuation ring. Then $A \bowtie^{f} J$ is isomorphic to A and so $A \bowtie^{f} J$ is a valuation ring.
(2) Let $\varphi: A \bowtie^{f} J \longrightarrow f(A)+J$ be the ring homomorphism defined by

$$
\varphi(a, f(a)+j)=f(a)+j
$$

We have $\frac{A \bowtie^{f} J}{f^{-1}(J) \times(0)} \simeq f(A)+J$, since φ is surjective and $\operatorname{ker} \varphi=f^{-1}(J) \times(0)$. Assume that f is injective. If $f(A) \cap J=(0)$ and $f(A)+J$ is a valuation ring, then $f^{-1}(J)=(0)$ and $A \bowtie^{f} J \simeq f(A)+J$. It follows that $A \bowtie^{f} J$ is a valuation ring. Conversely, assume that $A \bowtie^{f} J$ is a valuation ring. Since φ is a surjective ring homomorphism, then $f(A)+J$ is a valuation ring. Now suppose that $f(A) \cap J \neq(0)$, and choose an element $f(a) \neq 0$ in J, where $a \in A$. We have $(a, 0) \in A \bowtie^{f} J$, and so $(a, 0) \in\left(A \bowtie^{f} J\right)(0, f(a))$ or $(0, f(a)) \in\left(A \bowtie^{f} J\right)(a, 0)$, a contradiction. This completes the proof of Theorem 2.1.

Remark 2.2. Let $f: A \longrightarrow B$ be an injective ring homomorphism and let J be an ideal of B. If $A \bowtie^{f} J$ is a valuation ring and $J \neq(0)$, then A is a valuation domain.
Proof. Suppose that the statement is false, and choose an element $(a, b) \in A^{2}$ such that $a \neq$ $0, b \neq 0$ and $a b=0$. For each $x \in J$ there is $(c, f(c)+y) \in A \bowtie^{f} J$ such that $(b, f(b))(c, f(c)+$ $y)=(0, x)$. Then $b c=0$ and $f(b) y=x$, therefore $f(a) x=0$ and $f(a) \in(0: J)$. For each $x \in J$, we can write $(a, f(a))(d, f(d)+z)=(0, x)$, where $(d, f(d)+z)$ is an element of $A \bowtie^{f} J$. Hence $x=f(a) z=0$ which contradicts $J \neq(0)$.

Corollary 2.3. Let A be a ring and let I be an ideal of A. Then $A \bowtie I$ is a valuation ring if and only if A is a valuation ring and $I=(0)$.

Now, we are able to give our main result about the transfer of arithmetical property to amalgamation of rings.

Theorem 2.4. Let A and B be a pair of integral domains, $f: A \longrightarrow B$ a ring homomorphism and let J be a proper ideal of B. Then:
(1) If $A \bowtie^{f} J$ is an arithmetical ring then A is an arithmetical ring.
(2) If f is injective, then $A \bowtie^{f} J$ is an arithmetical ring if and only if $f(A)+J$ is an arithmetical ring and $f(A) \cap J=(0)$.
(3) If f is not injective, then $A \bowtie^{f} J$ is not an arithmetical ring.

The proof of this theorem draws on the following results.

Lemma 2.5. Let $f: A \longrightarrow B$ be a ring homomorphism, J an ideal of B and let \mathfrak{m} be a maximal ideal of A. Set $S=f(A \backslash \mathfrak{m})+J$. Then S is a closed subset of B and the correspondence $F: A_{\mathfrak{m}} \longrightarrow S^{-1} B$, defined by $F\left(\frac{a}{s}\right)=\frac{f(a)}{f(s)}$ for all $\frac{a}{s} \in A_{\mathfrak{m}}$ is a ring homomorphism.

Proof. Let $s, t \in A \backslash \mathfrak{m}$ and $x, y \in J$, we have the equality

$$
(f(s)+x)(f(t)+y)=f(s t)+(f(s) y+f(t) x+x y)
$$

Then S is a closed subset of B. Let $a, b \in A$ and $s, t \in A \backslash \mathfrak{m}$, such that $\frac{a}{s}=\frac{b}{t}$. Then there exists $u \in A \backslash \mathfrak{m}$ such that $u t a=u s b$ and so $f(u) f(t) f(a)=f(u) f(s) f(b)$. Hence, $\frac{f(a)}{f(s)}=\frac{f(b)}{f(t)}$ and so F is a mapping. Let $\frac{a}{s}, \frac{b}{t} \in A_{\mathfrak{m}}$. It is easy to get successively that

$$
F\left(\frac{a}{s}+\frac{b}{t}\right)=F\left(\frac{a}{s}\right)+F\left(\frac{b}{t}\right), F\left(\frac{a}{s} \frac{b}{t}\right)=F\left(\frac{a}{s}\right) F\left(\frac{b}{t}\right)
$$

and $F(1)=1$. We deduce that F is a ring homomorphism.

Lemma 2.6. With the notations of the above lemma, set

$$
M=\mathfrak{m} \bowtie^{f} J=\{(a, f(a)+j) ; a \in \mathfrak{m}, j \in J\}
$$

Then the correspondence between the ring $\left(A \bowtie^{f} J\right)_{M}$ and $A_{\mathfrak{m}} \bowtie^{F} S^{-1} J, \varphi:\left(A \bowtie^{f} J\right)_{M} \longrightarrow$ $A_{\mathfrak{m}} \bowtie^{F} S^{-1} J$ where

$$
\varphi\left(\frac{(a, f(a)+x)}{(s, f(s)+y)}\right)=\left(\frac{a}{s}, \frac{f(a)+x}{f(s)+y}\right)
$$

is a ring isomorphism.
Proof. We begin by showing that φ is a mapping. Then $M:=\mathfrak{m} \bowtie^{f} J$, is a maximal ideal of $A \bowtie^{f} J$ by [7, Proposition 2.6]. For each $\frac{(a, f(a)+x)}{(s, f(s)+y)} \in\left(A \bowtie^{f} J\right)_{M}$, we have the following equalities:

$$
F\left(\frac{a}{s}\right)+\frac{f(s) x-f(a) y}{f(s)(f(s)+y)}=\frac{f(a)(f(s)+y)+f(s) x-f(a) y}{f(s)(f(s)+y)}=\frac{f(a)+x}{f(s)+y}
$$

Therefore, $\left(\frac{a}{s}, \frac{f(a)+x}{f(s)+y}\right) \in A_{\mathfrak{m}} \bowtie^{F} S^{-1} J$. Let $a, a^{\prime} \in A, s, s^{\prime} \in A \backslash \mathfrak{m}$, and $x, y, x^{\prime}, y^{\prime} \in J$, such that $\frac{(a, f(a)+x)}{(s, f(s)+y)}=\frac{\left(a^{\prime}, f\left(a^{\prime}\right)+x^{\prime}\right)}{\left(s^{\prime}, f\left(s^{\prime}\right)+y^{\prime}\right)}$. Then there exists $(t, f(t)+z) \in S$ such that

$$
(t, f(t)+z)\left(s^{\prime}, f\left(s^{\prime}\right)+y^{\prime}\right)(a, f(a)+x)=(t, f(t)+z)(s, f(s)+y)\left(a^{\prime}, f\left(a^{\prime}\right)+x^{\prime}\right)
$$

and so

$$
\left\{\begin{aligned}
t s^{\prime} a & =t s a^{\prime} \\
(f(t)+z)\left(f\left(s^{\prime}\right)+y^{\prime}\right)(f(a)+x) & =(f(t)+z)(f(s)+y)\left(f\left(a^{\prime}\right)+y\right)
\end{aligned}\right.
$$

We deduce that $\frac{a}{s}=\frac{a^{\prime}}{s^{\prime}}$ and $\frac{f(a)+x}{f(s)+y}=\frac{f\left(a^{\prime}\right)+x^{\prime}}{f\left(s^{\prime}\right)+y^{\prime}}$. It follows that φ is map of the ring $\left(A \bowtie^{f} J\right)_{M}$ into the ring $A_{\mathfrak{m}} \bowtie^{F} S^{-1} J$. From the definition of φ, we have $\varphi(1)=1$. Let $X=$ $\frac{(a, f(a)+x)}{(s, f(s)+j)}, Y=\frac{(b, f(b)+y)}{(s, f(s)+j)}$ be elements of $\left(A \bowtie^{f} J\right)_{M}$, we have clearly the equalities $\varphi(X+Y)=\varphi(X)+\varphi(Y)$ and $\varphi(X Y)=\varphi(X) \varphi(Y)$. It follows that φ is a ring homomorphism. We need only show that φ is bijective. Let $X=\frac{(a, f(a)+x)}{(s, f(s)+y)} \in \operatorname{ker} \varphi$ then $\frac{a}{s}=0$ and $\frac{f(a)+x}{f(s)+y}=0$. There is some $(t, f(u)+j) \in A_{\mathfrak{m}} \times S$ such that $t a=0$ and $(f(u)+j)((f(a)+x)=$ 0 . Multiplying the above equality by $f(t)$ we get that $(t u, f(t u)+f(t) j)(a, f(a)+x)=0$. It follows that $X=0$ and $\operatorname{ker} \varphi=(0)$, so φ is injective. Let $a \in A, s, t \in A \backslash \mathfrak{m}$ and let $x, y \in J$. Then we have the following equality:

$$
\left(\frac{a}{s}, F\left(\frac{a}{s}\right)+\frac{x}{f(t)+y}\right)=\left(\frac{a t}{s t}, \frac{f(a t)+f(a) y+f(s) x}{f(s t)+f(s) y}\right) .
$$

We put $b=a t, u=s t, z=f(a) y+f(s) x$ and $j=f(s) y$. From the previous equalities we deduce that

$$
\left(\frac{a}{s}, F\left(\frac{a}{s}\right)+\frac{x}{f(t)+y}\right)=\varphi\left(\frac{(b, f(b)+z)}{(u, f(u)+j)}\right)
$$

Consequently, φ is surjective. We conclude that φ is a ring isomorphism. This completes the proof of Lemma 2.6.

Proof. of Theorem 2.4.
(1) straightforward.
(2) Assume that $A \bowtie^{f} J$ is an arithmetical ring. Since $f^{-1}(J) \varsubsetneqq A$ there exists a maximal ideal \mathfrak{m} of A containing $f^{-1}(J)$. Let S be as in Lemma 2.5. By [7, Proposition 2.6], $M=\mathfrak{m} \bowtie^{f} J$ is a maximal ideal of $A \bowtie^{f} J$. Thus $\left(A \bowtie^{f} J\right)_{M}$ is a valuation ring. We can now apply Lemma 2.6 to obtain that $A_{\mathfrak{m}} \bowtie^{F} S^{-1} J$ is a valuation ring, where $F: A_{\mathfrak{m}} \longrightarrow S^{-1} B$ is the ring homomorphism defined by $F\left(\frac{a}{s}\right)=\frac{f(a)}{f(s)}$. Let $\frac{a}{s} \in \operatorname{ker} F$, there is some $(t, j) \in(A \backslash \mathfrak{m}) \times J$ such that $(f(t)+j) f(a)=0$. If $f(t)+j=0$ then $t \in f^{-1}(J)$ which contradicts the containment $f^{-1}(J) \subseteq \mathfrak{m}$. Hence, $f(a)=0$ since B is an integral domain. It follows that $a=0$ and so F is injective. By applying statement (2) of Theorem 2.1, we get that $F\left(A_{\mathfrak{m}}\right) \cap S^{-1} J=(0)$ and $F\left(A_{\mathfrak{m}}\right)+S^{-1} J$ is a valuation ring. Now, we wish to show that $f(A) \cap J=(0)$. Let a be an element A such that $f(a) \in J$. We have clearly $F\left(\frac{a}{1}\right)=\frac{f(a)}{1} \in F\left(A_{\mathfrak{m}}\right) \cap S^{-1} J=(0)$ and so $\frac{f(a)}{1}=0$. From the previous part of the proof, we deduce that $a=0$ and so $f(A) \cap J=(0)$. On the other hand, the natural projection of $A \bowtie^{f} J \subseteq A \times B$ into B, φ is injective (since so is f). Hence $A \bowtie^{f} J \simeq f(A)+J$. Consequently, $f(A)+J$ is an arithmetical ring and the necessary condition follows.
From the previous part of the proof, we get the sufficient condition.
(3) Suppose that $A \bowtie^{f} J$ is an arithmetical ring, and choose $0 \neq j \in J$. Let \mathfrak{m} be a maximal ideal of $A, S=f(A \backslash \mathfrak{m})+J$ and let $F: A_{\mathfrak{m}} \longrightarrow S^{-1} B$ be the ring homomorphism defined by $F\left(\frac{a}{s}\right)=\frac{f(a)}{f(s)}$ (by Lemma 2.5). It is easy to see that $0 \neq \frac{a}{1} \in \operatorname{ker} F$, if $0 \neq a \in \operatorname{ker} f$. Hence F is not injective. By applying Lemma 2.6 and condition (1) of Theorem 2.1, we get successively that $A_{\mathfrak{m}}$ is a valuation ring and $S^{-1} J=(0)$. Hence there exists $f\left(t_{\mathfrak{m}}\right)+j_{\mathfrak{m}} \in S$ such that $\left(f\left(t_{\mathfrak{m}}\right)+j_{\mathfrak{m}}\right) j=0$. From the assumption, we can write $f\left(t_{\mathfrak{m}}\right)+j_{\mathfrak{m}}=0$. Let I be the ideal of A generated by all $t_{\mathfrak{m}}$. For every maximal ideal \mathfrak{m} of A, we have $I \nsubseteq \mathfrak{m}$ since $t_{\mathfrak{m}} \in I \backslash \mathfrak{m}$, therefore $I=A$. We can write $1=t_{1} x_{1}+\cdots+t_{n} x_{n}$, where $x_{i} \in A, t_{i} \in A \backslash \mathfrak{m}_{i}$ for some maximal ideal \mathfrak{m}_{i} of A. It follows that

$$
1=f\left(t_{1}\right) f\left(x_{1}\right)+\cdots+f\left(t_{n}\right) f\left(x_{n}\right)
$$

We conclude that $J=B$, since $f\left(t_{i}\right) \in J$. We have the desired contradiction. This completes the proof of Theorem 2.4.

Remark 2.7. Let $f: A \longrightarrow B$ be a ring homomorphism and let J be an ideal of B.

- If $J=(0)$ then $A \bowtie^{f} J$ is an arithmetical ring if and only if A is an arithmetical ring.
- If $J=B$ then $A \bowtie^{f} J$ is an arithmetical ring if and only if A and B are arithmetical rings.

Proof. Since the product $A \times B$ is an arithmetical ring if and only if A and B are arithmetical rings, the conclusion is straightforward.

Corollary 2.8. Let A be an integral domain and let I be a proper ideal of A. Then $A \bowtie I$ is never an arithmetical ring.

Now, we are able to give the transfer of Prüfer domain to amalgamation of rings.

Corollary 2.9. Let A and B be a pair of integral domains, $f: A \longrightarrow B$ a ring homomorphism and let J be a proper ideal of B. Then $A \bowtie^{f} J$ is a Prüfer domain if and only if $f(A)+J$ is a Prüfer domain and $f(A) \cap J=(0)$.

Proof. By Theorem 2.4 and [6, Proposition 5.2].

Acknowledgements. We would like to thank the referee for a careful reading of this manuscript.

References

[1] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. of Pure Appl. Algebra 214 (2010) no. 1, 53-60.
[2] S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007) 180-193.
[3] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306(2) (2006) 507-519.
[4] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3) (2007) 443-459.
[5] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45(2) (2007) 241-252.
[6] M. D'Anna, C. A. Finacchiaro, and M. Fontana, Amalgamated algebras along an ideal, Comm. Algebra and Applications, Walter De Gruyter (2009) 241-252.
[7] M. D'Anna, C. A. Finacchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Applied Algebra 214 (2010) 1633-1641.
[8] L. Fuchs and L. Salce, Modules overs valuation domains, Pure and applied mathematics, 97 (1985).
[9] S. Glaz, Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
[10] S. Glaz, Prüfer conditions in rings with zero-divisors, CRC Press Series of Lectures in Pure Appl. Math. 241 (2005) 272-282.
[11] C.U. Jensen, Arithmetical rings, Acta Mathematica Hungaricae 17 (1966) 115-123.
[12] I. Kaplansky, Elementary divisors and modules, Proc. Amer. Math. Soc. 66 (1949) 464-491.

Author information

Mohammed Kabbour, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.
E-mail: mkabbour@gmail.com
Najib Mahdou, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

E-mail: mahdou@hotmail.com
Received: February 26, 2014.
Accepted: May 24, 2014.

