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Abstract. We consider a stabilization problem for a coupled wave equations on a compact
Riemanian manifold Ω with or without boundary. We prove the exponential stability result in the
energy space, under a geometrical control condition (BLR). Without any geometrical assumption
and for all regular initial data, we give a logarithmic decay result of the energy.

1 Introduction

In this paper we study the stabilization of a coupled wave equations. More precisely, we consider
the following initial and boundary value problem :

∂2
tu1 − ∆u1 + β ∂tu2 + 2a(x)∂tu1 = 0, Ω× (0,+∞), (1.1)

∂2
tu2 − α∆u2 − β ∂tu1 = 0, Ω× (0,+∞), (1.2)

u1 = 0, ∂Ω× (0,+∞), (1.3)

u2 = 0, ∂Ω× (0,+∞), (1.4)

u1(x, 0) = u0
1(x), ∂tu1(x, 0) = u1

1(x), x ∈ Ω, (1.5)

u2(x, 0) = u0
2(x), ∂tu2(x, 0) = u1

2(x), x ∈ Ω, (1.6)

where Ω is a compact connected Riemannian manifold, a(x) ∈ C(Ω,R+) and α, β are positives
constants.

If we set u = (u1, u2) then the system of equations (1.1)-(1.6) is equivalent to the following
system {

∂2
tu−Dαu+Kβ

a ∂tu = 0 in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞), u(·, 0) = u0 ∂tu(·, 0) = u1, in Ω,
(1.7)

where

Dα =

(
∆ 0
0 α∆

)
, Kβ

a =

(
2a(x) β

−β 0

)
, u0 = (u0

1, u
0
2) and u1 = (u1

1, u
1
2).

The problem (1.7) has an unique solution u(x, t) ∈ C0
(
R, (H1

0 (Ω))2
)
∩ C1

(
R, (L2(Ω))2

)
for all initial data u0 ∈ (H1

0 (Ω))2 ⊕ (L2(Ω))2, obtained by using the Hille-Yosida theorem for
an unbounded operator.

We consider the Hilbert space H = (H1
0 (Ω))2 ⊕ (L2(Ω))2, we define
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Aα,βa =

(
0 id

Dα −Kβ
a

)
, D(Aα,βa ) = (H1

0 (Ω) ∩H2(Ω))2 ⊕ (H1
0 (Ω))2. (1.8)

Let u(x, t) = (u1, u2)(x, t) solution of (1.7), we define the energy functional at the time t by

E(u, t) = 1
2

∫
Ω

(
|∂tu|2 + |∇αxu|2

)
= 1

2

∫
Ω

(
|∂tu1|2 + |∂tu2|2 + |∇xu1|2 + α|∇xu2|2

)
dx

(1.9)

that satisfy the following estimation

E(u, 0)− E(u, t) =
∫ t

0

∫
Ω

a(x)|∂su1(x, s)|2dxds, (1.10)

where ∇αxu = (∇xu1,
√
α∇xu2) . We recall the following results,

Theorem 1.1. Assume that a 6≡ 0. Then, we have

(i) If ∂Ω 6= ∅, we have Reλ < 0 for λ ∈ sp(Aα,βa ) (spectra set of Aα,βa ) ; If ∂Ω = ∅, λ = 0 is
the only eigenvalue with null real part.

(ii) For any initials data ((u0
1, u

0
2), (u

1
1, v

1
2)) ∈ (H1

0 (Ω))2 ⊕ (L2(Ω))2, the solution u = (u1, u2)
of (1.7) satisfies lim

t→+∞
E(u, t) = 0.

(iii) Moreover, assume that α 6= 1 and that the geodesic of Ω hasn’t contact of infinite order
with ∂Ω and there exists a time T0 such that any generalized geodesics of Ω with its length
large than T0 meet ({a(x) > 0}). Then, there exists c0, c1 > 0 such that

E(u)(t) ≤ c0e
−c1tE(u)(0), ∀u ∈ H, ∀ t ≥ 0. (1.11)

Proof.

(i) If λ = iω ∈ sp(Aα,βa ), ω ∈ R there exists f = (f1, f2) 6≡ 0 in
(
H1

0 (Ω)
)2 such that

−Dαf + λKα,β
a f + λ2f = 0, which implies

ω

(∫
Ω

a|f1|2 + β Re
∫

Ω

f2.f1

)
= 0,

ωβ Re
∫

Ω

f1.f2 = 0,

and ∫
Ω

|∇f1|2 − ω2
∫

Ω

|f1|2 − ωβ Im
∫

Ω

f1 · f2 = 0,

α

∫
Ω

|∇f2|2 − ω2
∫

Ω

|f2|2 + ωβ Im
∫

Ω

f2 · f1 = 0.

If ω = 0 then we have f1 = cst and f2 = cst ; if ω 6= 0, we have
√
af1 = 0 in L2(Ω), since

O = {a(x) > 0} is non empty open set. Then, f|O = 0 and{
−∆f1 + λ2f1 + βλf2 = 0,
−α∆f2 + λ2f2 − βλf1 = 0,

this implies that (f1, f2)|O ≡ (0, 0),using that Ω is connected set, thus (f1, f2) ≡ (0, 0).
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(ii) We deduce 2. by 1. because ⊕Eλj = H , using [7].

(iii) If ∂Ω = ∅, we can see [10] and the general case, following Bardos, Lebeau and Rauch [1],
using the propagation Theorem of Melrose- Sjöstrand which will be the goal of the proof
of point 2. of Theorem 1.3.

Theorem 1.2. Assume that a 6≡ 0. Then, there exists C > 0 such that

∀λ ∈ sp(Aα,βa ) \ {0} , Reλ < − 1
C
e−C|Imλ|. (1.12)

For λ = −σ + iω, ω ∈ R, |ω| ≥ 1 and 0 ≤ σ ≤ 1
C e
−C|ω| we have∣∣∣∣∣∣ (λ−Aα,βa )−1

∣∣∣∣∣∣
L(H)

≤ CeC|ω| (1.13)

( Here the norm of the resolvent is the norm of the operator on H ). Moreover, for any k > 0,
there exists C > 0 such that for all (u0, u1) ∈ D

((
Aα,βa

)k),

we have
∀t ≥ 0, E(u, t)

1
2 ≤ C

(ln(2 + t))
k

∥∥∥(u0, u1)
∥∥∥
D
(
(Aα,βa )

k
). (1.14)

Let R > 0, we set

D(R) = sup
{

Reλj | λj ∈ Sp(Aα,βa ), |λj | ≥ R
}

(1.15)

that is a negative function, decreasing when R > 0. We denote D(∞) = lim
R→∞

D(R) and

D(0) = lim
R→0+

D(R).

Assuming that there have no contacts of infinite order between the bicharacteristic of Ω and
its boundary ∂Ω ( the geometric control condition (GCC) ). First, we notice that determinant of
the symbol is given by

pα,βa (t, x; τ, ξ) =
(
|ξ|2 − τ 2) (α|ξ|2 − τ 2)

this leads to two bicharacteristic families in the characteristic set of Pα,βa , CharPα,βa =
{
(x, t; ξ, τ); pα,βa (t, x; τ, ξ) = 0

}
,

namely those of the symbols

p1 = |ξ|2 − τ 2 and pα = α|ξ|2 − τ 2,

if α 6= 1, the wave front sets propagate independently along the null bicharacteristic of each one
of the two families. Let ρ0 = (x0, u0) ∈ TΩ, with |u0| = 1 ( u0 is in a half closed space defined
by Ω if x0 ∈ ∂Ω ) there exists a unique geodesic generalized

s→ x1(s, ρ0) in Ω (resp. s→ x2(s, ρ0) in Ω ) issued to ρ0 i.e. satisfy

x1(0, ρ0) = x0, lim
s→0+

x1(s,ρ0)−x0
s = u0 (resp. lim

s→0+
x2(s,ρ0)−x0

s =
√
αu0).

Let t > 0, we set

C1(t) = inf
ρ0

1
t

∫ t

0
a(x1(s, ρ0))ds, C2(t) = inf

ρ0

1
t

∫ t

0
a(x2(s, ρ0))ds.

that satisfies
tCi(t) + sCi(s) ≤ (t+ s)Ci(t+ s), i = 1, 2.



268 A. Moulahi

We denote

C(t) = min (C1(t), C2(t))

= min
(

inf
ρ0

1
t

∫ t

0
a(x1(s, ρ0))ds, inf

ρ0

1
t

∫ t

0
a(x2(s, ρ0))ds

)
(1.16)

that is a additive function and we set C(∞) = lim
t→+∞

C(t). We have C(t) ≤ C(∞) for all t.

Let
% = sup

{
γ ≥ 0 / ∃B > 0,∀u ∈ H,E(u, t) ≤ Be−γtE(u, t)

}
. (1.17)

Theorem 1.3. Assume that α 6= 1, then we have

(i) % = min {−D(0), C(∞)}.

(ii) C(∞) ≤ −D(0).

2 Proof of Theorem 1.2

We denoteH =
(
H1

0 (Ω)
)2⊕(

L2(Ω)
)2, H∗ the dual space ofH and the duality product is given

by

〈u1, u2〉 =
∫

Ω

u1
1 · u2

2 − u2
1 · u1

2, u1 = (u1
1, u21) ∈ H∗, u2 = (u2

1, u
2
2) ∈ H. (2.1)

We decompose Aα,βa in the following form

Aα,βa = Aα,00 +Bβa = Aα0 +Bβa ; Aα0 =

(
0 id
Dα 0

)
; Bβa =

(
0 0
0 Kβ

a

)
(2.2)

Bβa is a bounded operator in H and compact as an operator of L(H,H∗).(
λ−Aα,βa

)
u = v equivalent to

{
u2 = λu1 − v1

Pα,βa,λ u1 = v2 +Kβ
a v1 + λv1; Pα,βa,λ = λ2id+ λKβ

a −Dα.
(2.3)

D(Aα,βa ) = (H1
0 (Ω)∩H2(Ω))2⊕ (H1

0 (Ω))2 endowed with the graph norm is an Hilbert space
and we define the resolvent set

R(Aα,βa ) =
{
λ ∈ C ; (λ−Aα,βa ) is bijective from D(Aα,βa ) onto H

}
.

The operator λ − Aα0 is a Fredholm operator of zero index from H onto H∗ this implies that
λ−Aα,βa is too and we have

R(Aα,βa ) =
{
λ ∈ C|(λ−Aα,βa ) is bijective from H onto H∗

}
.

[ Indeed, if (λ − Aα,βa ) is bijective from H onto H∗, that injective onto D(Aα,βa ) and for v ∈
H ⊂ H∗ and u ∈ H such that (λ − Aα,βa )u = v we have Aα,βa u = λu − v then u ∈ D(Aα,βa ).
inversely, if (λ − Aα,βa ) is bijective of D(Aα,βa ) onto H , if u ∈ H satisfy (λ − Aα,βa )u = 0 we
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have u ∈ D(Aα,βa ) then u = 0, moreover (λ − Aα,βa ) is a Fredholm operators of zero index and
injective hence there is bijective from H onto H∗ ]. We obtain that

R(Aα,βa ) =
{
λ ∈ C|Pα,βa,λ is bijective from

(
H1

0 (Ω)
)2

onto
(
H−1(Ω)

)2
}

(2.4)

and let λ ∈ R(Aα,βa ), we have

(
λ−Aα,βa

)−1
=

(
P−1
λ

(
Kβ
a + λid

)
P−1
λ

λP−1
λ

(
Kβ
a + λid

)
− id λP−1

λ

)
(2.5)

where P−1
λ = (Pα,βa,λ )

−1. In the following, we assume that a(x) is not identically zero functions.

Lemma 2.1. Let C > 0. There exists C1, C0 > 0 such that for all λ = −σ + iω, ω ∈ R, |σ| ≤ C
we have

∀ f = (f1, f2) ∈
(
H1

0 (Ω) ∩H2(Ω)
)2
,

‖f‖2
H1

0 (Ω)
≤ C0

2 e
C1|ω|

[
‖Pλf‖2

(L2(Ω))2 +
∫
a(x)|f1|2

]
.

(2.6)

Proof. Let Ω′ be a small neighborhood of Ω. We extended ∆ onto Ω′ as the following:
we extended the metric on Ω onto Ω′ and we denoted so ∆ the Laplacian onto Ω′. On neigh-
borhood of ∂Ω in Ω′, we choose the coordinates geodesic systems x = (x′, xn), x′ ∈ ∂Ω =
{xn = 0} , |xn| = dist(x, ∂Ω), xn > 0 located define the interior of Ω. We assume Ω′ \ Ω =
{x = (x′, xn), −ε0 < xn < 0} with ε0 small, in a neighborhood of ∂Ω, we have ∆ = ∂2

xn +
S(xn, x′, ∂x′) + L(x, ∂x) where L (resp. S) is one order (resp. second order). There exists
η ∈ C∞ (Ω′), η > 0 such that for |xn| < ε0 we have η−1 ◦ ∆ ◦ η = ∂2

xn +R(xn, x′, ∂x′) where R
is two order operator. We set ∆̃ = η−1 ◦∆ ◦ η in Ω, ∆̃ = ∂2

xn +R(−xn, x′, ∂x′) in xn < 0 and we
denote ã the extension of a on Ω′ define by ã(x′, xn) = a(x′,−xn) for xn < 0.

Let Q the elliptic operator with Lipschitz coefficients on R×Ω′ of matrix principal symbol

Q = −
(
∂2
s + ∆̃

)
Iα − iKβ

ã ∂s. (2.7)

Let U 6= ∅ is an open set with U is compact, s0 > 2, Ω =]− s0, s0[×U and ϕ ∈ C∞0 (Ω′), ϕ ≡ 1
in a neighborhood of Ω. According to [8], we have the following lemma.

Lemma 2.2. There exists θ ∈]0, 1[ and c > 0 such that for all v ∈
(
H2(]− s0, s0[×Ω′)

)2, we
have the following estimate

‖ϕv‖(H1(]−1,1[×Ω′))2 ≤ c‖v‖θ(H1(V ))2 [‖Qv‖(L2(V ))2 + ‖v‖(H1(Ω))2 ]1−θ (2.8)

where V =]− s0, s0[×Ω′.

Proof. The proof is a simple adaptation of the proof of the result given in [9]. For f =

(f1, f2) ∈
(
H1

0 (Ω ∩H2(Ω)
)2, we set g(s, x) = eisλη−1f(x) if x ∈ Ω, and g = −g(s, x′,−xn) if

xn < 0. We have g ∈ (H2(V ))2 andQ(g)(s, x) = η−1eisλPλ(f)(x) if x ∈ Ω andQ(g)(s, x′, xn) =
−Q(g)(s, x′,−xn) if xn < 0. We have

‖f‖(H1(Ω))2 ≤ Cte ‖ϕg‖H1((−1,+1)×Ω′),

‖Qg‖L2(V ) ≤ Cte es0|ω|‖Pλf‖(L2(Ω))2 ,

‖g‖(H1(V ))2 ≤ (1 + |ω|) es0|ω|‖f‖(H1(U))2 ,

‖g‖(H1(V ))2 ≤ (1 + |ω|) es0|ω|‖f‖(H1(Ω))2 ,
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then (2.8) implies, with s1 > s0

‖f‖(H1(Ω))2 ≤ Cte e
s1

1−θ |ω|
[
‖Pλf‖(L2(Ω))2 + ‖f‖(H1(V ))2

]
. (2.9)

Choosing an open set U ′ ⊂⊂ Ω such that a|U′ > 0, U ⊂⊂ U ′ and χ ∈ C∞0 (U ′), equal to id
near of U . We have (−Id+Dα)[χf ] = χ[(λ2id− id +Kβ

a )f − Pλf ] + [Dα, χ]f then

‖f‖(H1(U))2 ≤ Cte‖(−id +Dα)[χf ]‖(H−1(Ω))2

≤ Cte
[
‖Pλf‖(L2(Ω))2 + (1 + |λ|2)‖f‖2

(L2(U ′))2

]
.

(2.10)

and we obtain (2.6) by writing (2.9) in (2.10).

Proof of Theorem 1.2

Let ω ∈ R, |ω| ≤ 1, σ ∈ [0, 1
C1
e−C1|ω|]. By (2.6), for all f = (f1, f2) ∈

(
H1

0 (Ω) ∩H2(Ω)
)2,

we have
‖f‖2

(H1
0 (Ω))2 ≤ CeC0|ω|‖Pα,βλ f‖2

(L2(Ω)2 , (2.11)

or
‖f‖2

(H1
0 (Ω))2 ≤ CeC0|ω|

∫
a|f1|2. (2.12)

In the second case, the identity

(Pα,βλ f, f) = λ2 (‖f1‖L2(Ω) + ‖f2‖L2(Ω)

)2
+

∫
Ω

|∇f1|2 + α

∫
Ω

|∇f2|2 + 2λ
∫

Ω

a|f1|2

that implies ∣∣∣∣2ω [∫
Ω

a|f1|
]
− 2ωσ‖f‖2

(L2(Ω))2

∣∣∣∣ ≤ ‖f‖(L2(Ω))2‖Pα,βλ f‖(L2(Ω))2 ,

using (2.12), we get

‖f‖2
H1

0 (Ω) ≤
AeC0|ω|

2|ω|

[
‖Pα,βλ f‖(L2)(Ω)2‖f‖(H1

0 (Ω))2 + 2σ|ω‖f‖2
(L2(Ω))2

]
.

As (2.11) implies that the norm of P−1
λ from (L2(Ω))2 onto (H1

0 (Ω))2 is bounded by CeC|ω| and
we obtain the results (1.12)and (1.13) from (2.5).

Let H̃ = ⊕Eλj the space of finite linear combination vector ofH in the characteristic subspace
Eλj . We know that H̃ is dense in H . Let H̃0 = ⊕λj 6=0Eλj , we have H̃0 = H̃ if and only if
∂M 6= ∅ and E0 = {(u1, u2) / u1 = cte, u2 = 0} if ∂M = ∅

Let S = 1
iA

α,β
a , D =

{
z ∈ C / Imz 6∈ [0, 2‖a‖∞]

}
. We define on H̃ an inner product

〈u, v〉 =
∫

Ω

∇αu1 · ∇αv1 +

∫
u2 · v2

induct a norm equivalent to ‖ · ‖H and we have

Re
(
〈(z −Aα,βa )u, u〉

)
= Rez

∫
Ω

(
|∇u1|2 + α|∇v1|2

)
dx+

∫
Ω

(
(Rez + 2a)|u2|2 + Rez‖v2‖2) dx

hence result to

∃C > 0, ∀u ∈ H̃0, ∀z ∈ D , ‖(z − S)−1(u)‖H ≤
C

dist(z,Dc)
‖u‖H . (2.13)
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Moreover, for u ∈ H̃0 we have z 7→ (z − S)−1(u) is a meromorphic map with the asymptotic
behavior O( 1

|z|) as |z| → +∞ and by the Theorem 1.2 (1.13), if x ∈ H̃0 we have (ξ− S)−1(x) is
holomorphic at ξ ∈

{
z ∈ C; Imz < 2ε0e

−c2|Rez|
}

with ε0, c
−1
2 > 0 small enough and satisfies

on

Γ = [0,−d+ 2iε0e
−c2d] ∪

{
ξ ∈ C / ξ = η + 2iε0e

−c2|η|, |η| ≥ d
}
∪ [0,+d+ 2iε0e

−c2d]∥∥∥ (ξ − S)−1
(x)
∥∥∥
H
≤ Cec3|Reξ|‖x‖H . (2.14)

Then, there exists d > 0 such that for x ∈ H̃0 the operator (z − S)−1(x) is analytic in the region
below the outline Γ. We consider ψ ∈ C∞(Rt), equal to 0 for t < 1

3 and to 1 for t > 2
3 and we

set u = 1
(1−S)k (ψv) solution of

(∂t − S)u = ψ′(t)
1

(1− S)k
v(t). (2.15)

Let

u(t) =

∫ t

0
e(t−s)Sψ′(s)

1
(1− S)k

v(s)ds. (2.16)

Let c0 and c1 are a later choose. We have

u(t) =

∫ t

0

∫
Γ

∫ +∞

−∞

√
c0

π
ψ′(s)e(t−s)ξ

1
(1− ξ)k

e
−c0(λ− ξ√

ln t
)2

v(s)dλdξds
1

(1− S)
=

∫
s

∫
ξ

∫
|λ|<c1

√
ln t

+

∫
s

∫
ξ

∫
|λ|≥c1

√
ln t

= I1 + I2.

We remark that the decomposition is similar to that of Lebeau [8] and Burq [2].

Estimation of I1

The idea is to estimate I1, we deform the outline of integration in ξ on the outline Γ. This
requires to verify that the operator (ξ − S)−1

eitS is holomorphic with respect to ξ in the field is
below the contour and it verifies an estimate of type∥∥∥ (ξ − S)−1

∥∥∥
L(H)

≤ C1e
C2|Reξ|. (2.17)

What can be deduced from (2.13). We know that for Imξ < 0, the two families of operators

eisξ
(
(ξ − S)−1 − i

∫ s

0
eiσ(S−ξ)dσ

)
and (ξ − S)−1eisS

coincide for s = 0 and satisfy the same differential equation

∂sω = iξω − eisS .

Then, by the Gronowell lemma, the two families coincide for Imξ < 0. The family in the left
gives the analytic announcement and it is therefore in the integral defining I1 deform the outline
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ξ on the contour Γ. By the fact eisS is bounded for all s ≥ 0 and since the operator (ξ − S) eisS
is uniformly bounded in H with respect to ξ and s ∈ [0, 1], for t ≥ 0 we have∥∥∥∫

s

∫ ∫
ξ∈Γ1∪Γ2, |λ|<c1

√
ln t

∥∥∥ ≤ C‖u0‖
∫ 1

z=0
e−(t−1)ε0e

−adzdz ≤ c‖u1‖
t− 1

. (2.18)

By (2.17), we have for t > 1,∥∥∥ ∫
s

∫
ξ∈Γ3

∫
|λ|<c1

√
ln t

∥∥∥
≤ C

√
c0

∫ +∞

−∞

∫
|λ|<c1

√
ln t
e
−(t−1)ε0e

−a|η|+A|η|−c0(λ− η√
ln t

)2

dηdλ‖u1‖.
(2.19)

Let c2 such that c2a < 1 and ϕ = −(t− 1)ε0e
−a|η| +A|η| − c0(λ− η√

ln t
)2. Then, we have

|η| ≤ c2 ln t⇒ ϕ ≤ c2A ln t− (t− 1)ε0t
−c2a. (2.20)

We choose c1 ∈]0, c2[. Then, there exists δ > 0 such that if |λ| < c1
√

ln t and if |η| > c2 ln t then

(λ− η√
ln t

)2 ≥ δ(λ2 + (
η√
ln t

)2), (2.21)

let
ϕ ≤ A|η| − c0δ(λ

2 +
η√
ln t

)2). (2.22)

We choose c0 >
A
δc2

+ 1. For ε > 0 we have∫
|η|>c2 ln t

e
A|η|−c0δ(

η√
ln t

)2

= O
(
e−ε ln t) . (2.23)

By (2.18), (2.19), (2.20) and (2.23),

‖I1‖ ≤ Ct−ε‖u1‖. (2.24)

Estimation of I2

Let

J(u) =

∫ 1

0

∫ ∫
Imξ = − 1

2
|λ| ≥ c1

√
ln t

ψ′(s)ei(u−s)ξ
1

(1− iξ)k
.

1
ξ −B

· v(s)
√

c0
π e
−c0(λ− ξ√

ln t
)2

dsdξdλ.

(2.25)

For t ≥ 1, we have J(t) = I2(t) and for all u ∈ R,

(∂t−iS)J(u) =
∫ 1

0

∫ ∫
Imξ = − 1

2
|λ| ≥

√
ln t

ψ′(s)
iei(u−s)ξ

(1− iξ)k
v(s)

√
c0

π
e
−c0(λ− ξ√

ln t
)2

dsdξdλ = K(u),

(2.26)

that implies

J(t) = eitSJ(0) +
∫ t

0
ei(t−s)SK(s)ds. (2.27)
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Now we are going that J(t) is bounded in norm in H, we use that eisS is a contraction of H for

s ≥ 0 and separately K(u) for u ≥ 0, J(0) and
∫ 1

0
‖K(u)‖du (see [2]).

For u ∈ [1, t], we show that the outline in ξ given in (2.26), is deformed in the outline given
by Imξ =

√
ln t, that give for k > 1 and suppψ ⊂ [ 1

3 ,
2
3 ],

‖K(u)‖ ≤
∫ +∞

−∞
e−(u−

2
3 )
√

ln t 1
(1 + |ξ|)k

dξ‖u0‖ ≤ Cke−
√

ln t/3‖u0‖. (2.28)

Then we bound J(0). We treat such a contribution (2.25) of the region. For that is deformed
according to [8], the integral in ξ on the contour Γ = Γ+ ∪ Γ−, where

Γ
+ =

{
z = 1 + η − i

√
ln t; η > 0

}
Γ
− =

{
z = 1 + η − 1

2
i; η ≤ 0

}
∪
[

1− 1
2
i, 1− i

√
ln t
]
.

For ξ ∈ Γ−, by (2.13), we have for all s ∈ [0, 1] and for all λ ∈ [c1
√

ln t,+∞[ there exist δ > 0

∥∥∥e−isξ v(s)

(1− iξ)k
· 1
(ξ −B)

√
c0

2π
e
−c0(λ− ξ√

ln t
)2
∥∥∥ ≤ C

(1 + |ξ|)k
e−δ(λ

2+ ξ2
ln t )‖u0‖.

The contribution de Γ− to J(0) is bounded in norm by

C
√

ln t
∫
λ≥c1

√
ln t
e−δλ

2
‖u0‖ = O

(
e−ε ln t) ‖u0‖. (2.29)

For ξ ∈ Γ+ and s ∈ [ 1
3 ,

2
3 ] we have∥∥∥e−isξ V (s)

(1− iξ)k
· 1
(ξ −B)

√
c0

2π
e
−c0(λ− ξ√

ln t
)2
∥∥∥ ≤ e−√ln t/3 C

(1 + |η|)k
e−δ(λ

2+ ξ2
ln t )‖u0‖,

So, since the contribution of Γ+ to J(0) is bounded in norm by

Ce−
√

ln t/3‖u0‖. (2.30)

The contribution to J(0) of the region λ < −c1
√

ln t is bounded by the same way.

Finally, it remains to bounding

∫ 1

0
‖K(u)‖du ≤

(∫ 1

0
‖K(u)‖2du

) 1
2

. (2.31)

By the Plancherel identity,∫ +∞

−∞
‖K(u)‖2du = C

∫ +∞

−∞

∥∥∥ i

(1− iξ)k
v̂ψ′(ξ)

∫
|λ|≥c1

√
ln t
ec0(λ−ξ/

√
ln t)2

dλ
∥∥∥2
dξ

=
∫ +∞
−∞ ‖H(ξ)‖2dξ,

(2.32)

for ξ > 1
2c1ln t,
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‖H(ξ)‖ =
∥∥∥ ∫
|λ|>c1

√
ln t

1
(1− iξ)k

e−c0(λ−ξ/
√

ln t)2
dλv̂ψ′(ξ)

∥∥∥ ≤ C

(ln t)k
‖v̂ψ′(ξ)‖ (2.33)

and for ξ ≤ 1
2c1 ln t,

‖H(ξ)‖ ≤
∫
|λ|>c1

√
ln t
e−δ(λ

2+ξ2/ln t)dλ‖ ˆvψ′(ξ)‖ ≤ Ce−ε ln t‖ ˆvψ′(ξ)‖. (2.34)

Then, by (2.31), (2.32), (2.33), (2.34) and∫ +∞

∞
‖v̂ψ′(ξ)‖ =

∫
‖ψ′v(s)‖2ds ≤ C

∫ 1

0
|ψ′(s)|2ds‖v0‖2

( we recall that v(s) = eisSv0 implies ‖v(s)‖ ≤ ‖u0‖ ), we have∫ 1

0
‖K(u)‖du ≤ C

(
1

(ln t)k
+ e−ε ln t

)
‖U0‖. (2.35)

By (2.27), (2.28), (2.29), (2.30) and (2.35) we obtain

‖I2‖ ≤
C

(ln t)k
‖u1‖,

hence the estimate of I2.

3 Proof of Theorem 1.3

First, we prove % ≤ 2 min(−D(0), C(∞)). Let λj ∈ Sp(Aα,βa ) \ {0} there exists u = (u0, u1) =(
(u0

1, u
0
2), (u

1
1, u

1
2)
)
∈ Eλj such that Aα,βa u = λju and u(t, x) = etλju0 satisfy (1.1)-(1.6).

As E(u, t) = e2t ReλjE(u, 0) and E(u, 0) = 1
2

∫
Ω
|λj |2|u0|2 + |∇xu0

1|2 + α|∇xu0
2|2 6= 0, we

have % ≤ −2Reλj then % ≤ −2D(0). We assume that % = 2C(∞) + 4η with η > 0 there exists
B > 0 such that for all u ∈ H and for all t ≥ 0 we have the following estimate

E(u, t) ≤ Be−(%−η)tE(u, 0). (3.1)

Let t fixed such that Be−(%−η)t < e−(%−2η)t, we have C(t) ≤ C(∞) = %
2 − 2η, then there exists

i ∈ {1, 2} such that 1
t

∫ t
0 a(xi(s, ρ0))ds ≤ C(∞) = %

2−2η, and there exists ρ0 ∈ TΩ withC(t) <
%
2−η has left a little disturbing ρ0, we can assume that the outcome of generalized geodesic ρ0 did
as points of intersection with transverse ∂Ω on [−2t,+2t]. by constructing geometric standard
optical near γ, we can construct a solution u of (1.1) - (1.6) such that E(u, 0) = 1 and E(u, t) >
e−(%−2η)t which contradicts (3.1), so we have % ≤ 2C(∞). To check % ≥ 2 min {−D(0), C(∞)},
we prove the following lemma :

Lemma 3.1. For all T > 0 and for ε > 0 there exists C(ε, T ) such that for all solution of the
evolution equation (1.7) we have

E(u, T ) ≤ (1 + ε)e−2TC(T )E(u, 0) + C(ε, T )‖(u0, u1)‖(L2(Ω)×H−1(Ω))2 (3.2)
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Proof : If (3.2) is false then there exists T > 0 and ε > 0 such that for all k ≥ 1 there exists
Uk satisfy

E(uk, T ) ≥ (1 + ε)e−2TC(T )E(uk, 0) + k‖(uk0 , uk1 )‖(L2(Ω)×H−1(Ω))2 ,

E(uk, 0) = 1.
(3.3)

Then uk is bounded in
(
H1(I ×Ω)

)2, I = [−2T, 2T ] converges weakly to zero because ‖(uk0 , uk1 )‖2
(L2(Ω)×H−1(Ω))2 ≤

1
kE(uk, T ) ≤

1
kE(uk, 0) =

1
k .

Let µ the measure positive onto SZ (see section 4 (4.6)) associated to extract sequence of uk.
Let η ∈]0, T [. As the energy function is decreasing, for all ϕ ∈ C∞0 (]0, η[) we have by (3.2)∫ T

T−η
ϕ(T − t)E(uk, t)dt ≥ (1 + ε)e−2TC(T )

∫ η

0
ϕ(t)E(uk, t)dt (3.4)

hence
µ((SZ) ∩ (t ∈]T − η, T [)) ≥ (1 + ε)e−2TC(T )µ((SZ) ∩ (t ∈]0, η[)). (3.5)

Gold by the propagation Theorem we have

µ((SZ) ∩ (t ∈]T − η, T [)) ≤ e−2(T−η)C(T−η)µ((SZ) ∩ t ∈]0, η[). (3.6)

Since µ((SZ) ∩ (t ∈]0, η[)) > 0 (because if uk → 0 in
(
H1(]0, η[×Ω)

)2 that implies uk → 0
in
(
H1(J ×Ω)

)2 for all J this give a contradiction with the fact E(uk, 0) = 1). Since C(t)
defined in (1.16) as an infimum over a compact of a continuous function is continuous at t > 0,
(3.6) contradicts (3.5) to η small, hence the Lemma. 2

Let Aα,β,∗a the adjoint of Aα,βa , we denote by E∗λj the characteristic subspace of Aα,β,∗a asso-
ciated of the eigenvalue λj . Let H = (H1

0 (Ω))2 ⊕ (L2(Ω))2 and for N ≥ 1

HN =
{
x ∈ H / (x, y)H = 0,∀y ∈ ⊕|λj |≤NE

∗
λj

}
. (3.7)

Then HN is invariant under etA
α,β
a ( indeed let x ∈ HN , (yk) a basis of the vectorial space

⊕|λj |≤NE
∗
λj ⊂ D(Aα,β,∗a ) we have d

dt

(
etA

α,β
a x|Aα,β,∗a yk

)
=
∑
ck,l

(
etA

α,β
a x | yl

)
then

(
etA

α,β
a x|yl

)
≡

0 ). Let H∗ = (L2(Ω))2 ⊕ (H−1(Ω))2 and ΦN the norm of injection from HN onto H∗.
We have lim

N→+∞
ΦN = 0, indeed, we assume that there exists uN ∈ HN , ‖uN‖H = 1 and

‖uN‖H∗ ≤ lim
N→+∞

ΦN = ρ > 0. We can assume that uN converges weakly to u in H , and

strongly in H∗. We have ‖u‖H∗ ≥ ρ and (u, y)H = 0, ∀y ∈ E∗λj , ∀j. This is impossible by the
fact that ⊕E∗λj = H , since −Aα,β,∗a is a perturbation bounded of self-adjoint A0.

We can assume 2 min {−D(0), C(∞)} > 0, let η > 0 small and β̃ define by β̃ + η =
2 min {−D(0), C(∞)}. Choosing T > 0 such that 4|C(∞) − C(T )| < η, 2 log 3 < ηT and
N such that C(1, T )Φ2

N ≤ e−2TC(T ). By Lemma 3.1, identifying u ∈ H to the solution of
(1.1)-(1.6) with initial data u

∀u ∈ HN , E(u, T ) ≤ 3e−2TC(T )E(u, 0) (3.8)

then HN is stable by the evolution

∀u ∈ HN , ∀k
E(u, kT ) ≤ 3e−kT [2C(T )− log 3

T ]E(u, 0) ≤ e−kT β̃E(u, 0)
(3.9)
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as the energy decreases

∀u ∈ HN , ∀t ≥ 0, E(u, t) ≤ Be−β̃tE(u, 0), B = eβ̃T . (3.10)

Let γ̃ the contour encircling {λj | |λj | ≤ N} in the direct sense and Π = 1
2iπ

∫
γ̃

dλ

λ−Aα,βa
the spec-

tral projector on ⊕|λj |≤NEλj =WN ; then Π∗ is the spectral projector of Aα,β,∗a on ⊕|λj |≤NE
∗
λj .

Then for all u ∈ H , we have

u = v + w, v = Πu ∈WN , w = (id−Π)u ∈ HN . (3.11)

As WN is a finite dimensional and β̃ < −2D(0), We have

∃C, ∀u ∈WN , ∀t ≥ 0, E(u, T ) ≤ Ce−β̃tE(u, 0). (3.12)

The decomposition (3.11) is continuous, there existsC0 such thatE(v, 0)+E(w, 0) ≤ C0E(u, 0)
and by (3.10), (3.11) and (3.12) implies that % ≥ β̃ this achieve the Proof of 1. and 2. of Theorem
1.3 result the fact that Eλj ⊂ HN if |λj | > N ( since the projector Π is equal to zero on Eλj and
by (3.10), if C(∞) > 0 and β̃ < 2C(∞),

for N large enough
|λj | > N ⇒ 2Reλj ≤ −β̃. (3.13)

Then D(∞) ≤ −C(∞), hence 2. ( since D(∞) ≤ 0 treats the case C(∞) = 0 ).

4 Geometric and construction of measure

Near ∂M (M = Ω×R+), we choose the geodesic coordinate system : (x′, xn) ∈ ∂M×[0, r0]→;
xn = dist(x, ∂M) = dist(x, x′) where r0 > 0 small enough. In the system, the principal symbol
of−∆ is ξ2

n+R(xn, x
′, ξ′) andR0(x′, ξ′) = R|xn=0 is the metric form on T ∗∂M . We denote G the

operator space Q of the form Q = Qi +Q∂ where Qi is a classical pseudo- differential operator
ontoRt×Ω with compact support inRt×intΩ andQ∂ is a tangential pseudo differential operator
with compact support near R×∂Ω (i.eQ∂(t, x′, xn) = Q∂(xn)(f)(·, xn) whereQ∂(xn) is a C∞
p.d.o onto Rt × ∂Ω and Q∂ = ψQ∂ψ with ψ(t, xn) ∈ C∞0 (R× (−r0, r0)). We denote G(s) the
element of degree s in G and Gsym the subset of element in G with self-adjoint principal symbol.

Let X = Rt × Ω, bTX of the tangent bundle of rung dimX , the sections of which are the
tangent vector fields to R × ∂Ω, bT ∗ X the dual bundle (of the cotangent compressed bundle
of Melrose) and j : T ∗X →b T ∗X the canonical maps. Near the ∂X, bTX is generate by the
fields ∂t, ∂x′ , xn∂xn and

j(t, x′, xn; τ, ξ′, ξn) = (t, x′, xn; τ, ξ′, v = xnξn).

We denote
Pα,βa = ∂2

t −Dα +Kβ
a

with principal symbol

Pα =

(
−τ 2 + |ξ|2 0
0 −τ 2 + α|ξ|2

)
we notice that the determinate of the principal symbol is given by [11]:

p(t, x; τ, ξ) =
(
|ξ|2 − 1

) (
α|ξ|2 − 1

)
. (4.1)
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This leads to two bicharacteristic families in the characteristic set of Pα,βa , CharPα,βa , namely
those of the symbols

p1(t, x; τ, ξ) = |ξ|2 − τ 2 and pα(t, x; τ, ξ) = α|ξ|2 − τ 2,

1,
√
α are respectively the velocity of propagation.

Let M = R+ ×Ω. In the interior, i.e. in T ∗(R×Ω) wavefront sets propagate independently
along the null bicharacteristic of each one of the two families. As the boundary, however, one
has to consider the inverse images of the characteristic points, in CharPα,βa = p−1

1 {0} ∪ p−1
α {0}

with respect to the projection

Π : T ∗(M)|∂M → T ∗(∂M).

We will illustrate what happens at the boundary point (t, x) ∈ ∂M . Let (τ, η) 6= (0, 0) be a
tangential direction to ∂M at (t, x); i.e. η · ν(x) = 0, ν(x) being the exterior normal to Ω at x.
With the assumption α 6= 1, we can consider (τ, η) as an element of T ∗(t,x)(∂M), and to look for
its inverse image is both characteristic sets means to look for λ ∈ R such that

p1,α (t, x; τ, η + λν(x)) = 0. (4.2)

Because of
p1,α (t, x; τ, η + λν(x)) = c2

1,α(|η|2 + λ2)− τ 2,

this requires

λ = ±
√
τ 2 − |η|2 or λ = ±

√
τ 2

α
− η2. (4.3)

Hence, for the existence of such real λ, one of the two relations

r1 = τ 2 − η2 ≥ 0 or rα = τ 2 − αη2 ≥ 0

must be fulfilled. From the geometrical point of view there are some possibilities for a tangen-
tial direction ξ = (τ, η) 6= (0, 0), with different number of inverse images with respect to the
projection. We can introduce the transversal manifold :

CharT = CharTΩ ∪ CharT∂Ω,

CharTΩ =
{
(x, t; ξ, τ) ; τ 2 − c2

α|ξ|2 = 0, t > 0
}
,

CharT∂Ω = {(y, t; ξ, τ) ; y ∈ ∂Ω, y ∈ ∂Ω, t > 0, rα ≥ 0}

and the longitudinal manifold of the wave coupled system is

CharL = CharLΩ ∪ CharL∂Ω,

CharLΩ =
{
(x, t; ξ, τ) ; τ 2 − c2

1|ξ|2 = 0, t > 0
}
,

CharL∂Ω = {(y, t; ξ, τ) ; y ∈ ∂Ω, y ∈ ∂Ω, t > 0, r1 ≥ 0} ,

the characteristic manifold of the system is

CharP = CharPΩ ∪ CharP∂Ω

and the assumption on the coupled wave (α 6= 1) one obtains

CharPΩ = CharTΩ ∪ CharLΩ
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and
CharP∂Ω = CharT∂Ω if α > 1

either
CharP∂Ω = CharL∂Ω if 0 < α < 1.

Finally, we recall that CharP is endowed with a generalized bicharacteristic flow

Definition 4.1. Let η ∈ T ∗∂Ω. We say that

(i) η is a elliptic ( or η ∈ E) if and only if η 6∈ ( CharP )∂Ω.

(ii) η is a hyperbolic for the longitudinal wave ( or η ∈ HL) if and only if r1 > 0.

(iii) η is a glancing for the longitudinal wave ( or η ∈ GL) if and only if r1 = 0.

(iv) η is a hyperbolic for the transversal wave ( or η ∈ HT ) if and only if rα > 0.

(v) η is a glancing for the transversal wave ( or η ∈ HT ) if and only if rα = 0.

We are going now to make a description of a generalized bicharacteristic path and refer to
[8] for more details. The generalized bicharacteristic flow lives in CharP ⊂ T ∗M and for
ρ ∈ CharP , we denote by G(s, ρ) the generalized bicharacteristic path starting from ρ. Since
CharP is the disjoint union of CharPΩ, HT and GT if α > 1 or CharPΩ, HL and GL if α < 1.
We shall consider separately the case where ρ belongs to each one of these sets. Moreover all
the description below holds for |s| small.

Case 1. ρ ∈ CharPΩ

Here ρ = (x, t; ξ, τ) where x ∈ Ω, t ∈ (0, T ), p(x, t; ξ, τ) = 0. Then for |s| small, we have

G(s, ρ) = (x(s), t(s), τ, ξ) ⊂ T ∗(R×Ω)

where (x(s), ξ) is the characteristic starting from the point (x, ξ) of

• P1 if ρ ∈ CharLΩ,

• Pα if ρ ∈ CharTΩ.

Case 2. ρ ∈ ( CharP )∂Ω (i.e 0 ≤ rα) Here ρ = (x(s), t(s), η(s), τ(s)) where x ∈ ∂Ω,
t ∈ (0, T ) and the equation p(x, t, η + ξn, τ) = 0 has roots ξn = λν(x) described in (4.3).

For s > 0 ( resp. s < 0 ) letG+(s, ρ) = (x+(s), t(s), ξ+, τ(s)) (resp. G+(s, ρ) = (x−(s), t(s), ξ−, τ(s))
be the outgoing (resp. incoming ) bicharacterestic of P . The generalized bicharacteristic path is
such that G(0, ρ) = ρ and

G(s, ρ) =

{
G+(s, ρ) 0 < s < ε

G−(s, ρ) −ε < s < 0

Four possibilities may occur

(i) {
x+(s) = x+ 2c2

αsξ
+, 0 < s < ε,

x−(s) = x+ 2c2
αsξ
−, −ε < s < 0,

where ξ+ = η −
√
rT
cT

ν(x) and ξ− = η +
√
rT
cT

ν(x).

In particular, if 0 < rα, one has x(s) ∈ Ω for small |s| 6= 0.
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(ii) If 0 ≤ r1 ( i.e η ∈ GL ∪HL ⊂ HT ):

i - {
x+(s) = x+ 2c2

1sξ
+, 0 < s < ε,

x−(s) = x+ 2c2
1sξ
−, −ε < s < 0,

where ξ+ = η −
√
r1
c1
ν(x) and ξ− = η +

√
r1
c1
ν(x).

ii - {
x+(s) = x+ 2c2

1sξ
+, 0 < s < ε,

x−(s) = x+ 2c2
1sξ
−, −ε < s < 0,

where ξ+ = η −
√
r1
c1
ν(x) and ξ− = η +

√
rα
cα

ν(x).
iii - {

x+(s) = x+ 2c2
αsξ

+, 0 < s < ε,

x−(s) = x+ 2c2
1sξ
−, −ε < s < 0,

where ξ+ = η −
√
rα
cα

ν(x), ξ− = η +
√
r1
c1
ν(x),

and the manifold characteristic Char(Pα,βa ) = {(t, x′, xn; τ, ξ′, ξn); detp = 0}. We set

Z = j( Char(Pα,βa )), Ẑ = Z ∪ j(T ∗X|xn=0). (4.4)

We haveZ|xn=0 = {(t, x′, 0; τ, ξ′, 0); |ξ′| ≤ |τ | or
√
α|ξ′| ≤ |τ |} and Ẑ|xn=0 = {(t, x′, 0 ; τ, ξ′, v = 0)} =

T ∗(R× ∂M) = Z|xn=0 ∪ E where E is the boundary of elliptic region.

As xn ∈ [0, r0] we have p = ξ2
nIα + R− τ 2 id, R is nondegenerate positive matrix we have

(t, x′, xn; τ, ξ′, v) ∈ Ẑ, xn ∈ [0, r0]⇒


|v| ≤ xn|τ |

or
√
α|v| ≤ xn|τ |.

(4.5)

We obtain that Z and Ẑ are closed conic sets in T ∗X . We denote SẐ and SZ the spherical
quotients spaces

SẐ = (Ẑ \X)/R∗+, SZ = (Ẑ \X)/R∗+ (4.6)

which are a locally compact metric spaces. For Q ∈ G0 with principal symbol q = σ(Q) and we
define the function {

κ(q) ∈ C0
(
SẐ, end(C)

)
ρ ∈ Ẑ \X κ(q)(ρ) = q(j−1(ρ)).

(4.7)

( which is well defined because q is homogeneous and has κ(q)(x′, xn, ξ′, ξn) = q(x′, xn, ξ′,
ξn
xn

)
for x 6= 0 and q is independent of ξ for x sufficiently small.) By (4.7)the set{

κ(q), q = σ(Q), Q ∈ G0}
is locally dense in C0

(
SẐ, end(C2

)
)

where C0
(
SẐ, end(C2

)
)

is provided with the topol-

ogy of uniform convergence on compact. For G ∈ G0, and I is an open bounded real in-
terval and u(x, t) ∈

(
H1(I ×Ω)

)2 solution of Pα,βa u = 0 near the boundary, we have u ∈
Ck
(
xn ≤ 0;H

1
2−k
)

with k ∈ N. If Q ∈ G0
I (i.e, supported in I and zero degree), Q is a

bounded operator onto
(
L2(I ×Ω)

)2,
(
H1(I ×Ω)

)
and the commutators [∇αx , Q], [∂t, Q] are in

G0
I . We set
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ϕ(Q, u) = (Qu, u)(H1)2 = (∇αxQu,∇αxu)(L2)2 + (∂tQu, ∂tu)(L2)2 . (4.8)

By the integration by parts

ϕ(Q, u) =

∫
Rt×∂Ω

Qu · ∂αν u+ 2(∂tQu, ∂tu)(L2)2

− (Qu,Kβ
a ∂tu)(L2)2 + (Qu, u)(L2)2

(4.9)

where ∂αν u = (∂νu1, α∂νu2)

According [3], we recall some results useful in this work. We denoteM+ the spaces of Borel
measure µ onto SẐ with C value Hermitian positive on C2, a measure µ ofM+ is an element
of the dual space C0

0

(
SZ̃end

)
satisfy

〈µ, q〉 ≥ 0,∀q ∈ C0
(
SẐ, end(C2

)
)
, (4.10)

where end+(C2
) denotes the set of positive Hermitian matrices 2× 2.

Let (uk) a bounded sequence in
(
H1 (I ×Ω)

)2, solutions of Puk = 0 converges weakly to 0.

Then uk|xn=0
( resp. ∂νuk|xn=0

) is bounded in
(
H

1
2

loc (I × ∂Ω)
)2

( resp.
(
H
− 1

2
loc (I × ∂Ω)

)2
) has

zero weakly limits.

Proposition 4.2. There exists a subsequences of (uk) and µ ∈M+ such that

∀Q ∈ G0, lim
k→∞

ϕ(Q, uk) = 〈µ, κ(q)〉 (4.11)

where q the principal symbol of Q and µ =

(
µ1 µ12

µ12 µ2

)
.

testing the measure µ on different operators Q, the limit equation (4.11) can be written as
limk→∞(∇xQuk1 ,∇xuk1 )L2 + (∂tQu1, ∂tu1) + (Qu1, u1) = 〈µ1, κ(q)〉
limk→∞ α(∇xQuk2 ,∇xuk2 )L2 + (∂tu2, ∂tu2) + (Qu2, u2) = 〈µ2, κ(q)〉
limk→∞(∇xQuk2 ,∇xuk1 )L2 + (∂tQuk2 , ∂tu1) + (Quk2 , u1) = 〈µ12, κ(q)〉

(4.12)

Proof. According to [3] and we follow the method given by [6]. uk|xn=0
(resp. ∂νuk|xn=0

) has
zero weakly limits that implies

∀Q ∈ G−1, lim
k→∞

ϕ(Q, uk) = 0. (4.13)

Let χ ∈ C∞0 (|xn| < ε), 0 ≤ χ ≤ 1, χ(x) = 1 for |x| ≤ ε
2 and E is a pseudo-differential

operator matrix supported near Char(Pα,βa ) such that

id− σ(E) =

{
0 near neighborhood Char(P ) ∩ supp(1− χ),
non negative,

for all ψ ∈ C∞0 (I) we have

(id− χ)(id− E)ψuk → 0, H1. (4.14)
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If Q = Qi +Q∂ ∈ G0
I choosing ε small we have χQi ≡ 0 and we write

Q = χQ+ ( id− χ)Q = χQ∂ + (id− χ)QE + ( id− χ)Q(id− E)

then Q∂ is tangential pseudo differential operator, ( id− χ)QE is interior pseudo differential
operator and (id− χ)Q( Id− E)ϕuk → 0 in (H1)2 for all ϕ ∈ C∞0

(
X,End(C2

)
)

∀Q ∈ G0
sym, σ(Q)+M id positive ⇒ −M lim

k→∞
infϕ(Q, uk) ≤ −M lim

k→∞
sup ‖uk‖2

H1 . (4.15)

Indeed, [σ(Q)+M id] nonnegative matrix implies [σ(χQ)+M id] and [σ( id)−χ)QE)+M id]
are nonnegative matrix and it is sufficient to study independently these cases Q = Q∂ , Q = Qi.

In the first, Q = Q∂ there exists ϕ ∈ C ∞0 (I) such that

ak = (∇αxQ∂uk,∇αxuk)(L2)2 = (Q∂∇αxϕuk,∇αxϕuk) + bk

with bk = ([∇αx , Q∂ ]uk,∇αxuk)L2 → 0. For all ε > 0 there exists B∂ of zero degree, C∂ of
−1 degree tangential d.p.o such that Q∂ + (M + ε) id = B∗B∂ + C∂ . As C∂∇αxϕuk → 0 in

(L2)2 ( because (ϕuk) is a bounded sequence near the boundary in C1
(
xn ≥ 0,

(
H
− 1

2
t,x′

)2
)

),

we have lim infak ≤ −(M + ε) lim sup ‖∇αxϕuk‖, the same method to (∂tQ∂uk, ∂tuk) because
lim sup ‖∂tϕuk‖ ≤ lim ‖uk‖H .

So we have

Q ∈ G0
I ,

σ(Q)|CharP = 0 and σ(Q)|xn≤ε = 0⇒ limk ϕ(Q, uk) = 0.
(4.16)

Let σ(G) = {q = σ(Q);Q ∈ G}, that is a vectorial subspace of functions space C0 homoge-
nies of zero degree onto T ∗X \X with value in End(C2

) endowed with the L∞ and there exists
a subset dense of σ(G). By (4.15) and (4.16), there exists a subsequence of (uk) and a linear map
ϕ̃ from σ(G) onto C such that

∀Q ∈ G0, lim
k→∞

ϕ(Q, uk) = ϕ̃ (σ(Q)) , (4.17)

|ϕ̃(q)| ≤ ‖q‖L∞ lim sup |uk|2H1 . (4.18)

Moreover, we have
q ∈ σ(G0) and κ(q) = 0⇒ ϕ̃(q) = 0 (4.19)

because if κ(q) = 0, for all ε > 0, there exists χ ∈ C∞0 (R, end(C2
)) supported near x = 0 such

that |χq|L∞ ≤ ε and ( id− χ)q = σ(Q) where Q ∈ G0 satisfies (4.16). By Riesz Theorem there
exists a Radon measure µ in the dual of C0

0

(
SZ̃,End(C2

)
)

such that

∀Q ∈ G0, lim
k
ϕ(Q, uk) = 〈µ, κ(σ(Q))〉 (4.20)

with µ is positive Hermitian by (4.15) and a measure µ∂ on S(T ∗∂X) such that

∀Q ∈ G0
I , lim

k
∈ t∂XQuk∂νuk =

∫
σ(Q)|xn=0dν∂ (4.21)
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and by (4.9) we have
µ = µ∂ + µcin (4.22)

where µ∂ is considered to measure on SZ̃ through the injection S(T ∗∂X) ↪→ SZ̃. If the se-
quence uk satisfies the Dirichelet condition uk|∂X ≡ 0 then µ∂ ≡ 0 and if Q = Q∂ ∈ G0

I with
compact support near xn = 0, (t, x′, τ, ξ′) ∈ T ∗∂X we have Quk bounded in C∞(X̄)

We have Z̃x=0 = T ∗Y , since the sequence uk satisfies the Dirichlet uk|∂X ≡ 0 then µ∂ ≡ 0.

4.1 Propagation Theorem to boundary

We assume that there is no contact of infinity order between the geodesics of Ω and the boundary
∂Ω. In this section we recall some concepts and properties to the boundary value problem of
coupled waves system. Let uk(t, x) a sequence of solution of the following problem

(
∂2
t −Dα +Kβ

a ∂t
)
uk = 0, uk|R×∂Ω

= 0(
uk|t=0

, ∂tuk|t=0

)
bounded in

(
H1

0 (Ω)
)2 ×

(
L2(Ω)

)2 (4.23)

has null weak limits, µ = 2µcin associated measures on (SZ), µ+ = 2µ+cin their restrictions to
(SZ)+.

Theorem 4.3. For all s ∈ R we have

G(s)∗(µ) = 〈exp
(
−
∫ s

0
Kβ
a(G(σ)(ρ))dσ

)
, µ〉. (4.24)

Precisely, for all B a Boral set of SZ, we have

µ(G(s)(B)) =

∫
B

H(s, ρ)dµ =
∑
i,j

∫
B

Hijdµji

with H(s, ρ) = exp
(
−
∫ s

0 K
β
a(G(σ)(ρ))dσ

)
.

Proof. We set µs = H(s, ρ)µ. As {G(s)} is a C0-homeomorphic group of SZ and change t
to −t returns change a to −a. Then it is sufficient to prove that

G(s)∗(µ+) ≤ µ+s for all s > 0. (4.25)

If K is a compact of (SZ)+ ∩ (t = 0) and J a compact of R . We denote

KJ = {G(σ)(ρ); ρ ∈ K, σ ∈ J} .

The fact that G(s)(t, x, ξ) = (t+ s,G(s)(x, ξ)), the map Θ : ((SZ)+ ∩ (t = 0))×R → (SZ);
Θ(ρ, σ) = G(σ)ρ is a homomorphic that redress the flow ( G(ρ, σ + s) = G(s)Θ(ρ, σ)). To
prove (4.25) it is sufficient to verify the following properties

∀α1 > 0,∃β1 > 0 such that
for all K ′ ⊂⊂ int(K) ⊂ K ⊂ ((SZ)+ ∩ (t = 0)) , diamK ≤ β1

and for all b0 < b′0 < b′1 < b1, b1 − b0 ≤ β1

with J = [b0, b1], J ′ = [b′0, b
′
1]

we have G(s)∗(µ)(K ′J′) ≤ (1 + α1)µs(KJ).

(4.26)
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Indeed, by the redress flow, we can consider the measures µ+ and µ+s onto product ((SZ)+∩(t =
0))×R, we denote by µ̃+, µ̃+s and ν̃+s = G(s)∗(µ̃+). By (4.26) we deduce that

ν̃+s (E
′) ≤ (1 + α1)µ

+
s (E) (4.27)

for E′ = K ′ × I , E = K × I , K ′ b K, diam(K) ≤ β1, I =]b0, b1[, b1 − b0 ≤ β1 by increasing
limits, and for E = O× I , O open set with diam(O) ≤ β1 with diam(O) ≤ β1 and by decreasing
limits for E = E′ = O × L for any interval L with diam(L) ≤ β1 then we have by additivity of
measure and increasing limits we have

ν̃+s (V ) ≤ (1 + α1)µ
+
s (V ), ∀V open

then ν̃+s ≤ (1 + α1)µ+s , for all α1 > 0, hence (4.25).

Now we prove (4.26), we haveG(s)∗(µ+)(K ′J′) = µ(K ′J′+s) and we can assume 0 < β1 � s.
We set uk = u and we identify u(x, t) to

u(x, t) = (u(x, t), ∂tu(x, t)) ∈
(
C0(R, (H1

0 (Ω))2) ∩ C1(R, (L2(Ω))2)
)
⊕ C0(R, (L2(Ω))2).

We set

H = (H1
0 (Ω))2⊕(L2(Ω))2, H ′ = (L2(Ω))2⊕(H−1(Ω))2, H1 = L2(R, H) and H0 = L2(R, H ′)

and for v = ((u0, v0), (u1, v1)) ∈ Hi ∣∣∣v∣∣∣ = ∥∥∥v∥∥∥
Hi
. (4.28)

We recall that the operatorAα,βa with boundary Dirichlet and that etA
α,β
a is bounded on H and

H ′, we denote by C some independent constants of k index concerning the sequence uk and by
C0 some independent constants of k, K ′, K, J, J ′ and b0, b1 given in a fixed compact of R.

Let ϕ ∈ C∞0 (R), equal to 1 on [b0 − 1, b′1 + s + 1], ψ(t) ∈ C∞(R), 0 ≤ ψ ≤ 1, in a
neighborhood of [b1,+∞[, ψ ≡ 1 in a neighborhood of ] − ∞, b0], Ψ(t) ∈ C∞0 (]b0, b1[), 0 ≤
Ψ ≤ 1 and id − Ψ , Ψ ≡ 1 in a neighborhood of suppψ′. If Q ∈ G0 and ρ ∈ Z \ X , we write
ρ /∈ ES(Q) if j−1(ρ) ∩ CarPα,βa not meet the essential supported of Q that is define because if ρ
is an interior point, Q is a d.p.o. near the point ρ′ = J−1(ρ) ∈ Pα,βa .

So we write for K compact of Z \X , Q = Id near of K if K ∩ ES(Q− Id) = ∅. Let Q0 ∈ C0

with its principal symbol q0 = σ(Q0), id−q0 positive, such that Q0 ⊂ {G(σ)(ρ) ; ρ ∈ int(K), b0 − ε < σ < b′1 + s+ ε}
with ε > 0 small and Q0 = Id near of K ′[b0,b

′
1+s]

, and let Q1 ∈ G0 with q1 its principal symbol
with q1 and id − q1 are nonnegative and such that Q1 = id near of K ′J′+s, ES(Q1) include in a
neighborhood of K ′J′+s and Q0 = id near of ES(Q1).

Let Q ∈ G0 and v = ((u0, v0), (u1, v1)) ∈ Hi we set Qv = (Q(u0, v0), Q(u1, v1)).

We have
(
∂t −Aα,βa

)
u = 0, then

(
∂t −Aα,βa

)
ψu = ψ′(t)u.

Let

w = −
∫ t

−∞
e(t−σ)A

α,β
a ψ′(σ)u(σ)dσ,

we have (∂t−Aα,βa )w = −ψ′(t)u, then (∂t−Aα,βa )[u−ψ(t)u−w] = 0, since u−ψ(t)u−w = 0
for t < b0 that result

u = ψ(t)u+ w. (4.29)

We have
(
∂t −Aα,βa

)
Q0w = −Q0ψ

′u− [∂t −Aα,βa , Q0]w and we let

h = −
∫ t

−∞
e(t−σ)A

α,β
a Q0ψ

′(σ)u(σ)dσ,
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hence (∂t −Aα,βa )h = −Q0ψ
′(t)u

(∂t −Aα,βa )[Q0w − h] = −[∂t −Aα,βa , Q0]w. (4.30)

The key point is the following estimation∣∣∣Q1(Q0w − h)
∣∣∣ ≤ C∣∣∣ϕu∣∣∣

0
. (4.31)

that result by the propagation Theorem of Melrose-Sjöstrand.

Indeed, let F = { u ∈ L2
loc(t)(X) | Pα,βa u = 0, u|∂X = 0

}
inner the norm |ϕu|0 and WFb

the wavefront at the boundary. Let w, h associate to u as given below, we have WFb(u) ⊂ Z
that implies WFb(w) ⊂ Z, WFb(h) ⊂ Z and WFb([∂t − Aα,βa ]w) ⊂ Z \ {ρ, Q0 = id near ρ}.
As WFb(Q0w) ⊂ (b0,+∞) by the propagation theorem (see [11]), we have WFb(Q0w − h) ∩
ES(Q1) = ∅ then Q1(Q0w − h) ∈ C∞(X). As u 7→ Q1(Q0w − h) is continuous from F onto
H0 and (4.31) result of closed graph theorem.

We have

h = −
∫ t

−∞
e(t−σ)A

α,β
a ψ′(σ)Ψ(σ)Q0udσ −

∫ t

−∞
e(t−σ)A

α,β
a [Q0, ψ

′
Ψ]udσ, (4.32)

then h ∈ C0(R, H) and for t ∈ [b0 − 1, b′1 + s+ 1],

‖h‖H ≤ C0‖ψ′‖L2 |ΨQ0u|1 + C|ϕu|0. (4.33)

because [Q0, ψ
′Ψ]u = (Q−1u(t, x), Q−1∂u(x, t)) with Q−1 ∈ G−1 then∣∣∣[Q0, ψ

′Ψ]u
∣∣∣
1
≤

∥∥∥∇xQ−1u
∥∥∥(
L2(R×Ω)

) + ∥∥∥∂tu∥∥∥(
L2(R×Ω)

)
≤ C

∥∥∥ϕu∥∥∥(
L2(R×Ω)

) (4.34)

Let d a real constant, Aα,βd =

(
0 id
Dα −Kβ

d

)
. We have (∂t−Aα,βd )h = −Q0ψ

′u+(Aα,βa −

Aα,βd )h then
h = −

∫ t
−∞ e−(t−σ)A

α,β
d ψ′(σ)Ψ(σ)Q0u,

−
∫ t
−∞ e−(t−σ)A

α,β
d [Q0, ψ

′Ψ]u,

+
∫ t
−∞ e−(t−σ)A

α,β
d (Aα,βa −Aα,βd )h.

(4.35)

There results for all t ∈ [b0, b
′
1 + s+ ε′], ε′ > 0, ε′ � ε∣∣∣∣∣∣u(t)∣∣∣∣∣∣

H
≤
(
e−d(t−b1)e|d|β + C0‖a(x)− d‖L∞(Tε)(t− b0)

)
·‖ψ′‖L2 |ΨQ0u|1 + C|ϕu|0

(4.36)

where Tε = K[b0−ε,b1+s+ε]. Indeed, we write by (4.36)

h = (1) + (2) + (3)

We have WFb(h) ⊂ {t > t0} and WFb((∂t−Aa)h) =WFb(Q0ψ
′(t)u) ⊂ (SE(Q0)∩ (t > b0)).

By Cauchy Schwartz we obtain
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∥∥∥∫ t

−∞
e(t−σ)A

α,β
d (Aα,βa −Aα,βd )h(σ)dσ

∥∥∥
≤ C0(t− b0)

∥∥∥a(x)− d∥∥∥
L∞(Tε

∥∥∥Ψ′
∥∥∥
L2

∣∣∣ψQu∣∣∣
1
+ C

∣∣∣ϕu∣∣∣
0

(4.37)

that give the term (3). We can see the term (2) by (4.34).

Finally for the term (1), we see that if (ej , wj) is the orthonormal basis of eigenfunctions
of H1

0 (Ω), −∆ej = ω2
jej , ωj ≥ 0, we denote by λ±ji, i = 1, 2 roots of λ4 + 2dλ3 + (β2 +

αω2
j + ω2

j)λ
2 + 2dαω2

jλ + αω4
j = 0. The family

(
(ej , αej), λ

±
ji(ej , αej)

)
, i = 1, 2 constitute

an orthonormal basis in H of eigenfunctions of Aα,βa . For j large, we have Re(λ±ji) = −d2 , we
obtain

(1) ≤
∫ b1

b0

e−(t−σ)
d
2

∣∣∣ψ′(σ)∣∣∣∥∥∥ΨQ0u
∥∥∥
H
dσ + C

∣∣∣ϕu∣∣∣
0

≤ e−(t−b1)
d
2 +

d
2 β1

∥∥∥ψ′∥∥∥
L2

∣∣∣ΨQ0u
∣∣∣
1
+ C

∣∣∣ϕu∣∣∣
0
.

(4.38)

this give (4.36). We have lim
k

∣∣∣ϕuk∣∣∣
0
= 0, and since σ (Q∗1Q1) = Id on K ′J′+s

µ+(K ′J′+s) ≤ lim sup
k

∣∣∣Q1u
k
∣∣∣2
1
. (4.39)

Let χ ∈ C∞0 (]b′0 + s− ε, b′1 + s+ ε[), with χ ≡ 1 on SE(Q1). By (4.29), (4.31) and q1 =
σ(Q1) ∈ [0, 1], we have

lim sup
k

∣∣∣Q1u
k
∣∣∣2
1
≤ lim sup

k

∣∣∣χhk∣∣∣2
1

(4.40)

and by (4.36)

lim supk |χh
k|21 ≤ (b′1 − b′0 + 2ε)‖ψ′‖2

(L2)2

(
e−

d
2 (b
′
0+s−b1−ε)e

d
2 [β+ε]

+ C0‖a(x)− d‖L∞(Tε)(b
′
1 + s+ ε− b0)2

)
lim supk |ΨQ0U

k|2.
(4.41)

As b′1 − b0 < b1 − b0, we can assume (b′1 − b′0 + 2ε) ‖ψ′‖L2 ≤ 1. Moreover, Id− σ(ΨQ0) non
negative and supported in KJ , then we deduce from (4.39), (4.40), (4.40) with T = Tε=0

µ+(K ′J′+s) ≤ µ+(KJ)
[
e−dse

3
2β1d + C0‖a(x)− d‖L∞(T )(b

′
1 + s− b0)

]2
. (4.42)

This estimation is valid for K ′ b K, J ′ b J , b1− b0 ≤ β and s > β where b0, b1, d are bounded
constant. For all ρ ∈ KJ , we have∣∣∣esdG(s, ρ)− Id

∣∣∣ ≤ C0s‖a(x)− d‖L∞(T ).

Let δ > 0 small enough, there exist sδ > 0 and βδ such that ρ0 is in KJ we have diam(K) <
βδ, 0 < s ≤ sδ and b1 − b + 0 ≤ δs and choosing d = a(ρ0), ‖a(x) − d‖L∞(T ) ≤ C0δ and by
(4.42)

µ+(K ′J′+s) ≤ µ+(KJ)H(s, , ρ0)(1 + C0δs). (4.43)

Proving (4.26), let s > 0 and β < inf(βδ, δsδ). By iterating at most N = s
sδ

times the
inequality with s = sδ and a sequence J ′ = J1 b J2 b ... b JN = J of intervals and a sequence
of compacts K ′ = K1 b K2 b K3 b .... b KN = K, we obtain for any ρ0 ∈ int(K)

µ+(K ′J′) ≤ µ+(KJ)H(s, ρ)(1 + C0δ). (4.44)
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Since (1+C0δsδ)
s
sδ ≤ 1+C0δ. As we have µ+s (KJ) =

∫
KJ

H(s, ρ) and for β small |H(s, ρ)−
H(s, ρ0)| ≤ C0δ for ρ ∈ KJ , hence the function H the function H remaining in a compact
(0.+∞) ∣∣µ+s (Kj)− µ+(KJ)H(s, ρ

∣∣ ≤ C0δµ
+
s (KJ) (4.45)

and (4.26) deduced from (4.44) and (4.45).
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