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Abstract. We consider a stabilization problem for a coupled wave equations on a compact
Riemanian manifold Q with or without boundary. We prove the exponential stability result in the
energy space, under a geometrical control condition (BLR). Without any geometrical assumption
and for all regular initial data, we give a logarithmic decay result of the energy.

1 Introduction

In this paper we study the stabilization of a coupled wave equations. More precisely, we consider
the following initial and boundary value problem :

O?uy — Auy + B 0yuy + 2a(x)duy = 0, Q x (0, 4+00), (1.1)
DPuy — aAuy — B 0uy =0, Q x (0, +00), (1.2)

u =0, 0Q x (0, +00), (1.3)

up =0, 0Q x (0, +00), (1.4)

ul(xao) = u(l)(x)v atul(xao) = u}(x), T €Q, (1.5)

’u,z(SU,O) :ug(w),atm(x,O):ué(w ,.Z‘EQ, (16)
where Q is a compact connected Riemannian manifold, a(z) € C(Q,R ) and «, 3 are positives
constants.

If we set u = (u1,uz) then the system of equations (1.1)-(1.6) is equivalent to the following

system

{ dfu — Dou+ KJ0u =0 in Q x (0, 400), (1.7)

u=0 on 9Q x (0,+00),u(-,0) =uy dsu(-,0) =wu;, inQ,
where

A0 2a(xz) B

The problem (1.7) has an unique solution u(z,t) € C° (R, (H}(Q))?) N C!' (R, (L*(Q))?)
for all initial data ug € (H}(Q))? & (L*(Q))?, obtained by using the Hille-Yosida theorem for
an unbounded operator.

We consider the Hilbert space H = (H}(Q))? @ (L*(Q))?, we define
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0 id
AP = ! D(ASP) = (H{(Q) N HX Q)2 @ (H)(Q).  (1.8)
@ D, —-KP
Let u(x,t) = (ur, u2)(x,t) solution of (1.7), we define the energy functional at the time ¢ by
E(uwt) = } / (I8 + |V2ul?)
Q (1.9)
~ 1 / (10ur? + [000a? + |V + 6| Vaus?) d
Q
that satisfy the following estimation
E(u, E(u,t) / / x)|0suy (2, 5)|>dads, (1.10)

where V&u = (V,up, v/aVuy) . We recall the following results,

Theorem 1.1. Assume that a £ 0. Then, we have

(i) If 0Q # 0, we have Re\ < 0 for A € sp(A%P) (spectra set of ASP) ; IfOQL =0, A = 0 is
the only eigenvalue with null real part.

(ii) For any initials data ((u?,3), (ul,v})) € (H{(Q))? & (L*(Q))?, the solution u = (uy,us)
of (1.7) satisfies , liEI E(u,t) =0.
—+00

(iii) Moreover, assume that o # 1 and that the geodesic of Q hasn’t contact of infinite order

with 0 and there exists a time Ty such that any generalized geodesics of Q with its length
large than Ty meet ({a(x) > 0}). Then, there exists ¢y, ¢ > 0 such that

E(u)(t) < coe " E(u)(0), Yu€ H, Vt>0. (1.11)
Proof.

() If A\ = iw € sp(A2P), w € R there exists f = (fi,f2) #Z 0 in (Hol(Q))2 such that
—Dyf + MK f + A2 f = 0, which implies

w</ga|f1|2+ﬁRe/sz-f1) =0,

wﬂ Re/gflﬁz 0,

/QIVfllz—wz/Qlfllz—wﬁlm/Qfl-ﬁzO,
o [[WnF = [ 1pF+wsim [ £ =0

If w = 0 then we have f; = cst and f» = cst ; if w # 0, we have \/af; = 0in L?(Q), since
O = {a(x) > 0} is non empty open set. Then, fjo = 0 and

and

—Afi + N2 fi + BAf, =0,
—alfr + XN f, — BAf1 =0,

this implies that (i, f2) (0,0),using that Q is connected set, thus (f1, f2) = (0,0).

lo =
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(if) We deduce 2. by 1. because ©Ey;, = H, using [7].

(iii) If 0Q = 0, we can see [10] and the general case, following Bardos, Lebeau and Rauch [1],
using the propagation Theorem of Melrose- Sjostrand which will be the goal of the proof
of point 2. of Theorem 1.3.

Theorem 1.2. Assume that a #Z 0. Then, there exists C > 0 such that
1
VA € sp(A%P)\ {0}, ReX < —56—0"’"”. (1.12)

For\=—0+iw, welR,

w|>1and0 < o < Le €Il we have

| (= agm)™ qu < CeCll (1.13)

( Here the norm of the resolvent is the norm of the operator on H ). Moreover, for any k > 0,
there exists C > 0 such that for all (ug,u1) € D ((Agﬁ)’“)

we have 1 o
Vi >0, Blu,t)? < (lrl(zﬂ))’“H(uO’ul)HD((Ai’B)’“)' (1.14)
Let R > 0, we set
D(R) = sup {Re); | ; € Sp(A5"”), |\ > R} (1.15)

that is a negative function, decreasing when R > 0. We denote D(o0) = E}im D(R) and
— 00
D(0) = lim D(R).
(0) = lim D(R)
Assuming that there have no contacts of infinite order between the bicharacteristic of Q and

its boundary 0Q ( the geometric control condition (GCC) ). First, we notice that determinant of
the symbol is given by

PP (4 7.€) = (I€° = 7°) (alg - )
this leads to two bicharacteristic families in the characteristic set of PS?, CharP? = {(z,t;&,7); p2P(t, 57, €) = 0},
namely those of the symbols

p = ¢ — 7% and p, = al¢? — 72,

if o # 1, the wave front sets propagate independently along the null bicharacteristic of each one
of the two families. Let pp = (z0,u0) € TQ, with |ug| = 1 (g is in a half closed space defined
by Q if xo € 0Q ) there exists a unique geodesic generalized

s — x1(s, po) in Q (resp. s — x2(s, po) in Q ) issued to py i.e. satisfy

z1(8,00) %0
s

21(0, po) = 0, lim = ug (resp. lim zas:p0) =0 Vaug).
s—0F s—0* s

Lett > 0, we set
1/t 1/t
Ci(t) = inf - / a(z1 (s, po))ds, Ca(t) = inf - / a(22(5, po) )ds.
po T 0 po t 0

that satisfies
tCi(t) + sCi(s) < (t+s)Ci(t+s), 1 =1,2.
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We denote

o(t)

min (€1 (1), C2(1) t
min <mf1 /0 a(z1(s, po))ds, igof% /0 a(a:z(s,po))ds>

PO

(1.16)

that is a additive function and we set C(c0) = . liin C(t). We have C(t) < C(o0) for all t.
—+oo

Let
o=sup{y>0/3B>0,Vue H E(u,t) < Be "E(u,t)}. (1.17)

Theorem 1.3. Assume that o # 1, then we have

(i) 0 =min{-D(0),C(c0)}.
(ii) C(00) < —D(0).

2 Proof of Theorem 1.2

We denote H = (H|) (Q))2 @ (LZ(Q))Z, H* the dual space of H and the duality product is given
by

<u1,uz>:/u}~u%—u%~u£, ulz(ui,uﬂ)eH*, uzz(u%,u%)eH. 2.1
Q

We decompose A2*? in the following form

0 id 00
A2P = A+ B = AS + BY, Ay = ; BY = 2.2
* + 0 D, 0 o 0 KP 22)
B2 is a bounded operator in H and compact as an operator of £(H, H*).
(A — A2P) u = v equivalent to
= \uy —
Uy = , (75 V1 o , (23)
Pal\ul _1}2+ng1 + vy, Pa’)\ = ld+)\Kﬁ —

D(A2P) = (H}(Q)NH*(Q))? & (H(Q))? endowed with the graph norm is an Hilbert space
and we define the resolvent set

R(ALP) = {re C; (A — A2P) is bijective from D(AS”) onto H} .

The operator A — Ag is a Fredholm operator of zero index from H onto H* this implies that
A — A28 is too and we have

R(ALP) = {N e C|(A— AYP) is bijective from H onto H*}.

[ Indeed, if (A — A%?) is bijective from H onto H*, that injective onto D(A$?) and for v €
H C H* and u € H such that (A — A%#)u = v we have A%Pu = \u — v then u € D(A%P).
inversely, if (A — A%"?) is bijective of D(A%?) onto H, if u € H satisfy (A — A%#)u = 0 we
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have u € D(A%?) then u = 0, moreover (A — A%?) is a Fredholm operators of zero index and
injective hence there is bijective from H onto H* ]. We obtain that

R(AF) — {)\ e C[Pgy is bijective from (H&(Q))2 onto (Hil(Q))z} 24

and let A € R(A%?), we have

-1 B . —1
Py(KP + Xid) —id AP,

where Py = (Pm /\’8 )~ L. In the following, we assume that a(x) is not identically zero functions.

Lemma 2.1. Let C > 0. There exists Cy, Cy > 0 such that for all \ = —o + iw, w € R, |o| < C
we have

V[ = (fi.fo) € (HLQ) N HA(Q))®,

2.6
£y ) < G [IPAfIR, g + [ ala) A 20

Proof. Let Q' be a small neighborhood of Q. We extended A onto Q' as the following:
we extended the metric on Q onto Q' and we denoted so A the Laplacian onto ©’. On neigh-
borhood of 9Q in Q’, we choose the coordinates geodesic systems z = (2/,z,,), 2’ € 0Q =
{x, = 0}, |2,| = dist(z,0Q), x, > 0 located define the interior of Q. We assume Q' \ Q =
{z = (2/,2,), —€0 <, < 0} with ¢ small, in a neighborhood of €, we have A = 92 +
S(xp,2',0,) + L(z,0,) where L (resp. S) is one order (resp. second order). There exists
n € C*> (Q'), n > 0 such that for |z,,| < g we have n~' o Aoy = 02 + R(x,,2’,0,/) where R
is two order operator. We set A =~ loAonin QA= 02 + R(-zy,2’,0,) inz, < 0and we
denote a the extension of a on Q' define by a(z', x,,) = a(z’, —z,,) for z,, <O0.

Let Q the elliptic operator with Lipschitz coefficients on R x €’ of matrix principal symbol
Q=—(?+A) 1, —iKLo,. 2.7

Let U # () is an open set with U is compact, so > 2, Q =| — sg, so[xU and p € Cg°(Q'), p =1
in a neighborhood of Q. According to [8], we have the following lemma.

Lemma 2.2. There exists 0 €]0,1[ and ¢ > 0 such that for all v € (H*(] — so, so[xQ’))z, we
have the following estimate

vl (rig—1,1x )2 < cllvlller vy 11Qull 2wy + 0l eyl (2.8)

where V =] — sg, so[x Q.

Proof. The proof is a simple adaptation of the proof of the result given in [9]. For f =
(fi. f2) € (Hy(QnN HZ(Q))Z, we set g(s,x) = e My~ f(z) if x € Q,and g = —g(s, 2/, —x,) if
r, <0. Wehave g € (H*(V))?*and Q(g)(s,7) = n~ e Py (f)(z) if v € Qand Q(g)(s, ', 2,) =
—Q(g)(s,2', —xyp) if z, < 0. We have

[fllm@ye < Cte llegllar—1,+1)xe)s
1Qqll2vy < Cte es"‘w‘HPAfH (L2(Q)
lgllzrvyy < (14 |wl) 9°|w‘||f\|(H1
lgllnrye < (14 [wl) el fll g0
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then (2.8) implies, with s; > s¢
I lan@ye < Cte el [IPxFll ey + 11l anovyye] - (2.9)

Choosing an open set U" CC Q such thata, , >0, U cc U’ and x € Cg° (U’), equal to id
near of U. We have (—Id + D,)[xf] = x[(\}id — id + K?)f — Pxrf] + [Da, X] f then

[fllzrwye < Ctell(—id + Do) [Xf1ll (5 -1(0)
< Cte[IPaS @y + 1+ AP Ry 2] -
and we obtain (2.6) by writing (2.9) in (2.10).
Proof of Theorem 1.2

Letw € R, [w] < 1,0 € [0, Ze~C1II]. By (2.6), forall f = (f1, 2) € (H}(Q) N H*())’,
we have

(2.10)

||foHd(Q))2 < Ce NP FR o 2.11)
or

1Py e < Ce®! / alfil- 2.12)

In the second case, the identity

PE10) = X (Uil + Ull@) + [ W8P +a [ V57422 [ ali?

y { /Q a|f,] =200 1Py,

using (2.12), we get

that implies

2| < W@ IPs” £l e

AeColw

2
HfHH(;(Q)— 2‘ |

- [1P2 | e + 2011 Ay

As (2.11) implies that the norm of P; ! from (L?(Q))? onto (H}())? is bounded by Ce®!*l and
we obtain the results (1.12)and (1.13) from (2.5).

Let H = ©F A, the space of finite linear combination vector of H in the characteristic subspace
E,. We know that H is dense in H. Let Hy = ©,0FE;, we have Hy = H if and only if
OM # 0 and Ey = {(u1,u2) / uy = cte, up =0} if OM =

LetS =142 D= {2 C /Imz ¢0,2]|al|l~]}. We define on H an inner product
o) = [ vou T+ funm
induct a norm equivalent to || - ||z and we have
Re (((z — AP )u,u)) = Rez/Q (IVui]* 4+ Vo ) dﬂc—l—/Q ((Rez 4 2a)|ua|* + Rez||va|)?) da

hence result to

~ C
— =1 < — .
C >0, Yu € Hy, Vz€D, 1z =8) " (uw)|lg < Gist(=.D°) l|w|| m (2.13)
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Moreover, for u € Hy we have z — (z — S)~!(u) is a meromorphic map with the asymptotic
behavior O(ﬁ) as |z| — +oo and by the Theorem 1.2 (1.13), if * € Hy we have (¢ —S)~!(z) is

holomorphic at ¢ € {z € C; Imz < 2epe~Re*I} with €y, ¢, > 0 small enough and satisfies
on

F:wpd+2mw*ﬂu{56@/§:n+%mfﬁwﬂm2d}u&+d+%mfwﬂ

H@—@”@WHgo&%wmm. (2.14)

Then, there exists d > 0 such that for = € Hy the operator (z — S)~ ( ) is analytic in the region
below the outline . We consider ¢y € C*°(IR;), equal to 0 for ¢ < % and tolfort > % and we

setu = gy S = (¢v) solution of

(0 —S)u= w’(t)(l_ls)kv(t). 2.15)

Let .
u(t) = / e(t_s)sw’(s)#u(s)ds (2.16)
0 (1-58)* ' '

Let ¢y and ¢ are a later choose. We have

+oo
€0 t s) 1 —CO(A—\/%)Z 1
/ // w — ke v(s)d)\dgds(l )

L] / /A.w

= L1+ L.

u(t)

We remark that the decomposition is similar to that of Lebeau [8] and Burq [2].

Estimation of I,

The idea is to estimate I;, we deform the outline of integration in £ on the outline I'. This
requires to verify that the operator (§ — S ) ¢’ is holomorphic with respect to ¢ in the field is

below the contour and it verifies an estimate of type

=971, =ceome

What can be deduced from (2.13). We know that for Imé < 0, the two families of operators

e's¢ ((f —5) - z/ ei”(s_g)da) and (& —S) e
0

coincide for s = 0 and satisfy the same differential equation
Dsw = iw — €5,

Then, by the Gronowell lemma, the two families coincide for Im¢ < 0. The family in the left
gives the analytic announcement and it is therefore in the integral defining /; deform the outline
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¢ on the contour . By the fact €**° is bounded for all s > 0 and since the operator (¢ — S) e

is uniformly bounded in H with respect to £ and s € [0, 1], for ¢t > 0 we have

ol |

H/// ~(t=Deoe ™z < . (2.18)
£eluly, |A|l<evint t—1
By (2.17), we have for t > 1,

H//gel} /,\<c,m (2.19)

epe—alnl A\\LO(A—
N I
|A[<ervIn

Let ¢; such that c;a < 1and ¢ = —(t — 1)ege™ " + Aln| — co(\ — \/%)2 Then, we have
Nl <clnt = ¢ < Alnt — (t — 1)egt ™% (2.20)

We choose ¢; €]0, cz[. Then, there exists & > 0 such that if |A\| < ¢;vInt and if || > ¢, In¢ then

/AR 2 UERY)
A=) 2 () (@21
let "
Aln| — 2 —2)2). 2.22
? < Al = cod(X + —=)") (2.22)

We choose ¢y > % + 1. For € > 0 we have

Alnl—cos
/ Al —eod(
[n|>c2Int

By (2.18), (2.19), (2.20) and (2.23),

Gt = 0 (et (2.23)

;]| < Ct=Juy]|. (2.24)

Estimation of I,
Let

1
/ (u—s)¢_ - 1 1
/0 //Imfz—; v g e s
A > eVint (2.25)
v(s)y/Ee~ O Vi dsded.

Fort > 1, we have J(t) = I>(t) and for all u € R,

i(u—s)é

IA| > W
(2.26)

that implies
t
J(t) = "5 (0) + / e =) K (s)ds. (2.27)
0
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Now we are going that J(t) is bounded in norm in H, we use that ¢*° is a contraction of H for
1
s > 0 and separately K (u) for u > 0, J(0) and / | K (u)]|du (see [2]).
0

For u € [1,t], we show that the outline in £ given in (2.26), is deformed in the outline given

by Imé = vInt, that give for & > 1 and suppy) C [3, 3]

Wl

e —(u—2)V1n 1 —VIn
K@l < [ et deuol < G ]l @28)

Then we bound J(0). We treat such a contribution (2.25) of the region. For that is deformed
according to [8], the integral in £ on the contour I' = 't UT"~, where

F+:{z:1+n—im;n>0}

2
For £ € ', by (2.13), we have for all s € [0, 1] and for all X € [¢;VInt, 4+o00] there exist § > 0

1 1
F_:{z:1+n—2i;n§0}u{l—i,l—i\/lnt]

_ise_ V(s) 1 €0 —co(A——is)? ¢ —E(A )
e - . —e It < —e€ e/ ||l ugl|.
[ g ey T+ " ol
The contribution de I'~ to J(0) is bounded in norm by
CcVint e ¥ ||ugl| = O (e Jlug]- (2.29)
A>c1\/ﬁ
For £ €T and s € [1, 2] we have

e‘m/3Le—5(>\2

2
+i7) ||
= (1+|77|)k ” 0||>

He‘isf V(s) . ! \/ae_%()\— =)
(1—-i&k (£-B)V2r

So, since the contribution of I'* to J(0) is bounded in norm by

Ce=VIi/3 |y, (2.30)

The contribution to .J(0) of the region A < —c;VInt is bounded by the same way.

Finally, it remains to bounding

1 1 5
/0 ||K<u>||dus< /0 1K ()] du> . 231)

o=

By the Plancherel identity,

+00 +oo 2
/ 1K (u)|Pdu C/ H )/ eco@*f/m)ZdAH de
—00 1 - Zf [A|>ervVInt (232)

S H () 2de,

for £ > %cllnt,
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1
|H@H—H/#mﬁn T " (g < atyww(>n (2.33)

and for £ < 1c;Int,
2 2 A A
[H ()| < / e SNFE/MO N Jugy (€)]] < Cem ™ [ud (€)]). (2.34)
\A|>clv1n

Then, by (2.31), (2.32), (2.33), (2.34) and

+00 1
3 _ / Zd C / 2d 2
| @i = [weePas<c [Pl

( we recall that v(s) = e?*Jvy implies ||v(s)|| < ||uo]| ), we have

' 1
[ i < o (G + ) 10l .39)
By (2.27), (2.28), (2.29), (2.30) and (2.35) we obtain

C
”IZH < (ln t)k ||U1 ”7

hence the estimate of 1.

3 Proof of Theorem 1.3

First, we prove ¢ < 2min(—D(0),

C(c0)). Let \; € Sp(Ag A\ {0} there exists u = (ug,u;) =
(u9,49), (u},ud)) € Ey, such that APy

= Aju and u(t, x) = ey satisfy (1.1)-(1.6).

As E(u,t) = RN E(u,0) and E(u,0) = % [, I\ uol? + [ Voul? + | Vul? # 0, we
have o < —2Re); then ¢ < —2D(0). We assume that p = 2C(c0) + 4n with > 0 there exists
B > 0 such that for all w € H and for all ¢ > 0 we have the following estimate

E(u,t) < Be (e~ E(y,0). (3.1)

Let ¢ fixed such that Be~ (¢~ < e=(e=21 'we have C(t) < C(c0) = £ — 21, then there exists

z € {1,2} such that 1 fo z;(s, po))ds < C(00) = £—2n, and there exists pg € TQ with C(t) <
5 —n has left a little d1sturb1ng po, we can assume that the outcome of generalized geodesic py did
as points of intersection with transverse 9Q on [—2¢, +2¢]. by constructing geometric standard
optical near v, we can construct a solution « of (1.1) - (1.6) such that £(u,0) = 1 and FE(u,t) >
e~ (=21t which contradicts (3.1), so we have ¢ < 2C(c0). To check ¢ > 2min {—D(0),C ()},
we prove the following lemma :

Lemma 3.1. For all T > 0 and for ¢ > 0 there exists C(e,T) such that for all solution of the
evolution equation (1.7) we have

E(’U,,T) < (1 + E)B_ZTC(T>E(U,O) + C(G, T)||(’LL()7ul)H(LZ(Q)XHq(Q))z (32)
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Proof : If (3.2) is false then there exists 7" > 0 and € > 0 such that for all £ > 1 there exists
Uy, satisfy

E(ug,T) > (1 +€)e 2T E(uy, 0) + k|| (uf, uf) | r2(@)x -1 (0))»

Then uy, is bounded in (H' (I x Q))z, I = [-2T,2T] converges weakly to zero because || (uf, u¥)

Let 1 the measure positive onto SZ (see section 4 (4.6)) associated to extract sequence of uy.
Let ) €]0, T[. As the energy function is decreasing, for all ¢ € C§°(]0,n[) we have by (3.2)

Fr2@)xa-1@)p <

/ (T ) B(ug )t > (14 £)e2TOD) / () B g, 1)t (3.4)
T—n 0
hence

p((SZ) N (t €IT =, T)) = (1 +e)e TDpu((S2) N (¢ €]0,7])). (3.5)

Gold by the propagation Theorem we have

u((SZ) N (t €T =0, T)) < 2TV ((52) N1t €]0,7]). (3.6)

Since p((SZ) N (t €]0,7[)) > 0 (because if uy — 0 in (Hl(]O,n[xQ))2 that implies u; — 0

in (H'(J x Q))2 for all J this give a contradiction with the fact E(uy,0) = 1). Since C(t)
defined in (1.16) as an infimum over a compact of a continuous function is continuous at ¢ > 0,
(3.6) contradicts (3.5) to 1 small, hence the Lemma. O

Let Ag-#* the adjoint of A3>#, we denote by EY the characteristic subspace of AZ7* asso-
ciated of the eigenvalue \;. Let H = (H}(Q))* @ (L*(Q))? and for N > 1

Hy ={w € H | (,9)1 = 0.Yy € &)y, 1<n 3, } (3.7)

Then Hy is invariant under et4%” (indeed let z € Hy, (yx) a basis of the vectorial space
* o, * a,B a,B _
O, <nEy, C D(AZP*) we have £ (etAa z|A%P: yk) = > Cpy (etAa T | yl) then (ema x|yl) =

0). Let H* = (L*(Q))* @ (H~'(Q))? and ®y the norm of injection from Hy onto H*.

We have Nlim oy = 0, indeed, we assume that there exists uy € Hy, |luny|lz = 1 and
—+o0

lun | < NlirE ®y = p > 0. We can assume that uy converges weakly to u in H, and
—+00
strongly in H*. We have ||u| z- > pand (u,y)n = 0, Vy € E}_, Vj. This is impossible by the
fact that @E*j = H, since — A% is a perturbation bounded of self-adjoint Ay.
We can assume 2min{—D(0),C(c0)} > 0, let n > 0 small and 3 define by § + n =
2min{—D(0),C(c0)}. Choosing " > 0 such that 4|C(c0) — C(T)| < n, 2log3 < nT and

N such that C(1,T)®3, < e 27¢(T), By Lemma 3.1, identifying u € H to the solution of
(1.1)-(1.6) with initial data u

Vue Hy, E(u,T)<3e 27T E(u,0) (3.8)
then H y is stable by the evolution

Yu € Hy, Vk
log 3

= 39
E(u, kT) < 3¢ FTRCMN="FIE(u,0) < e *TP E(u,0) 9)
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as the energy decreases

Vu€ Hy, ¥t >0, E(u,t) < Be P*B(u,0), B=¢T. (3.10)

Let 7 the contour encircling {A; | [A;| < N} in the direct sense and IT = 5 5 % the spec-
tral projector on @), <y Ex; = Wi then IT* is the spectral projector of A%B* on D)< NE;j.

Then for all u € H, we have
v=v4+w, v=Iue Wy, w=(id—I)u € Hy. (3.11)
As Wy is a finite dimensional and 3 < —2D(0), We have
3C, Yu € Wy, ¥t >0, E(u,T) < Ce P E(u,0). (3.12)

The decomposition (3.11) is continuous, there exists Cy such that F (v, 0)+E(w,0) < CoE(u,0)
and by (3.10), (3.11) and (3.12) implies that o > E this achieve the Proof of 1. and 2. of Theorem
1.3 result the fact that £y, C Hy if [\;| > N ( since the projector IT s equal to zero on E); and
by (3.10), if C(c0) > 0 and 3 < 2C(c0),

for N large enough
[Aj| > N = 2Re); < —5. (3.13)

Then D(c0) < —C(00), hence 2. ( since D(c0) < 0 treats the case C'(c0) = 0).

4 Geometric and construction of measure

Near M (M = QxR ), we choose the geodesic coordinate system : (', z,,) € OM x[0,70] —;
x, = dist(z,0M) = dist(z, 2') where ro > 0 small enough. In the system, the principal symbol
of —Ais £ 4 R(xy,2’,¢') and Ro(2',¢') = Ry, _, is the metric form on 7M. We denote G the
operator space ( of the form @ = Q; + Qo where Q); is a classical pseudo- differential operator
onto R; x Q with compact support in R; xintQ and @ is a tangential pseudo differential operator
with compact support near R x 9Q (i.e Qo (t, 2, x,) = Qo(xy)(f) (-, 2 ) where Qs (z,,) is a C>
p.d.oonto R, x 9Q and Qs = ¥Qp1b with 1(t,2,,) € Cg° (R x (=1, 70)). We denote G*) the
element of degree s in G and G,,,,, the subset of element in G with self-adjoint principal symbol.

Let X = R, x Q, *TX of the tangent bundle of rung dimX, the sections of which are the
tangent vector fields to R x 0Q, *T x X the dual bundle (of the cotangent compressed bundle
of Melrose) and j : T*X —® T % X the canonical maps. Near the X, T X is generate by the
fields 0, 0y, ,0,,, and

j(t,a:/,a:n;r,f',fn) = (t7x/7xn;7—a g/av = xngn)

We denote
PP =07 — Dy + KP

po_ [ T FIEP O
0 —7% + al¢)?

we notice that the determinate of the principal symbol is given by [11]:

p(t,a; 7, &) = (IEF = 1) (l¢P = 1) . (4.1)

with principal symbol
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This leads to two bicharacteristic families in the characteristic set of P*#, CharP*, namely
those of the symbols

pl(t7$§7'»£) - |£|2 - 7—2 and pa(tvx;Tv 5) = Ct|§|2 - T27

1, /a are respectively the velocity of propagation.

Let M = R, x Q. In the interior, i.e. in T*(R x Q) wavefront sets propagate independently
along the null bicharacteristic of each one of the two families. As the boundary, however, one
has to consider the inverse images of the characteristic points, in CharP# = p;' {0} Up; ' {0}
with respect to the projection

I : 7% (M) jops — T (0M).

We will illustrate what happens at the boundary point (¢,2) € M. Let (7,7) # (0,0) be a
tangential direction to M at (¢,z); i.e. - v(z) = 0, v(z) being the exterior normal to Q at x.
With the assumption v # 1, we can consider (7, 7) as an element of 7{; ,(0M), and to look for

its inverse image is both characteristic sets means to look for A € R such that
Pra (tz;m,n+ Av(z)) =0. (4.2)

Because of
Pra (o, +Av(2) =&, (In] + A*) — 77,

this requires

2
A=/ — g2 or A=y — 2 4.3)
(0%

Hence, for the existence of such real A, one of the two relations
r=1—1n*>0 or ro =72 —an’* >0

must be fulfilled. From the geometrical point of view there are some possibilities for a tangen-
tial direction £ = (7,71) # (0,0), with different number of inverse images with respect to the
projection. We can introduce the transversal manifold :

Char7 = Char7o U Char7q,
CharTo = {(z,:€,7) ; 72 — Al¢F =0, t > 0},
CharToo = {(y,t:£,7) 5 y € 9Q, y € 9Q,t > 0, 7, > 0}

and the longitudinal manifold of the wave coupled system is
CharL = CharLg U CharLsq,

Charlo = {(z,t;€,7) ; 7 — cf|¢f =0, t > 0},
CharLsg = {(y,:£,7) ; y € 0Q, y € 9Q,t >0, r; > 0},

the characteristic manifold of the system is
CharP = CharPg U CharPyg
and the assumption on the coupled wave (« # 1) one obtains

CharPq = CharTo U CharLq
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and
CharPyn = CharTsq if a>1

either
CharPyg = CharLyg if 0 <a< 1.

Finally, we recall that CharP is endowed with a generalized bicharacteristic flow

Definition 4.1. Let € T*0Q. We say that

(i) nisaelliptic (orn € &) if and only if € ( CharP)sgq.

(ii) 7 is a hyperbolic for the longitudinal wave (or € H,) if and only if r; > 0.
(iii) n is a glancing for the longitudinal wave (orn € G) if and only if r; = 0.
(iv) n is a hyperbolic for the transversal wave (or n € Hr) if and only if r,, > 0.

(v) n is a glancing for the transversal wave ( or n € Hr) if and only if r, = 0.

We are going now to make a description of a generalized bicharacteristic path and refer to
[8] for more details. The generalized bicharacteristic flow lives in CharP C T*M and for
p € CharP, we denote by G(s, p) the generalized bicharacteristic path starting from p. Since
CharP is the disjoint union of CharPg, Hr and G if « > 1 or CharPq, Hy and G if a < 1.
We shall consider separately the case where p belongs to each one of these sets. Moreover all
the description below holds for |s| small.

Case 1. p € CharPy
Here p = (z,t;&,7) where z € Q, t € (0,7, p(x,t;&,7) = 0. Then for |s| small, we have

G(s,p) = (z(s),t(s),7,&) cT*(R x Q)

where (z(s), £) is the characteristic starting from the point (z, £) of

« Pif p € CharLy,

. Pif pe CharT.

Case 2. p € (CharP)sq (i.e 0 < r,) Here p = (z(s),t(s),n(s),7(s)) where x € 0Q,
t € (0,T) and the equation p(z,t,n + &,,7) = 0 has roots &,, = Av(x) described in (4.3).

Fors > 0 (resp. s < 0)let GT (s, p) = (x1(s),t(s),£T,7(s)) (resp. GT (s, p) = (7 (s),t(s), &~
be the outgoing (resp. incoming ) bicharacterestic of P. The generalized bicharacteristic path is
such that G(0, p) = p and

G (s,p) O0<s<e
G (s,p) —€e<s<0

G(s,p) = {
Four possibilities may occur
®

zt(s) = x+232st, 0<s<e,
r7(s) = x+23s&, —e<s<0,

where {7 =1 — {L:TV(Q:) andé~ =n+ ‘/T:TV(J:)

C

In particular, if 0 < 7, one has z(s) € Q for small |s| # 0.

,7(5))
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(i) O <7 (iene Gy UHL CHr):
i-
zt(s) = z+23s6F, 0<s<e,
z(s) = x+2s&, —e<s<0,

where £ =1 — \ﬁ—lr‘u(x) and ™ =n+ Tu(x)
i -
at(s) = z+23s6H, 0<s<e,
z(s) = x+2s&, —e<s<0,

where ¢t =5 — Y2y (z) and £~ =y + \éj;u(x)

c
iii -
vt(s) = w4225t 0<s<e,
2 (s) = x+2ds&, —e<s<0,
where £ =1 — ‘éj:z/(x), & =n+ \/TTTI/(.%),
and the manifold characteristic Char(P2#) = {(t,2',x,;7,&',&,); detp = 0}. We set
Z = j(Char(PeF)), Z=2ZUj(T"X, ). (4.4)

Wehave 7|, | = {(t,2',0;7,£,0); [§'| < [7] or al¢'| <|7|}and Z‘MZO ={(t,2,0 ;7,¢,v=0)}
T*(R x0M) = Z, _ UE where £ is the boundary of elliptic region.

As x,, € [0,79] we have p = €21, + R — 72 id, R is nondegenerate positive matrix we have

) |v] < 7
(t,2' xn; 7, & v) € Z, x, €10,70] = or 4.5)
alv] < zpl7|
<

We obtain that Z and Z are closed conic sets in 7*X. We denote SZ and SZ the spherical

quotients spaces
SZ=(Z\X)/R, SZ=(Z\X)/R} (4.6)

which are a locally compact metric spaces. For @ € G with principal symbol ¢ = ¢(Q) and we
define the function A
r(q) € C°(SZ, end(C))

peZ\X k(q)p)=a(i™(p)).

( which is well defined because ¢ is homogeneous and has x(q)(z', zn, &', &) = q(2, 20, &, i—z)
for x # 0 and ¢ is independent of £ for x sufficiently small.) By (4.7)the set

{x(q), a=0(Q), Q €G"}

is locally dense in C° (52 , end((Cz)) where C° (52 , end((cz)) is provided with the topol-
ogy of uniform convergence on compact. For G € G, and I is an open bounded real in-
terval and u(z,t) € (H'(I x Q))2 solution of P®#u = 0 near the boundary, we have u €
ck (xn < O;H%‘k) with ¥ € N. If Q@ € G? (i.e, supported in I and zero degree), Q is a

bounded operator onto (L*(I x Q))z, (H'(I x €)) and the commutators [V, Q], [9;, Q] are in
GY. We set

A4.7)
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e(Q,u) = (Qu,u) 1y = (VaQu, Vgu) 12 + (91 Qu, Opu) 2. - (4.8)

By the integration by parts

o(Qu) = / Qu- 00T + 2(0,Qu, Dyu) 12y
R, %00
- (QU, Kgatu)<L2)2 + (Qua u)(L2)2

(4.9)

where 0%u = (9,u1, adyuz)
According [3], we recall some results useful in this work. We denote M ™ the spaces of Borel

measure £ onto SZ with C value Hermitian positive on (CZ, a measure p of M™% is an element
of the dual space C{ (SZend) satisfy

{1,q) > 0,Yq € C° (SZend(Cz)) : 4.10)

where end*(Cz) denotes the set of positive Hermitian matrices 2 x 2.
Let (u,) a bounded sequence in (H' (I x Q))z, solutions of Pu* = 0 converges weakly to 0.

1 2 1 2
Then uf  (resp. d,u”|, ) is bounded in (H7 (I x 89)) ( resp. (H_E (I x 89)) ) has

loc loc
zero weakly limits.

Proposition 4.2. There exists a subsequences of (uy) and p € M™ such that

¥Q € G’ lim o(Q,ux) = (u, k() (4.11)

where q the principal symbol of Q) and . = Mil pz )
B2 p2

testing the measure . on different operators Q, the limit equation (4.11) can be written as

llmkﬁoo(vaulfa ku}f)LZ + (atQula atul) + (Q’U/h UI) - </’Lla K(Q)>
11mk—>oo a(vauéﬁ? Vmulzc)Lz + (atUZ; atUZ) + (Q’UQ, uZ) - <HJ2; H(Q)> (412)
hmk%oo(vaulgvku’f)Lz + (8tQU§75tU1) + (ngaul) = </’L12?K(q)>

Proof. According to [3] and we follow the method given by [6]. u"“z i (resp. &,uk‘wnzo) has

zero weakly limits that implies

vQeg™! lim o(Q,ux) =0. (4.13)

Let x € C§° (|| <€), 0 < x < 1, x(z) = 1for |z| < § and E is a pseudo-differential
operator matrix supported near Char(P>#) such that

0 near neighborhood Char(P)N supp(l — x),
non negative,

id—o(E) = {

for all ¢ € C§°(I) we have

(id — x)(id — E)puy, — 0, H'. (4.14)
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If Q = Qi + Qs € GY choosing € small we have xQ; = 0 and we write
Q= xQ + (id - x)Q = xQs + (id — x)QE + (id — x)Q(id — E)

then @y is tangential pseudo differential operator, ( id — x)QF is interior pseudo differential
operator and (id — x)Q( 1d — E)puy, — 0in (H')? for all ¢ € C§° (Y, End((Cz))

sym>

vQ € G .., o(Q)+ M id positive = —Mklim info(Q,ug) < —Mklim sup [lug|| 3. (4.15)
—00 o> 00

Indeed, [0(Q) + M id] nonnegative matrix implies [o(xQ)+ M id] and [o( id) — x)QE) + M id]
are nonnegative matrix and it is sufficient to study independently these cases QQ = Qy, Q@ = Q;.

In the first, Q@ = Qp there exists ¢ € C;°(I) such that
ar = (VEQouk, Viur) 2 = (Qo Vi pug, Vipuy) + by
with b, = ([VS, Qoluk, Vur);. — 0. For all ¢ > 0 there exists By of zero degree, Cy of
—1 degree tangential d.p.o such that Qo + (M + ¢) id = B*Bg + Cy. As CoVipu, — 0in
(L?)? ( because (puy) is a bounded sequence near the boundary in C'! (SUn >0, (Ht_j)z) ),

we have liminfa;, < —(M + €) limsup ||V pug||, the same method to (9,Qoux, Oruy) because
lim sup || Orpug|| < lim [Jug| gr.

So we have

Qegy,

4.16
U(Q)\CharP =0 and U(Q)\ans =0= limy tp(Q,uk) =0. ( )

Let 0(G) = {qg = 0(Q); Q € G}, that is a vectorial subspace of functions space C° homoge-
nies of zero degree onto 7* X \ X with value in End((Cz) endowed with the L> and there exists
a subset dense of o(G). By (4.15) and (4.16), there exists a subsequence of (uy) and a linear map
@ from o(G) onto C such that

vQ €’ lim o(Q,u*) = ¢ ((Q)), (4.17)
13(a)| < |lql| L lim sup |ug|3;. (4.18)

Moreover, we have
g€ o(G°) and k(q) =0= @(q) =0 (4.19)

because if x(¢q) = 0, for all € > 0, there exists x € C°(RR, end(CZ)) supported near x = 0 such
that |xq|r~ < e and (id — x)q = o(Q) where Q € G° satisfies (4.16). By Riesz Theorem there

exists a Radon measure y in the dual of C) (SZ , End((Cz)> such that

vQ € ¢°, Timp(Quw) = (1 1((Q)) (4.20)

with p is positive Hermitian by (4.15) and a measure p on S(7*9X) such that

Y@ € Q?, hlgn € taXQuk&,uk = /O’(Q)wnzodl/a “4.21)
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and by (4.9) we have

where 1 is considered to measure on SZ through the injection S(T*0X) < SZ. If the se-
quence uy, satisfies the Dirichelet condition ug|px = 0 then up = 0 and if Q = Qs € GY with
compact support near x,, = 0, (¢,2',7,¢') € T*0X we have Quy, bounded in C>(X)

We have Z,_o = T*Y, since the sequence u* satisfies the Dirichlet ukjox = 0 then pp = 0.

4.1 Propagation Theorem to boundary

We assume that there is no contact of infinity order between the geodesics of Q and the boundary
0Q. In this section we recall some concepts and properties to the boundary value problem of
coupled waves system. Let uy (¢, z) a sequence of solution of the following problem

=0

(4.23)

{ (a%_Da‘l’Kgat) Uk :07 uk‘R
X 0Q
2

(uk),_,» Brur), ,) bounded in (HY(Q))* x (L2(Q))

has null weak limits, 4 = 2., associated measures on (SZ), u* = 2y, their restrictions to
(S2)*.

Theorem 4.3. For all s € R we have

G(S)*(/J) = <€Xp (_/0 Kf(g(a)<p))d0') ,/14>~ 4.24)

Precisely, for all B a Boral set of SZ, we have

WG (s)(B)) = /B Hs,p)di =Y /B Hyyduy:

with H(s, p) = exp (* fos Kf(G(a)(p»dU)'

Proof. We set jis = H(s,p)u. As {G(s)} is a C°-homeomorphic group of SZ and change ¢
to —t returns change a to —a. Then it is sufficient to prove that

G(s)*(u") < pl for all s> 0. (4.25)
If K is a compact of (SZ)* N (¢t = 0) and J a compact of R . We denote
K;={G(o)(p)ipe K, 0 € J}.

The fact that G(s)(¢,z,&) = (t + s,G(s)(x,€)), themap @ : ((SZ)" N (t =0)) x R — (52);
O(p,0) = G(o)p is a homomorphic that redress the flow ( G(p,0 + s) = G(s)O(p,0)). To
prove (4.25) it is sufficient to verify the following properties

Vaj; > 0,368; >0 such that
forall K cC int(K) C K C ((SZ)*n(t=0)), diamK < 3,
and for all by < b6 < bll < by, by —byp < By (4.26)
with J = [b, b1], J' = [b),b!]
we have G(s)*(u)(K) < (1 + ay)us(Ky).
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Indeed, by the redress flow, we can consider the measures 1 and p onto product ((SZ)TN(t =
0)) x R, we denote by ™, il and 7} = G(s)*(i"). By (4.26) we deduce that

vy (E") < (14 an)pd (E) (4.27)

for B =K' xI,E =K x I, K' € K, diam(K) < B, I =|by,b1[, by — by < (1 by increasing
limits, and for £ = O x I, O open set with diam(O) < 3; with diam(O) < 3, and by decreasing
limits for £ = E' = O x L for any interval L with diam(L) < 3; then we have by additivity of
measure and increasing limits we have

7y (V) < (L+a)ul(V), YV open

then o} < (1 + ay)u?, for all ag > 0, hence (4.25).

Now we prove (4.26), we have G(s)*(u*)(K",) = n(K, . ,) and we can assume 0 < 3 < s.
We set u* = u and we identify u(x,t) to

u(z,t) = (u(z, 1), 0u(z,t)) € (CO(R, (Hy (R))*) N C'(R, (L*(Q))) © C°(R, (L*(Q))?).
We set
H = (Hy(Q))e(L*(Q))*, H' = (L*(Q))e(H'(Q))?, Hi=L*R,H) and Ho=L*(R, H')

and for v = ((uo, vo), (u1,v1)) € H;
(4.28)

o =],
Hi
We recall that the operator .A%-# with boundary Dirichlet and that 42" is bounded on H and
H'’, we denote by C some independent constants of k index concerning the sequence u* and by
Cy some independent constants of k, K’, K, .J, J' and by, b; given in a fixed compact of R.
Let ¢ € Cg°(R), equal to 1 on [bg — 1,0} + s+ 1], ¢(t) € C*(R),0 < ¢ < 1,ina
neighborhood of [b;, +o00[, ¢ = 1 in a neighborhood of | — oo, by], W(t) € C§° (Jbo, bi]), 0 <
¥ < landid — ¥, ¥ = 1 in a neighborhood of suppy’. If Q € G and p € Z \ X, we write
p ¢ BES(Q) if j='(p) N CarP>” not meet the essential supported of ) that is define because if p
is an interior point, @ is a d.p.o. near the point o’ = J~!(p) € PP,
So we write for K compact of Z \ X, @ = Id near of K if K NES(Q —Id) = 0. Let @y € C°
with its principal symbol gy = o(Qo), id—q positive, such that Q, C {G(c)(p) ; p € int(K), bp —e <o < b + s+ €}
with € > 0 small and Q9 = Id near of K [Ibo bts]) and let Q; € G° with ¢ its principal symbol
>0
with ¢ and id — ¢; are nonnegative and such that ¢); = id near of K, _, ES(Q)) include in a
neighborhood of K7}, , and Qo = id near of ES(Q;).

Let Q € G° and v = ((uo, v0), (u1,v1)) € H; we set Qu = (Q(uo, vo), Q(u,v1)).
We have (9; — AS#) u =0, then (0, — A2P) Yu = ¢'(t)u.
Let .

w:_/ =AY (0 )u(o)do,

— 00

we have (0; — A%P)w = —1' (t)u, then (9; — AP [u—1(t)u—w] = 0, since u—Y(t)u—w =0
for t < by that result
u=9(t)u+ w. (4.29)

We have (9; — A2P) Qow = —Qoy'u — [0, — AP, Qolw and we let

t
h=— / AT Qo (o) u(o)do,

— 00



284 A. Moulahi

hence (9; — A2P)h = —Qot’ (t)u
(0, — A2P)[Qow — h] = —[0, — ALP, Qolw. (4.30)

The key point is the following estimation
Ql(Qow—h)’ < C"wa‘o. 4.31)

that result by the propagation Theorem of Melrose-Sjostrand.

Indeed, let F = { u € LIOC( (X | PePu=0, upx = 0} inner the norm |pulp and WF,

the wavefront at the boundary. Let w, h associate to u as given below, we have W F,(u) C Z
that implies W Fy,(w) C Z, WE,(h) C Z and W E,([0; — A%P|lw) C Z \ {p, Qo = id near p}.
As WF,(Qow) C (by, +00) by the propagation theorem (see [11]), we have W Fy,(Qow — h) N
ES(Q;) = 0 then Q1(Qow — h) € C°(X). As u — Q;(Qow — h) is continuous from F onto
Ho and (4.31) result of closed graph theorem.

We have

t

t
h= */ =AY (o) (o) Qoudo 7/ t=AT7 (Qg, ' Pudo, 432)

then h € CO(R, H) and for t € [by — 1,b} + s + 1],
1l < Colly|| 2 Qoul + Clpulo. (4.33)

because [Qo, Vv'WPlu = (Q_1u(t,z), Q_10u(z,t)) with Q_; € G~! then

‘[QO’ z//\p]u‘l

IN

e

&gu

(LZ(RxQ)) + ‘ ‘(LZ(RXQ))

. ’W (4.34)

IN

’(LZ(RxQ))

0 id

Let d a real constant, Ag"ﬁ - ( b P
a Ty

) . We have (9; — A3 )h = —Qot'u+ (AP —

AS%P)h then

—[e A“fw o)¥(0)Qou,
— [T e =457 [Qg, ¢ Wu, (4.35)

[e.9]

-l-ftooe AT (A2F — ASP)p,
There results for all t € [by, b} +s+ €], € >0, ¢ < ¢

< (e—d(t=b1)|d|B _ - —
0], < (et Colla(e) ~ dil mga ¢ ~ o) w36
[Nl 2 [¥Qoul1 + Clepulo
where Te = Kjp_c i, 45+ Indeed, we write by (4.36)
h=(1)+(2)+(3)

We have WFb( ) C {t > to} and WFb((at ) ) WFb(Q()w ( ) ) (SE(QQ)ﬂ(t > b()))
By Cauchy Schwartz we obtain



Partial Stabilization 285

I/ D5 (43 AT (o)
oo 4.37)

< Oyt — bg)Ha(a:) de b

o

Lo (T, L2

that give the term (3). We can see the term (2) by (4.34).

Finally for the term (1), we see that if (ej, w;) is the orthonormal basis of eigenfunctions
of H}(Q), —Ae; = wlej, w; > 0, we denote by A%, i = 1,2 roots of \* + 2d\3 + (82 +

J VK
awjz- + wjz-))\z + Zdawjz-)\ + aw? = 0. The family ((e;, ae;), /\jii(ej, aej)), i = 1,2 constitute

an orthonormal basis in H of eigenfunctions of A%*?. For j large, we have Re()\j;) = —%, we
obtain )
1
(1) < / e~ (t=0)% ¢I(U)“‘TQOE" do + C‘w‘
b H 0 (4.38)
< e (t=b)g+gs ’ W \IJQOQ’ + C“PH‘ '
L 1 0
this give (4.36). We have lilgn ’(pgk‘ =0, and since 0 (Q7Q) = Idon K, ,
0
. k 2
i (Kry,) < lim sup Q| (4.39)

Let x € C5° (Jbf + s —€,b] + s +¢[), with x = 1 on SE(Q;). By (4.29), (4.31) and ¢ =
(@) € [0, 1], we have

2 2
lim sup ‘ngk‘ < limsup ’)@k’ (4.40)
k 1 k 1

and by (4.36)
limsupy, [xh* [} < (8] = b + 26) [¢'][3,2. (6f%<bg+sfblfe>e%m+4

- (4.41)
+  Colla(z) — d|| g (1) (b] + 5+ € — bp)?) limsup,, [FQuU"|>.

As by — by < by — by, we can assume (b — bjy + 2¢) [|¢’|| > < 1. Moreover, Id — o(¥Qo) non
negative and supported in K j, then we deduce from (4.39), (4.40), (4.40) with T' = T

3 2
(K ) < 1K) [e7e379 4 Colla(w) = dif oy (b1 + 5 = bo) | - (4.42)

This estimation is valid for K’ € K, J' € J, by — by < B and s > 8 where by, by, d are bounded
constant. For all p € K ;, we have

e*G(s, p) — Id’ < Coslla(z) — d| poo (1)

Let 6 > 0 small enough, there exist s5 > 0 and (s such that pg is in K; we have diam(K) <
Bs,0 < s < s5 and by — b+ 0 < §, and choosing d = a(po), ||a(z) — d|| =7y < Cod and by
(4.42)

w (K y) < pt (Kp)H(s,, po)(1 + Cods). (4.43)

Proving (4.26), let s > 0 and 8 < inf(Bs,dss). By iterating at most N = = times the
inequality with s = s5 and a sequence J' = J; € J; € ... € Jy = J of intervals and a sequence
of compacts K’ = K| € K; € K3 € ... € Ky = K, we obtain for any py € int(K)

p(KY) < pt (K p)H(s, p)(1+ Cod). (4.44)
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Since (14 Codss)™ < 1+ Cod. As we have uf (K.J) = Jx, H(s, p) and for 3 small [H (s, p) —
H(s,po)| < Cyd for p € K, hence the function H the function H remaining in a compact
(0. 4 00)

g (K) — (K H (s, p| < Codp (K ) (4.45)

and (4.26) deduced from (4.44) and (4.45).
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