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Abstract. We present an introduction to the study of a relativistic particle moving under
the influence of its own Frenet-Serret curvatures. With the aim of introducing the notation and
conventions used in this paper, we first recall the action of a relativistic particle. We then suggest
amathematical generalization of this action in the sense that now the action may include terms of
the curvatures of the world line generated by the particle in Minkowski space-time. We go on to
develop a pedagogical introduction to a variational calculus which takes advantage of the Frenet-
Serret equations for the relativistic particle. Finally, we consider a relativistic particle coupled to
an electromagnetic field that is moving under the influence of its own Frenet-Serret curvatures.
Within this frame based on the Frenet-Serret basis, we obtain the equations of motion for several
curvature dependent actions of interest in physics. Later, as an illustration of the formalism
developed, we consider the simplest case, that of a relativistic particle when no geometrical
action is included, in order to show (i) the equivalence of this formalism to the Newton’s second
law with the Lorentz force and (ii) the integrability in the case of a constant electromagnetic
field.

1 Introduction

The dynamics of a mechanical system is governed by the principle of least action, which states
that the motion of a system, between the times ¢; and t ¢, is such that the action A, defined by the
integral

tr
A= / dt L, (1.1)
t;
takes the least possible value. In general, the Lagrangian L depends only on the positions and
velocities of the system, see Ref.[1]. Although sometimes, the motion of the mechanical system
can only be described by means of empirical Lagrangians.

For a free relativistic particle, the lagrangian and action are given by

ty
A:—mcz/ dt /1 —v2/c2 (1.2)
t; /

where m and v are the mass and velocity of the particle while c is the speed of light in empty
space. The dynamics of a relativistic particle can be better studied in Minkowski space-time,
here denoted by M. The points in M are called events, which are generated by the point particle
motion. An event has three spatial coordinates z,y, z and the time ¢, The collection of events
forms the particle world line in M. The length or the infinitesimal interval of the world line on
M is given by ds*> = —dt*> + di?. Then, following the Wienberg’s conventions in Ref.[2], it can
be written as ds® = 7, dz* dz¥, where

-1 pu=v=0
Nuv = 1 wv=>135=1273 . (1.3)
0 p#v

where 1 = 0,1,2,3, such that 2° = ¢ and 2’ are x,y, z. Let us now denote the particle world
line by X#. The X* are the embedding functions of the particle motion in M by means of
zt = XH(€), where £ is an arbitrary parameter only useful for generating the motion. For
example, the proper time of the particle is given by
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dX* dX”
ds? = —dr? =1, — —
S T Un df df

It will be convenient to introduce the scalar function v by

de?. (1.4)

dX* dX”
=Ny —— 1.
then the particle proper time is given by
dr = /—vyd¢ (1.6)

and therefore the action of a free relativistic particle can be written as

ty
A:/ ﬂz/dr (1.7)
t, Y

It is possible to consider a mathematical generalization of the action given in Eq. 1.7. The
main idea behind this generalization has come from string theory, where the string action in-
cluded an additional term proportional to the external curvature of the string world-sheet. This
additional term was proposed in order to avoid the occurrence of sharp string configurations in
the resulting string dynamics, see Ref. [3]. For this reason, it was named the rigid string theory.
The natural translation of this idea to the action of a point particle, was to include an additional
term to Eq.1.7 with the world-line curvature.

In the purely mathematical sense, the relativistic particle Lagrangian can be generalized by
including terms depending on all the curvatures of the particle world-line in the following man-
ner. As the world-line of a particle evolving in a fixed Minkowski space-time of general di-
mension N + 1, can have associated up to IV curvatures, 1., a hierarchy of Lagrangians with
successively higher curvatures ; _n can be introduced into the action in the form

A[X} = /dTLg(/{l,Kz,lﬂ,...IiN). (18)

In fact, in Ref.[4] such mathematical generalization was considered.

The mathematical models pointed out in Eq. 1.8 have also been considered as effective the-
ories for describing the dynamics of an object when its internal structure is not well resolved.
For instance, an effective bosonic theory used to describe a super-symmetric particle can be put
in terms of some of these models, see Ref. [5]. Besides, the description of spinning particles
has incorporated the attractive idea of considering that the spin degrees of freedom are encoded
in the world line geometry. In these two examples, the extrinsic curvature in the Lagrangian is
expected to supply those extra degrees of freedom. Because the curvature is proportional to the
particle’s acceleration, such effective actions will then contain terms with derivatives on X* (1)
equal or higher than two, that is d;)f; .

The theoretical study of such curvature dependent actions for the relativistic point particle
has a long history. Let us now mention just a few examples of the kind of curvature dependent
theories that have been considered so far. It was started in the late 80s, when Plyushchay studied
for the first time the physics of the linear theory in the first curvature, that is, Ly = —u + &1,
see Ref. [6]. Subsequently, in Ref. [7], Plyushchay was able to show that there are three types
of explicit solutions for the dynamics of such rigid particle, namely: massive, massless and
tachyonic, depending on the value of the particle invariant M? = P* P,, where P* is particle’s
four momentum. Dereli ef al. in Ref. [8] have considered the theory L, = —u + x7 while
Nesterenko ef al. [9] and [10] have studied the integrability of the case L, = f(k;) for a
general function f. The linear model in the first curvature, L, = &, was firstly considered by
Plyushchay in Ref. [11] and by Zoller in Ref. [12] who was able to show that the natural coupling
of this linear curvature theory to gravity does not yield a consistent theory.

Plyushchay went on to consider the most general curvature dependent lagrangian, L, =
f(x?), with the purpose of studying the quantization of such a particle, see Ref. [13]. The
question of quantization of a relativistic particle models with higher derivatives was investigated
again by Plyushchay in Ref. [14].

The model of the relativistic particle with an action depending linearly on the curvature and
torsion, Ly, = —u + cte k1 + cle Ky, was investigated both at the classical and quantum levels
by Kuznetsov and Plyushchay, see Refs. [15] , [16], [17] and [18]. A review of the relations
between the Majorana equation to the higher derivative particle models was provided in Ref.[19].
Particularly, the model with torsion has been proved to be usefull as a model for relativistic
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anyons in (2 4+ 1)D space-time, see Refs. [20] and [21]. A relation between the relativistic
particle with torsion in Minkowski (2 + 1)D spacetime to the model of the non-relativistic 3D
Euclidean particle in the field of a monopole has been revealed in Ref. [22]. Plyushchay also
demonstrated that the equation of motion of a particle including a linear term on the second
curvature ( or torsion) of the world-line, coincide with the equation of motion of a relativistic
charged particle in an external constant electromagnetic field, see Ref. [23].

Dirac’s theory of constrained Hamiltonian dynamics provides a basic tool for understanding
gauge symmetry of classical Lagrangian systems and forms the starting point of their quantiza-
tion. It is notable that this tool is almost confined within the realm of Lagrangian dependent of
coordinates and velocities only. The important sector of the higher order Lagrangians remains
considerably less explored. A direct connection between the gauge symmetry and the W-algrebra
for the rigid relativistic particle was shown by [24]. Later, it was shown by [25] that the quanti-
zation in terms of so(3, 2) algebra of the Lagrangian linear in the curvature yields massive Dirac
equation. A relativistic particle model with curvature as a theory possessing a gauge symmetry
was studied by [26], where the constraint analysis of this model and its massless analogue was
discussed.

It was shown in Ref.[27] that the particle dynamics with higher derivatives is necessary for
the extension of classical field theories to spacetimes of higher dimension, such as the Maxwell-
Lorentz electrodynamics; otherwise not all self-energy divergences are eliminated through their
absorbing by free parameters in the Lagrangian and redefining them to become finite parameters.
Besides, it was noted by [28] that a free relativistic particle with the Lagrangian linear or the
quadratic in the curvature may exhibit runaway motions due to instability of zitterbewegung
inherent in these models. In contrast, the Lagrangians containing the term k9, where 0 < ¢ <
1/2, ensure stable planar zitterbewegungs for a large values of k.

More recently in Ref.[29], Barros has considered a Lagrangian depending linearly on the
world line curvature with the purpose of describing the dynamics associated with relativistic
particles both massive and massless. He has obtained the whole space of solutions in an space-
time with constant curvature. In Ref. [30], Ferrdandez et al. have shown the moduli spaces
of solutions in a three dimensional pseudo-Riemannian space for the model of a relativistic
particle with curvature and torsion. In Ref. [31], Arroyo et al. have considered the model
Ly = m+n ki +pr; and has found all the solutions for the constants m, n, p; or in other words,
that the spinning relativistic particles evolve along Lancret curves in a 3D space with constant
curvature. In Ref. [32] numerical integration of the Cartan equation of motion for a relativistic
particle with curvature was carried out in order to explicitly show the particle world-lines.

The authors of Refs.[33] and [34], have explored the correspondence between the geometry
of the world lines described by a Frenet-Serret basis and the dynamics of a charged particle as
they related the two invariants of the electromagnetic field with the curvatures of the world line.

2 Geometric elements

The mathematical problem of finding the equation of motion associated with an action implies
the calculation of the variation of all the terms under the action integral, in such a way that the
real motion of the particle will be the one having its first variation identically zero.

A Frenet-Serret vectorial basis can be attached to every point of any smooth curve in 3D
space generated by the motion of a particle. The basis consists of a set of three vectors: the
tangent vector and two ortho-normal vectors, which are called the normal and the bi-normal,
respectively. To complete the Frenet-Serret basis, one also needs to introduce the scalar functions
x and 7, known as the curvature and torsion, respectively, see Ref. [35].

Thus, in order to calculate the first variation of all the geometrical terms involved in an
action like the one given by Eq. 1.8, we develop in Section 2.2 a variational procedure, based
on the Frenet-Serret equation for a relativistic particle. But we first show in Section 2.1 the
generalization of a well know procedure in 3D space for constructing the Frenet-Serret equations
in the four dimensional spacetime M.

The Frenet-Serret basis adapted for the Minkowski spacetime M has been used to generalize
the fundamental theorem of curves in Euclidean 3D space, so that the curvature and torsion
completely determine the curve up to arigid motion. In Ref. [34] was shown that in the context of
Minkowski spacetime, the three curvatures fixed the world line up to a Poincare transformation.

The authors of [34] also offered a proof for the statement that a world line with a non-
vanishing first curvature is plane if and only if the second and third curvatures identically vanish.
For the case in which just the third curvature vanishes, the world line lies in a hyperplane.
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2.1 The Frenet-Serret basis

Let us now generalize the idea of introducing a vectorial basis at any given point of a curve
generated by a relativistic particle evolving in space-time M. Let us start by defining the tangent
vector TH by T+ = 4 dX ~ = X't where a prime hereafter means a derivative with respect to 7,
the proper time defined by Eq.1. 6 Making the chance of coordinates ¢ => 7 in Eq. 1.4, we get

0(T,T) = 0, THT” = 1. 2.1)

The set of four-vectors N/ must be orthogonal to the tangent four-vector 7, as well as unitary.
By taking the derivative of Eq. 2.1 with respect to 7, we find that n(dT T) = 0, and that these
vectors are orthogonal. We then define the four-vector N{' by

—_= N‘L 2.2
il (2.2)

such that x; is its norm, and it satisfies the relations
n(T,Ni) =0 n(N;,Ny) =1 (2.3)

Let us now take the derivative -+ of the first relation of Eq. 2.3: (4L, Ny) + n(T, 2%) = 0.
ANy g

By using Eq. 2.2 into the left hand side of this last expression, we have that x; + n,wT“

is possible to factorize the tensor 7, from this equation, to obtain 7, T* (—mT” + dN‘ ) =0
from which we conclude that the vector in the bracket is orthogonal to the tangent, therefore we

can define the second normal vector by
dNY{
dr

= R N; + K1 T (24)
such that x, is its norm; then the four-vector Nz“ satisfies the relations

U(T, Ng) = O n(N27 Nz) = 1 n(Nl,NZ) = 0 (25)

That IV, is also orthogonal to NV can easily be proved by dotting Eq. 2.4 with V.
Let us now continue by taking the derivative of the third relation of Eq. 2.5 with respect to 7.

We have (¥, N>) +n(Ny, 42) = 0. Substituting Eq. 2.4 into the first term of this relation and

factorizing the term n(Ny, ) in its components explicitly, we obtain 7, N!* (mz Ny + dNZ ) =0,

from which we are able to introduce the definition of the third normal four-vector N}’ by means
of

AN}
5t N = NY (2.6)

such that x5 is its norm; then the vector N3 satisfies the relations

?7(T, N3) =0 77(N3,N3) =1 7](N1, Ng) =0 77(N2, N3) =0 (27)

By dotting Eq. 2.6 with N, we obtain the third relation of Eq. 2.7. Likewise, by dotting Eq. 2.6
with 7% and commuting the derivative between the terms and substituting Eq. 2.2, we prove the
first relation of Eq. 2.7.

Finally, we take the derivative with respect to 7 of the third relation of Eq. 2.7: n( %, N3) +
n(N,, %) = 0. Substituting Eq. 2.4 into the first term of the precedent expression and factor-
ng

izing the term (N>, ), we get 1), NA' (K3N v+ ) = 0. We could introduce a fourth normal

vector defining it as the term inside the parenthes1s. However, there is no dimension in the space-
time M to associate another normal vector, so we have to close the process and define the term
as identically zero, therefore

u

dr

+r3NyS =0 (2.8)

Summing up, so far we have built the Frenet-Serret basis for the relativistic particle in the
space M; a basis which is formed by the following vectors
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G =m
dfi\_]r'u = Kp Niu +r TH
AN (2.9)
N = RN NP
dtli\jf“ = —R3 N;’
and with the following properties
n(T,N;)=0i=1,2,3
0i#j (2.10)

U(NiaNj):(Sij:{ 1 ie g
=17

The system of equations 2.9 can be easily generalized for a curved space-time by making on

all the terms the transformations of derivatives % to covariant derivatives, that is, DD—ATM =
dA* B dX* 4B
dr + Aaﬁ dr AP

2.2 Relativistic Perturbations.

Let us now consider a small perturbation on a general particle world line embedded in the space-
time M by the functions z#* = X* (7). Let us define ¢ as a perturbation operator, which action
on X*(7) can be decomposed along the Frenet-Serret vectors as

OXM =T + I N{* + o NJ' + 13 N§' (2.11)

where the functions 1|, ; are numerically small in such a way that we only consider the linear
perturbation regime.

By taking the derivative of any vector with respect to 7, we get another vector, which can
also be expressed as a linear combination of the Frenet-Serret vectors, for example

dsx+

“dr (1/)|'| + m%) T“+(¢'1 — Koty + me) NI (W — k33 + ko) NS+ (04 + w3eha) NY-
(2.12)

Let us now consider the perturbation on the function v defined in Eq 1.5. We apply to it the

variation operator ¢, we get

_ dxX* déxv
57 - 277/11/ dé dé

N 2
— 21y, T 45X 3—5) (2.13)
2
where we have used the chain rule in both terms of the dot product shown in the second line, in

order to switch to derivatives on 7 instead of £. Now, according to the third line of Eq. 2.13, we
only need to take the tangential component of Eq.2.12 to obtain

oy =2y (zbﬁ + K1 ) : (2.14)

the perturbation of the proper time. Then, by applying the operator § on Eq. 1.6 and considering
that there is a commutation relation with the derivative operator with respect to the arbitrary
parameter &

dr\ _ d(oT)
(%) -
we get
6(dr) = (d7) (v +mvn ). 2.16)

It is important to point out that the result of Eq.2.16 indicates that the perturbation operator and
the derivative operator with respect to the proper time do not commute. For this reason, the chain
rule must be used when there are derivatives with respect to 7. As an example, let us consider
the perturbation on a derivative of a scalar function f(7),



Equations of motion charged particle with curvature 223

3(#) =a() %+ o ()

2.17)
dsf d df 5 (d
- 4+ o (%)
and replacing Eqgs.1.6 and 2.14, we get
afy\ _d(f) df ¢,
5<d7> =2 (w|,+m¢1) . (2.18)

We can now obtain the perturbation of the tangent four-vector by considering the change f =>
X*in Eq. 2.18, we get

I3 jz
sz(s(dX >: doX

dt dr
and comparing with Eq.2.12 we get that the perturbation of §7#

_w (% N ) (2.19)

6T = (¢ — katha + k1¥)) N 4 (¥ — K3ty + kathy) NY 4 (05 + kan) NE. - (2.20)

is purely orthogonal to the world-line. For mathematical convenience, we now introduce the «
coefficients in the following form

ST" = oy N + oy N¥ + a3 N @2.21)
where
ar =Y — Koy + K1Y
ay =y — K33 + Ko (2.22)
a3 =Yy + Rz,

With the purpose of calculating the variation of the first curvature, we solve for x; from the

first Frenet-Serret Eq. 2.2, obtaining x1 = n(Vy, %). Then, applying the ¢ operator we get,
dT dT
ok =n(ONy, — Ny, 6—). 2.23
K1 77( 17d7_)+77( 1y dT) ( )

The first term vanishes, as it can be probed by making use again of the first Frenet-Serret Eq. 2.2
and factorizing the operator 4, that is n(dVy, ‘é—f) = Kk1n(6Ny, Ni) = 5on(Ny,Ny) = 0. To
calculate the second term of Eq. 2.23, we can use Eq.2.18 with f => T#, to get

dre  dsTH  dT®
e (¢f\+m¢1) (2.24)

Using now Egs. 2.12 and 2.21 but with « coefficients « defined by Eq. 2.22 instead of the 1
functions, we get the component along the NV vector, in such a way that the variation is,

(5%1 = O/l — Ry — K1 (’(ﬁl/‘ + K1¢1> (225)

So, the final result of this variation expressed in terms of the 1 functions is

k1 =P — (KT + K3) 1 — 2600 — Kby + Korkaths — s + K1Y (2.26)

Following the same method, we can calculate the variation to first order for all the other
curvatures. To get dr, we first calculate d N{', by solving for the second curvature in the second
FS Eq. 2.4 and applying the perturbation operator §, we obtain

B Ny . dN, dN,
6”‘2 - 577(N23 ?) - 77(5]\727 dr ) + U(N27 d dr ) (227)

Substituting the second FS Eq. 2.4 in the first term and using the commutation relation 2.18 in
the second term, we get

doN dN

k2 = K1M(0N2, T) + K2n(0N2, N2) + (N2, Trl) - (lﬁﬁ + /W/Jl) (N2, CTTI) (2.28)
We notice that the second term of Eq. 2.28 vanishes and that we can use again the second FS
Eq. 2.4 to simplify the fourth term. The fact that n is constant and that the FS vectors are all
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orthogonal allow us to interchange the action of the operator ¢ on the first term n(7,0N,) =
—n(0T, N,); we also notice that the third term can be written in the form

dd Ny d dN2

(Nz, dT ) EU(N%(SNI)_ ( 5N1) (229)

so that Eq. 2.29 becomes

4N eN) @230)

oky = —k1n(N2, 6T) — k3n(N3,0N1) — (1/1|'|/ + Hﬂl)l) K2t o

At this point we note that for calculating dx; one only needs to compute the components along
the directions N, and N3 of the variation 6 /NV;, as we know that the component along the N,
direction of 6T* is a.

Let us now calculate the required components of §V;. Solving for N; from the first FS Eq.2.9
and applying the operator §, we have

T+ 1 T+
5Nﬁ—5( )d + () P 2.31)
K1 dr K1 dr
and making use of Eq. 2.18, this becomes
0 1 doT* 1 dTH
snt = — () ypp L _ (wn +,ﬂ¢1) (2.32)
K1 K1 dt K1 dr

Obviously, the needed component is contained in the second term of Eq. 2.32. By once againg
using Eq.2.12 with the « coefficients instead of the 1 functions, we get the second term of
Eq.2.30, that is,

1 dTH 1y, ,
15, 6N1) = (N3, 0 —) = - ) (a3 + aons) (2.33)

we finally get the variation x; in compact notation

(2.34)

d (a)+ —
(5%32 = R — @ (0/3 + Ii30¢2) — R2 (1/1‘/‘ + Iill/Jl) + — (042 a2 OGKS)
K1 dr

K1

or in terms of the v functions, this variation becomes

b= = ()0t 4 vm ) — (2) v (25) v
(2.35)

We proceed in the same way to calculate the variation of k3. We start by taking the dot
product of the vector NJ* with all the terms of the fourth FS Eq. 2.8, that is, k3 = —n(V2, N, 2.
Then we apply upon it the § operator

dry = —n(6N2, G2) — n(Na, 652)
= k3n(0N2, N2) — (N y, B0 4Ny ( s 511/11)) (2.36)
= —n(N2, $£303) = s (¥ + k1)

For calculating the first term of the third line, it is better to make a double transposition of the
operator, such that

n(Ny, LON3) = (92, 6N3) + Ln(N,, 6N3)
= Hz?](N] s 5]\]3) ET](NQ, 5N3) (237)

= —ron(6N1, N3) + -Ln(N,, 6N3)

then, in compact notation the variation is

K2 ’ d
3 = 22 (0} + a02) = ko (] + r191) = (N2, 603) (2.38)

Again, it is convenient to express this result in terms of the ¢ deformation functions, then

2
Ko K3 _ /
1 ) (1 f<321/JH .
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2
s = 2 (4 — rdus) + (2mavh + )] + (’Z’f - mm) Ur — Rsthy — (N, 6Ns)
(2.39)
It should be noted that Egs. 2.26 , 2.35 and 2.39, with the variation of the curvatures dx1, dxy
and Jk3, are the main results of this section. Despite the fact that the total derivative appearing
in those equations does not make any contribution to the equation of motion, these terms are
important for calculating the conservation laws, as can be seen in Ref. [36].

3 Geometric actions and equations of motion.

The action describing the dynamics of a relativistic charged particle in the presence of an elec-
tromagnetic field is

AJX}:i/dTLﬂn—qAﬂTﬂ. 3.1)

where A* are the field potentials. This action describes the motion of an electron in an electro-
magnetic field. When a term of self-force due to the electron’s own charge is considered, the
motion can be described by the Dirac-Lorentz equation. It should be noticed that Rohrlich in
Ref.[37] has used the FS equations for a 3D space time with the purpose of obtaining solutions
of the Lorentz-Dirac equations. The term of self-force on the electron includes the particle ve-
locity and certain terms involving the first and second derivatives of the particle velocity. The
author of Ref. [38] discovered that mathematical structure of the external force can be obtained
by manipulating the Frenet-Serret vectors along the particle world line.

Let us now consider a theory based on the Lagrangian introduced in Eq. 3.1 plus a geometric
Lagrangian L4, which may include world-line curvatures, that is

A[X] = / dr [=m + my Ly (i1, K2, 13) — a A, T"] (3.2)

where m,, is a parameter. The case when L, is a quadratic function on the first curvature L, = x?

has been studied widely by several authors, see Sect.1.
Let us now consider the general variation of the action given in Eq. 3.2
SA[X] = [[6(dr)L+drdL] (3.3)
= [dr [(kit1) L+ mgdLy(K1, k2, k3) — q0 A, — qA0TH] . '

By making use of the general variations

SLJ L, L,
5Lg = Br, 0K1 + Dy 0Ky + 3& 0K3 (3.4)
§A, = 2885XY = A, (OINY + 02 NY + 13 NY)

we are now able to write down some special cases of Lagrangian L.

» The model L, = %m% whose dynamical equations take the form

—MmK| — My [+H/1/ — %H3 mfcz] qF,,THNY =0
—2mgk| Ky — mgK1K) — qF,, THNY =0 3.5

—mgkikaK3 — qF, THFNY =0
+ The model L, = %m% whose equations of motion are given by

2
—MmK| — My |:%/€1I<&% + Iﬁ:% (251 + Z—:)] —qF,,T'N} =

gk (ks + 2 2"‘3) +my (22} — B, THNY

K1

0
=0 (3.6)

— _ Kak ’3 _ uwNvV —
Mgk1K2K3 — Mg~ qF,,TFNy =0

» The model L, = % whose equations of motions are
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—mK; —my [%/ﬁlﬁ% + K3 (/ﬁ - ”gﬂ —qF,, TN} =0

=

K1

K

—mg Ly (2 4o, 28 R, TENY = 0
932 \ w 9 -y 3 =

For solving the equations of motion of any of these models, one must get the trajectories of
the particles in Minkowski space by integrating all the FS equations coupled with the geometric
term of the model.

4 Solution for a free relativistic particle: m, = 0.

Let us first consider the simplest possible case, to test the formalism, when no geometrical La-
grangian is included. Then, the set of Egs. 3 reduce to

—mr — qF,,TFNY =0
qF,TFNY =0 4.1
qF,TFNY =0

Let us show now that the first of this equations is the Newton’s second law with the Lorentz force
in the right side. To see this, substitute ; from the first FS x; = (N, Z—Z) we get

dT*
dr
factorizing 7, N{ and re-arranging repeated indices, we obtain

— MmN N —qF, TNy =0 “4.2)

v ar aqf
MalN{ | —m—— +qFgT" )| =0 4.3)
dr
as N{" is still an arbitrary vector, one must realize that the expression in parentheses is always
zero; and this happens because the action Eq. 3.2 reduces to the usual relativistic action if mg =
0, that is
ar*  q

= = FHT" 4.4)
dr m

We are left with the second and third relations in Egs. 4.1. It should be noted that for all electro-
magnetic fields in special relativity, one must have

FuTVNE = “5)
F,TFNY =0

4.1 Constant electromagnetic field

Let us consider now the case in which F},, is constant. We show now from the Frenet-Serret
equations 2.9 that the solution curve will have all its curvatures constants. Let us then define
M+t = %; then according to Eq.4.4, M* = q/m F¥T". The derivative is

2 "
AME 9 pp ™ 4 pu g, (4.6)
dr m dr m

Let us take now the derivative of the magnitude of M, that is

A (M M* MY) = 20y, M AL
= 21, MH* LFY M 4.7
=2L(F, M"M")=0
where the third line vanishes because F' is antisymmetric and constant; we may then conclude
that

dl dT
M, M) = —, — | =ct 4,
nOr) = (G5 ) = ete “8)
In what follows, we will use this result to show that all the curvatures are constant. Let us then
substitute the right hand side of Eq. 4.8 with the first Frenet-Serret relation
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n (k1 N1, k1 Ny) = cte => K3 = cte, (4.9)

which directly implies that the first curvature is constant. Now, it is possible to rewrite the
Newton’s second law, Eq. 4.4, in the form

kNt = Lpppv (4.10)
m
Squarring it we obtain
2 q 2 wpvmpaf —
K2 = (E) Ny FLFSTOT? = cte . @.11)

We then recognize «; as an invariant whenever F),,, is constant. Taking the derivative of the
Eq. 4.10 with constant x; we learn that the V| vector satisfies an equation of the form 4.8,

ANl
L= Lpuny (4.12)
dr m
Let us now use the second FS Eq. 2.4 and square it
dN; dN
n (dl’ dl> = (kaNy + k1T, kaNs + 5 T) = K3 — KT = cte (4.13)
T T

from which we get that x, must also be a constant. On the other hand, by using Eq. 4.12 into the
left hand side of Eq. 4.13, we obtain the relation

2
KE = K2+ (i) N FEFENENP = cte (4.14)
m
We continue the process by obtaining the term with r, from the second FS relation

dN!
dr

Substituting Eq. 4.12 on the right hand side of Eq. 4.15 and taking the 7 derivative on the result-
ing expression, we obtain

KzN; =

— k" 4.15)

dN}
dr
Thus, the square of the derivative is a constant, in such a way that

Nuw (k3N — Ko NT') (k3N — ko N{') = cte (4.17)
K3 + K3 = cte.

= Lpeny . (4.16)
m

from which we conclude that x, is also a constant.
Let us now consider the term with N3 from the third FS relation 2.6

dNY
25— Lpeny (4.18)
dr m
by applying a similar procedure we obtain
2
K2 = (%) Ny FEFYNSND = cte (4.19)

from which we conclude that 3 is a constant.

As we have seen, for an F' constant the three curvatures are constants and can be expressed
in terms of F itself. In order to show the form of the curvatures in terms of the electric and
magnetic fields, E and B, respectively, we use the conventions given by Weinberg[2] for the
tensor I, see the Appendix A.

For any vector A", the contraction with the electromagnetic tensor, in the form suggested by
the right hand side of the curvatures is given by

0P o Fay AP AV = — (A’ : E)z T (AtE + Ax §>2 (4.20)

Then in the coordinate system attached to the laboratory, the tangent vector is
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TH = (v,~7) 4.21)

where ¥ is the particle velocity and

1
R — 4.22
V== (4.22)
Therefore, the invariant for the fist curvature is

K2 = (@)2 —(ﬁ-ﬁ)2+(ﬁ+6x é)z (4.23)

m

It is easy to complete the dot product in the first term of the right hand side, then Eq. 4.23 can be
written in the form

K2 = (1)2 {Fz - (17. Fﬂ (4.24)

m

where F is the Lorentz force F = ¢ (E — U X E) Equation 4.24 was obtained by [39] and
[33].

5 Conclusions

In this paper we have obtained the equations of motion for a charged particle moving in an
electromagnetic field when its action includes terms with its own world-line curvatures. This
dynamical problem is mathematically difficult even on how to write the equations of motion,
particularly when they are in terms of the particle embedding functions X (7). An alternative
approach useful for handling the mathematics of this problem is based on taking advantage of
the Frenet-Serret frame, as we have shown here. We have obtained the Frenet-Serret equations
in Minkowski space-time and then we have used them in order to develop a variational calculus
well adapted for tackling this kind of problems.

The problem of a relativistic particle moving in an electromagnetic field is interesting both
in theoretical and applied physics. For instance, in plasma physics, this problem is concerned
with the mechanics of particle acceleration, when heating and radioactive effects are taken into
account, see Ref.[40]. This kind of studies are based on the numerical integration of Eq. 4.4
obtained in Section 4, where we also proved the equivalence of the alternative approach. It
would be interesting to compare the results obtained by integrating the two formalisms.

Finally, we mention that all the mathematical formalism developed in Sects. 2.1 and 2.2
can easily be translated into an Euclidean space, where the curvature dependent actions and the
world-line of the relativistic particle would be replaced by curvature dependent energy function-
als and by smoothly continuous curves, respectively, see Refs. [41] and references there in.

The space of solutions in the Euclidean frame is abundant and physically interesting, as can
be seen in Ref. [42], where the equilibrium configurations of a 2D closed rigid loop were studied.
In Ref. [43] the integrability of some curvature dependent energy functionals was established by
making use of the constants of integration obtained by applying the Noether’s theorem. Sub-
sequently, in Ref. [44], the equilibrium configurations curves in the Euclidean 3D space were
numerically obtained for the models of Ref. [43].

A Appendix

For the electromagnetic tensor, we follow the notation of Weinberg [2], we then have

0 -B -E —F;
E, 0 By -B

Fy = ! 3 2 (A.1)
E, -By 0 B

Ey B, -B 0

and its dual *F,, = Se,4vas F*? and in matrix notation is:

0 —Bl _B2 —B3
P B1 0 —E3 E2
" B, Ej 0 -E
By —-E, E 0

(A.2)
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The field invariant are then the following

Fo F1 = =2 (B2~ )

. (A3)
“F,F* = -2FE-B
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