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Abstract The rings considered in this article are commutative with identity and unless otherwise specified, they are
not integral domains. Let R be a ring. Let A(R) denote the set of all annihilating ideals of R and let us denote
A(R)\{(0)} by A(R)∗. With any ring R, Alilou and Amjadi, in [The sum-annihilating essential ideal graph of
a commutative ring, Commun. comb. optim. 1 (2) (2016), 117-135] introduced and investigated an undirected
graph, denoted by AER, whose vertex set is A(R)∗ and distinct vertices I, J are adjacent in AER if and only if
AnnR(I) + AnnR(J) is an essential ideal of R. In this article, with any ring R, we associate an undirected graph
denoted by G(R), whose vertex set is A(R)∗ and distinct vertices I, J are adjacent in G(R) if and only if I + J is an
essential ideal of R. The aim of this article is to investigate the interplay between the ring-theoretic properties of a
ring R and the graph-theoretic properties of G(R).

1 Introduction

The rings considered in this article are commutative with identity and unless otherwise specified, they are not integral
domains. Let R be a ring. Recall from [9] that an ideal I of R is said to be an annihilating ideal if there exists
r ∈ R\{0} such that Ir = (0). As in [9], we denote the set of all annihilating ideals of R by A(R) and A(R)\{(0)}
by A(R)∗. We denote the set of all proper ideals of R by I(R) and I(R)\{(0)} by I(R)∗. Recall that an ideal I of
R is said to be an essential ideal if I ∩ J 6= (0) for any non-zero ideal J of R. For the sake of convenience, we
denote the set of all essential ideals of R by E(R). For an ideal I of R, the annihilator of I in R denoted by AnnR(I)
is defined as AnnR(I) = {r ∈ R | Ir = (0)}. This article is motivated by the research work done by Alilou and
Amjadi on the sum-annihilating essential ideal graph of a commutative ring in [1] and on the essential ideal graph of
a commutative ring by Amjadi in [2]. With each ring R, the authors of [1] introduced and investigated an undirected
graph, denoted by AER whose vertex set is A(R)∗ and distinct vertices I, J are joined by an edge in AER if and only
if AnnR(I) + AnnR(J) is an essential ideal of R. In [1], Alilou and Amjadi proved several interesting theorems on
AER illustrating the interplay between the graph-theoretic properties of AER and the ring-theoretic properties of R.
In [2] with each ring R, Amjadi introduced and investigated an undirected graph, denoted by ER whose vertex set is
I(R)∗ and distinct vertices I, J are joined by an edge in ER if and only if I + J is an essential ideal of R. Let R be a
ring such that A(R)∗ 6= ∅. In this article with R, we associate an undirected graph, denoted by G(R) whose vertex
set is A(R)∗ and distinct vertices I, J are joined by an edge in G(R) if and only if I+J is an essential ideal of R and
we study the interplay between the graph-theoretic properties of G(R) and the ring-theoretic properties of R. It is
clear that G(R) is the subgraph of ER induced by A(R)∗. Thus for a ring R, if I(R)∗ = A(R)∗, then ER = G(R). Let
R be an Artinian ring. Then it is well-known that I(R)∗ = A(R)∗. (One can prove it with the help of [6, Corollary
8.2 and Propositions 8.3, 8.4].) In the course of our investigation on the properties of G(R) to be presented in this
article, we provide rings R such that G(R) 6= AER.

Let us first recall the following definitions and results from commutative ring theory. Let R be a ring. We denote
the set of all zero-divisors of R by Z(R) and Z(R)\{0} by Z(R)∗. We denote the set of all prime ideals of R by
Spec(R) and we denote the set of all maximal ideals of R by Max(R). Let I be a proper ideal of R. Recall from
[14] that p ∈ Spec(R) is said to be a maximal N-prime of I if p is maximal with respect to the property of being
contained in ZR(RI ) = {r ∈ R | rx ∈ I for some x ∈ R\I}. Hence, p ∈ Spec(R) is a maximal N-prime of (0)
if p is maximal with respect to the property of being contained in Z(R). For convenience, we denote the set of all
maximal N-primes of (0) in R by MNP (R). Let S = R\Z(R). Note that S is a multiplicatively closed subset of
R. Let x ∈ Z(R). Observe that Rx ∩ S = ∅. Hence, we obtain from Zorn’s lemma and [16, Theorem 1] that there
exists p ∈ MNP (R) such that x ∈ p. Therefore, if MNP (R) = {pα}α∈Λ, then it follows that Z(R) =

⋃
α∈Λ

pα.
We denote the cardinality of a set A by |A|. It is clear that |MNP (R)| = 1 if and only if Z(R) is an ideal of R. Let
I be a proper ideal of a ring R. Recall from [13] that p ∈ Spec(R) is said to be an associated prime of I in the sense
of Bourbaki if p = (I :R x) for some x ∈ R. In such a case, we say that p is a B-prime of I . Let p ∈ MNP (R). It
is not hard to verify that p ∈ A(R) if and only if p is a B-prime of (0) in R. We denote the nilradical of a ring R by
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nil(R). Recall that a ring R is said to be reduced if nil(R) = (0). Let us denote the set of all minimal prime ideals
of R by Min(R). We know from [16, Theorem 10] that if p ∈ Spec(R), then there exists p′ ∈ Min(R) such that
p′ ⊆ p. Hence, it follows from [6, Proposition 1.8] that nil(R) =

⋂
p∈Min(R) p. Thus if R is a reduced ring, then⋂

p∈Min(R) p = (0). For a ring R, the Krull dimension of R is referred to as the dimension of R and is denoted by
dimR.

A ring R which admits a unique maximal ideal is referred to as a quasilocal ring. A ring R which admits only
a finite number of maximal ideals is referred to as a semiquasilocal ring. A Noetherian quasilocal (respectively,
semiquasilocal) ring is referred to as a local (respectively, semilocal) ring. The modules considered in this article are
unitary. Let M be a module over a commutative ring R. Recall that a submodule N of M is said to be an essential
submodule of M , if N ∩ K 6= (0) for each non-zero submodule K of M . A submodule N of M is said to be a
minimal submodule of M if N 6= (0) and the only submodules of N are (0) and N [17, page 51]. Recall from [17,
page 59] that the socle of M , denoted by Soc(M) is defined as the sum of all the minimal submodules of M . If M
has no minimal submodule, then we define Soc(M) = (0). Let R be a ring. Then the socle of R is the socle of
R regarded as a module over R. Hence, Soc(R) is the sum of all the minimal ideals of R and Soc(R) = (0) if R
has no minimal ideal. If (R,m) is a quasilocal ring, then it is easy to verify that Soc(R) = AnnR(m) and hence,
Soc(R) has the structure of a vector space over the field R

m . Recall that a principal ideal ring R is said to be a special
principal ideal ring (SPIR) if R has a unique prime ideal. If m is the unique prime ideal of R, then m is necessarily
nilpotent and is principal. If R is an SPIR with m as its only prime ideal, then we denote it by mentioning that
(R,m) is an SPIR. Let (R,m) be a quasilocal ring such that m is nilpotent. Let n ≥ 2 be least with the property that
mn = (0). If m is principal with m = Rm, then it follows from the proof of (iii) ⇒ (i) of [6, Proposition 8.8] that
I(R)∗ = {mi = Rmi | i ∈ {1, . . . , n − 1}} and hence, (R,m) is an SPIR. Whenever a set A is a subset of a set B
and A 6= B, we denote it by either A ⊂ B (or by B ⊃ A). For any n ≥ 2, we denote the ring of integers modulo
n by Zn. Let R be a ring with identity which is not necessarily commutative. Let M be a left module over R. With
M , Matczuk and Majidinya in [18] introduced and investigated an undirected graph called the sum-essential graph
of M denoted by SR(M) whose vertex set is the set of all non-zero proper submodules of M and distinct vertices
N1, N2 are joined by an edge in this graph if and only if N1 + N2 is an essential submodule of M . The authors of
[18] also explored the subgraph PR(M) of SR(M) induced by the set of all non-essential submodules of M and in
[18], they studied the interplay between the module properties of M and the graph properties of the graphs SR(M)
and PR(M).

It is useful to recall the following definitions and results from graph theory before we give an account of the
results that are proved in this article. The graphs considered in this article are undirected and simple. Let G = (V,E)
be a graph. Let a, b ∈ V, a 6= b. Suppose that there exists a path in G between a and b. Recall from [7] that the
distance between a and b, denoted by d(a, b) is defined as the length of a shortest path in G between a and b. We
define d(a, b) = ∞ if there exists no path in G between a and b. We define d(a, a) = 0. A graph G = (V,E)
is said to be connected if for any distinct a, b ∈ V , there exists a path in G between a and b. Let G = (V,E)
be a connected graph. Recall from [7, Definition 4.2.1] that the diameter of G, denoted by diam(G) is defined as
diam(G) = sup{d(a, b) | a, b ∈ V }. For a graph G, we denote the vertex set of G by V (G) and the edge set of G by
E(G). Recall from [7] that a subgraph H of G is said to be a spanning subgraph of G if V (H) = V (G). In such a
case, we say that G is a spanning supergraph of H .

A simple graph G = (V,E) is said to be complete if every pair of distinct vertices of G are adjacent in G. Let
n ∈ N. A complete graph on n vertices is denoted by Kn [7, Definition 1.1.11].

Let G = (V,E) be a simple graph. Recall from [7, Definition 1.1.13] that the complement of G, denoted by Gc
is a graph whose vertex set is V and distinct vertices u, v are joined by an edge in Gc if and only if there is no edge
joining u and v in G.

Let R be a ring which is not an integral domain. Motivated by the research work done on the annihilating-ideal
graph of a commutative ring by Behboodi and Rakeei in [9, 10] and the research work done on the total graph of a
commutative ring by Anderson and Badawi in [3, 4, 5], we in [22] introduced and investigated an undirected graph,
denoted by Ω(R) whose vertex set is A(R)∗ and distinct vertices I, J are joined by an edge in Ω(R) if and only
if I + J ∈ A(R). The graph Ω(R) was also investigated in [15] and the authors of [15] called Ω(R) as the sum
annihilating ideal graph of R. In [23], we studied (Ω(R))c, the complement of Ω(R). It is useful to recall here
that the vertex set of (Ω(R))c is A(R)∗ and distinct vertices I, J are joined by an edge in (Ω(R))c if and only if
I + J /∈ A(R). This article consists of three sections including the introduction. Let us now give an account of the
results that are proved in this article on G(R). Let R be a ring such that A(R)∗ 6= ∅. In Section 2 of this article,
we prove some basic results on G(R). It is observed in Lemma 2.2 that (Ω(R))c is a spanning subgraph of G(R)
and hence, G(R) is a spanning supergraph of (Ω(R))c. In Proposition 2.4, it is shown that for a reduced ring R,
(Ω(R))c = G(R). As (Ω(R))c was already investigated in [23], and as G(R) = (Ω(R))c for a reduced ring R, we
use the results that are proved on (Ω(R))c in our study on G(R). Let R be a reduced ring such that p ∈ A(R) for each
p ∈Min(R). It is proved in Proposition 2.5 that the following statements are equivalent: (1) G(R) = AER; and (2)
|Min(R)| = 2. It is verified in Example 2.7 that the non-reduced ring R = Z4 × Z4 is such that |Min(R)| = 2 but
G(R) 6= AER. Let n ≥ 2. Let R = R1 × R2 × · · · × Rn, where for given any i ∈ {1, 2, . . . , n}, either Ri is a field
or an SPIR. Then it is shown in Corollary 2.10 that G(R) ∼= AER. It is proved in Proposition 2.13 that for a ring
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R, G(R) is connected and diam(G(R)) ≤ 3 and if R is not reduced, then it is verified that diam(G(R)) ≤ 2. Let
R be a ring such that |A(R)∗| ≥ 2. It is shown in Corollary 2.14 that the following statements are equivalent: (1)
(Ω(R))c = G(R); and (2) R is reduced.

Let R be a ring such that A(R)∗ 6= ∅. In Section 3 of this article, we discuss some results on diam(G(R)).
It is proved in Proposition 3.1 that the following statements are equivalent: (1) G(R) is complete; and (2) If I ∈
A(R)∗ is not a minimal ideal of R, then I ∈ E(R). If Soc(R) 6= (0), then it is deduced in Corollary 3.2 that
the following statements are equivalent: (1) G(R) is complete; and (2) If I ∈ A(R)∗ is not a minimal ideal of
R, then Soc(R) ⊆ I . Let R be such that dimR = 0. It is shown in Corollary 3.4 that if G(R) is complete, then
|Max(R)| ≤ 2. If |Max(R)| = 2, then it is deduced in Corollary 3.6 that the following statements are equivalent:(1)
G(R) is complete; and (2) R ∼= F1×F2 as rings, where Fi is a field for each i ∈ {1, 2}. For a quasilocal ring (R,m),
it is proved in Corollary 3.8 that if G(R) is complete, then dimR

m
(Soc(R)) ≤ 2. If (R,m) is a local Artinian ring and

if dimR
m
(Soc(R)) = 1, then it is verified in Proposition 3.10 that G(R) is complete. For a local Artinian ring (R,m)

with m2 = (0), it is shown in Proposition 3.13 that the following statements are equivalent: (1) G(R) is complete;
and (2) dimR

m
(Soc(R)) ≤ 2. If (R,m) is an SPIR, then it is verified in Proposition 3.14 that G(R) is complete. Let

R be a ring such that R is not reduced. It is proved in Proposition 3.15 that the following statements are equivalent:
(1) diam(G(R)) = 2; and (2) There exists A ∈ A(R)∗ such that A is not a minimal ideal of R and A /∈ E(R).
Let R be a ring such that |MNP (R)| = 1 (that is, equivalently, Z(R) is an ideal of R). If Z(R) ∈ A(R)∗, then
with the help of Proposition 2.13, it is deduced in Corollary 3.18 that diam(G(R)) ≤ 2. Such a ring R is given in
Example 3.19(1) (respectively, in Example 3.19(2)) such that diam(G(R)) = 1 (respectively, diam(G(R)) = 2).
Let R be a non-reduced ring with Z(R) is an ideal of R and Z(R) /∈ A(R). Such a ring R is provided in Example
3.20(1) (respectively, in Example 3.20(2)) such that diam(G(R)) = 1 (respectively, diam(G(R)) = 2). Let R be
a non-reduced ring with |MNP (R)| ≥ 2. Several sufficient conditions on MNP (R) are determined in order that
diam(G(R)) = 2. If p /∈ E(R) for some p ∈MNP (R), then it is proved in Proposition 3.24 that diam(G(R)) = 2.
If |MNP (R) ∩ A(R)| ≥ 2 and if at least one member of MNP (R) ∩ A(R) is not in Max(R), then it is shown
in Proposition 3.26 that diam(G(R)) = 2. If |MNP (R) ∩ A(R)| ≥ 3, then it is proved in Proposition 3.28 that
diam(G(R)) = 2. Motivated by [2, Theorem 2.7], for a ring R, it is proved in Theorem 3.31 that the following
statements are equivalent: (1)G(R) ∼= K4− e, where e is an edge of K4; (2) ER ∼= K4− e, where e is an edge of K4;
(3) R ∼= F ×S as rings, where F is a field and (S,m) is an SPIR with m 6= (0) but m2 = (0); and (4)AER ∼= K4−e,
where e is an edge of K4. Several examples are provided to illustrate the results proved in this section (see Examples
3.9, 3.11, 3.12, 3.19, 3.20, 3.23, 3.25, 3.27, and 3.30).

2 Some basic results on G(R)

The rings considered in this article are commutative with identity and unless otherwise specified, they are not integral
domains. Let R be a ring. The aim of this section is to prove some basic results on G(R).

Lemma 2.1. Let R be a ring. Let I be any ideal of R. If I /∈ A(R), then I ∈ E(R). If R is reduced, and if J ∈ E(R),
then J /∈ A(R).

Proof. We are assuming that the ideal I of R is such that I /∈ A(R). Let r ∈ R\{0}. Then Ir 6= (0) and so,
I ∩Rr 6= (0). This shows that I ∈ E(R).

Let R be reduced. Let A be any ideal of R. Let r ∈ R\{0}. If sr ∈ (A ∩Rr)\{0} for some s ∈ R, then sr2 ∈ Ar
and as R is reduced, sr2 6= 0. Let J ∈ E(R). Let r ∈ R\{0}. Then J ∩Rr 6= (0) and so, Jr 6= (0). This proves that
J /∈ A(R).

Lemma 2.2. Let R be a ring. Then (Ω(R))c is a spanning subgraph of G(R).

Proof. Note that V (G(R)) = V ((Ω(R))c) = A(R)∗. Let I, J ∈ A(R)∗ be such that I and J are adjacent in (Ω(R))c.
Hence, I + J /∈ A(R) and so, we obtain from Lemma 2.1 that I + J ∈ E(R). Therefore, I and J are adjacent in
G(R). This proves that (Ω(R))c is a spanning subgraph of G(R).

In Example 2.3, we provide a ring R such that (Ω(R))c is not a subgraph of AER.

Example 2.3. Let F1, F2, F3 be fields and let R = F1 × F2 × F3. Then (Ω(R))c is not a subgraph of AER.

Proof. Note that R is semilocal with Max(R) = {m1 = (0)×F2×F3,m2 = F1× (0)×F3,m3 = F1×F2× (0)}. It
is clear that I(R)∗ = A(R)∗. Observe that m1 +m2 = R /∈ A(R). Hence, m1 and m2 are adjacent in (Ω(R))c. Note
that AnnR(m1) = m2m3 and AnnR(m2) = m1m3. Therefore, AnnR(m1) + AnnR(m2) = m2m3 +m1m3 = m3. As
m3 ∩ (m1m2) = (0)× (0)× (0), it follows that m3 /∈ E(R) and so, m1 and m2 are not adjacent in AER. This shows
that (Ω(R))c is not a subgraph of AER.

Let R be a ring. In Proposition 2.4, we provide a sufficient condition on R in order that (Ω(R))c to be equal to
G(R).
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Proposition 2.4. Let R be a reduced ring. Then (Ω(R))c = G(R).

Proof. We know from Lemma 2.2 that for any ring R (R can possibly be non-reduced), (Ω(R))c is a spanning
subgraph of G(R). Let R be reduced. Let I, J ∈ A(R)∗ be such that I and J are adjacent in G(R). Hence,
I + J ∈ E(R). Since R is reduced, we obtain from Lemma 2.1 that I + J /∈ A(R) and so, I and J are adjacent in
(Ω(R))c. This proves that G(R) is a subgraph of (Ω(R))c and so, we obtain that (Ω(R))c = G(R).

For a ring R with |A(R)∗| ≥ 2, we verify in Corollary 2.14 that (Ω(R))c = G(R) if and only if R is reduced.
Let R be as in Example 2.3. Note that R is a reduced ring with p ∈ A(R) for each p ∈ Min(R) and it is verified

in Example 2.3 that (Ω(R))c 6= AER. Hence, G(R) 6= AER. Let R be a reduced ring such that p ∈ A(R) for each
p ∈Min(R). We prove in Proposition 2.5 that G(R) = AER if and only if |Min(R)| = 2.

Proposition 2.5. Let R be a reduced ring such that p ∈ A(R) for each p ∈ Min(R). The following statements are
equivalent:
(1) G(R) = AER.
(2) |Min(R)| = 2.

Proof. Since R is a reduced ring, as noted in Section 1, it follows that
⋂

p∈Min(R) p = (0). As R is not an integral
domain, we get that |Min(R)| ≥ 2.
(1) ⇒ (2) We are assuming that G(R) = AER. As |Min(R)| ≥ 2, it is possible to find distinct p1, p2 ∈ Min(R).
By hypothesis, p ∈ A(R) for each p ∈ Min(R). Hence, p1, p2 ∈ A(R)∗. Since p1 + p2 6⊆ p for any p ∈ Min(R),
we obtain from [23, Lemma 2.14] that p1 + p2 /∈ A(R). Hence, we obtain from Lemma 2.1 that p1 + p2 ∈ E(R).
Therefore, p1 and p2 are adjacent in G(R). As G(R) = AER by assumption, it follows that p1 and p2 are adjacent
in AER. Hence, AnnR(p1) + AnnR(p2) ∈ E(R) and so, we obtain from Lemma 2.1 that AnnR(p1) + AnnR(p2) /∈
A(R). Let p ∈ Min(R). By hypothesis, p ∈ A(R). Therefore, either AnnR(p1) 6⊆ p or AnnR(p2) 6⊆ p. Without
loss of generality, we can assume that AnnR(p1) 6⊆ p. Note that p1AnnR(p1) = (0) ⊂ p. Therefore, we obtain that
p1 ⊆ p and so, p = p1. This proves that Min(R) = {pi | i ∈ {1, 2}}. Therefore, |Min(R)| = 2.
(2) ⇒ (1) We are assuming that R is a reduced ring with |Min(R)| = 2. Let Min(R) = {pi | i ∈ {1, 2}}. Note
that

⋂2
i=1 pi = (0) and Z(R) =

⋃2
i=1 pi. It is clear that pi ∈ A(R)∗ for each i ∈ {1, 2} and if I ∈ A(R)∗, then

I ⊆ Z(R) =
⋃2
i=1 pi. Hence, either I ⊆ p1 or I ⊆ p2 and from

⋂2
i=1 pi = (0), it follows that I is contained in exactly

one between p1 and p2. Therefore, A(R)∗ is the set of all non-zero ideals I of R such that I ⊆ pi for some i ∈ {1, 2}.
Let I1, I2 ∈ A(R)∗ be such that I1 6= I2. Suppose that I1 and I2 are adjacent in G(R). We know from Proposition
2.4 that (Ω(R))c = G(R). Hence, I1 + I2 /∈ A(R). Without loss of generality, we can assume that I1 ⊆ p1 but
I1 6⊆ p2. In such a case, it follows from I1 + I2 /∈ A(R) that I2 ⊆ p2 but I2 6⊆ p1. From I1AnnR(I1) = (0) ⊂ p2,
we get that AnnR(I1) ⊆ p2 and so, AnnR(I1) 6⊆ p1. From I2AnnR(I2) = (0) ⊂ p1, it follows that AnnR(I2) ⊆ p1
and so, AnnR(I2) 6⊆ p2. Hence, we obtain that AnnR(I1) + AnnR(I2) 6⊆ pi for each i ∈ {1, 2}. This shows that
AnnR(I1) +AnnR(I2) /∈ A(R). Therefore, it follows from Lemma 2.1 that AnnR(I1) +AnnR(I2) ∈ E(R) and so,
I1 and I2 are adjacent in AER. This proves that G(R) is a subgraph of AER. Let I1, I2 ∈ A(R)∗ be such that I1 and
I2 are adjacent in AER. Then AnnR(I1) + AnnR(I2) ∈ E(R). As R is a reduced ring, we obtain from Lemma 2.1
that AnnR(I1) + AnnR(I2) /∈ A(R). As AnnR(Ii) ∈ A(R)∗ for each i ∈ {1, 2}, it can be shown using the same
reasoning as above that I1 + I2 /∈ A(R). Therefore, I1 and I2 are adjacent in (Ω(R))c = G(R). This shows that AER
is a subgraph of G(R) and therefore, G(R) = AER.

We provide Example 2.7 to illustrate that (2) ⇒ (1) of Proposition 2.5 can fail to hold if we omit the hypothesis
that R is reduced in the statement of Proposition 2.5. We use Lemma 2.6 in the verification of Example 2.7.

Lemma 2.6 is well-known [19, Lemma 2.2]. For the sake of convenient reference, we mention [19, Lemma 2.2]
here separately as Lemma 2.6.

Lemma 2.6. Let R be a non-reduced ring. If I is a nilpotent ideal of R, then AnnR(I) ∈ E(R).

Example 2.7. Let R = Z4 × Z4. Then I(R)∗ = A(R)∗ and |Min(R)| = 2 but G(R) 6= AER.

Proof. It is clear that |R| = 16 and R is not reduced. It is well-known that in an Artinian ring T , I(T )∗ = A(T )∗.
Hence, I(R)∗ = A(R)∗. Observe that dimR = 0 and so, Spec(R) = Max(R) = Min(R). As Max(Z4) = {2Z4},
we get that Min(R) = {2Z4 × Z4,Z4 × 2Z4}. Therefore, |Min(R)| = 2. Let I = Z4 × (0) and let J = 2Z4 × (0).
From (Z4 × (0)) ∩ ((0) × Z4) = (0) × (0), we get that I /∈ E(R). Note that J ⊂ I and I + J = I /∈ E(R).
Hence, I and J are not adjacent in G(R). It is clear that AnnR(I) = (0) × Z4 and AnnR(J) = 2Z4 × Z4. Since
J is a nilpotent ideal of R, we obtain from Lemma 2.6 that AnnR(J) ∈ E(R). (It is not hard to verify directly that
AnnR(J) ∈ E(R).) Now, AnnR(I) ⊂ AnnR(J) and so, AnnR(I) + AnnR(J) = AnnR(J) ∈ E(R). Therefore, I
and J are adjacent in AER. This shows that G(R) 6= AER.
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Recall from [11, page 14] that two graphs G and G′ are said to be isomorphic (to each other) if there is a one-to-
one correspondence between their vertices and between their edges such that the incidence relationship is preserved.
In other words, suppose that the edge e is incident on vertices v1 and v2 in G, then the corresponding edge e′ in G′
must be incident on the vertices v′1 and v′2 that correspond to v1 and v2, respectively.

Let R be as in Example 2.7. We verify in Remark 2.11 that G(R) ∼= AER.

Lemma 2.8. Let R be a ring. Suppose that for each I ∈ A(R), there exists a non-zero ideal J of R such that
I = AnnR(J). Then G(R) ∼= AER.

Proof. Observe that V (G(R)) = V (AER) = A(R)∗. Define a mapping φ : A(R)∗ → A(R)∗ by φ(I) = AnnR(I).
We claim that φ is a bijection and moreover, for any I1, I2 ∈ A(R)∗, I1 and I2 are adjacent in G(R) if and only
if φ(I1) and φ(I2) are adjacent in AER. Let I ∈ A(R)∗. By hypothesis, there exists a non-zero ideal J of R such
that I = AnnR(J). Hence, AnnR(AnnR(I)) = AnnR(AnnR(AnnR(J))) = AnnR(J) = I . Using the above
equality, it is easy to show that φ is a bijection. Let I1, I2 ∈ A(R)∗ be distinct. Observe that I1 and I2 are adjacent
in G(R) if and only if I1 + I2 ∈ E(R) if and only if AnnR(AnnR(I1)) + AnnR(AnnR(I2)) ∈ E(R) if and only
if AnnR(φ(I1)) + AnnR(φ(I2)) ∈ E(R) if and only if φ(I1) and φ(I2) are adjacent in AER. This shows that
G(R) ∼= AER.

Lemma 2.9. Let n ≥ 2. Let R1, R2, . . . , Rn be rings. Suppose that for each i ∈ {1, 2, . . . , n}, given any ideal Ii of
Ri, there exists an ideal Ji of Ri such that Ii = AnnRi

(Ji). Let R = R1 ×R2 × · · · ×Rn. Then G(R) ∼= AER.

Proof. It is clear that A(R)∗ 6= ∅. Let I ∈ I(R)∗. Note that I = I1× I2× · · · × In, where Ii is an ideal of Ri for each
i ∈ {1, 2, . . . , n}. Let i ∈ {1, 2, . . . , n}. By hypothesis, there exists an ideal Ji of Ri such that Ii = AnnRi

(Ji). Let
us denote the ideal J1×J2×· · ·×Jn of R by J . Observe that I = AnnR(J). It is clear that J 6= (0)× (0)×· · ·× (0).
Now, it follows from Lemma 2.8 that G(R) ∼= AER.

Corollary 2.10. Let n ≥ 2. Let R1, R2, . . . , Rn be rings. For given any i ∈ {1, 2, . . . , n}, suppose that either Ri is a
field or an SPIR. Let R = R1 ×R2 × · · · ×Rn. Then G(R) ∼= AER.

Proof. Let F be a field. Then (0) and F are the only ideals of F , (0) = AnnF (F ), and F = AnnF (0). Let (S,m) be
an SPIR. Let k ≥ 2 be least with the property that mk = (0). It follows from the proof of (iii)⇒ (i) of [6, Proposition
8.8] that I(S)∗ = {mj | j ∈ {1, . . . , k − 1}}. Let j ∈ {1, . . . , k − 1}. It is clear that mj = AnnS(mk−j), (0) =
AnnS(S), and S = AnnS(0). Thus for each i ∈ {1, 2, . . . , n}, given an ideal Ii of Ri, there exists an ideal Ji of Ri
such that Ii = AnnRi(Ji). Therefore, it follows from Lemma 2.9 that G(R) ∼= AER.

Remark 2.11. Let R = Z4 × Z4. As (Z4, 2Z4) is an SPIR, it follows from Corollary 2.10 that G(R) ∼= AER.

For a ring R, we prove in Proposition 2.13 that G(R) is connected with diam(G(R)) ≤ 3 and moreover, if R
is not reduced, then it is verified in Proposition 2.13 that diam(G(R)) ≤ 2. We use Lemma 2.12 in the proof of
Proposition 2.13.

Lemma 2.12. Let R be a ring. Let A ∈ A(R)∗ be such that A ∈ E(R). Then for any B ∈ A(R)∗ with A 6= B, then
A and B are adjacent in G(R).

Proof. Let B ∈ A(R)∗ be such that A 6= B. Note that A ⊆ A+B and as A ∈ E(R), we obtain that A+B ∈ E(R).
Hence, A and B are adjacent in G(R).

Proposition 2.13. Let R be a ring. Then G(R) is connected and diam(G(R)) ≤ 3. If R is not reduced, then
diam(G(R)) ≤ 2.

Proof. We consider the following cases.
Case(1). R is reduced.

We know from Proposition 2.4 that G(R) = (Ω(R))c. Hence, we obtain from [23, Proposition 2.4] that G(R) is
connected and diam(G(R)) ≤ 3.
Case(2). R is not reduced.

Since R is not reduced, there exists x ∈ R\{0} such that x2 = 0. Let I = Rx. Let A,B ∈ A(R)∗ be such that
A 6= B. We show that there exists a path of length at most two between A and B in G(R). We can assume that A and
B are not adjacent in G(R). As I2 = (0) and I 6= (0), it is clear that AnnR(I) ∈ A(R)∗. We know from Lemma 2.6
that AnnR(I) ∈ E(R). Now, it follows from Lemma 2.12 that A−AnnR(I)−B is a path of length two between A
and B in G(R).

This proves that G(R) is connected and diam(G(R)) ≤ 3. Moreover, in the case R is not reduced, it is shown in
Case(2) that diam(G(R)) ≤ 2.

For a ring R with |A(R)∗| ≥ 2, we verify in Corollary 2.14 that (Ω(R))c = G(R) if and only if R is reduced.
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Corollary 2.14. Let R be a ring such that |A(R)∗| ≥ 2. The following statements are equivalent:
(1) (Ω(R))c = G(R).
(2) R is reduced.

Proof. (1) ⇒ (2) By hypothesis, |A(R)∗| ≥ 2. We are assuming that (Ω(R))c = G(R). Hence, it follows from
Proposition 2.13 that (Ω(R))c is connected. Therefore, we obtain from [23, Lemma 2.1] that R is reduced.
(2)⇒ (1) As R is reduced by assumption, we obtain from Proposition 2.4 that (Ω(R))c = G(R).

3 Some results on diam(G(R))

As mentioned in Section 1, the rings considered in this article are commutative with identity and unless otherwise
specified, they are not integral domains. Let R be a ring. It is shown in Proposition 2.13 that G(R) is connected and
diam(G(R)) ≤ 3. If R is reduced, then we know from Proposition 2.4 that (Ω(R))c = G(R). We know from [23,
Remark 2.19(i)] that diam((Ω(R))c) = 1 if and only ifR ∼= K1×K2 as rings, whereKi is a field for each i ∈ {1, 2}.
It was remarked in [23, Remark 2.19(ii)] that diam((Ω(R))c) = 2 if and only if |Min(R)| = 2 and R 6∼= K1 ×K2
as rings for any fields K1,K2 and it was noted in [23, Remark 2.19(iii)] that diam((Ω(R))c) = 3 if and only if
|Min(R)| ≥ 3. If the ring R is not reduced, then it is already verified in Proposition 2.13 that diam(G(R)) ≤ 2. In
[1, Theorem 2] Artinian rings R were characterized in order that AER to be complete. Motivated by [1, Theorem 2],
we first try to characterize ring R in order that G(R) to be complete. A non-zero ideal I of a ring R is said to be a
minimal ideal of R if there exists no ideal J of R such that (0) ⊂ J ⊂ I .

In Proposition 3.1, we provide a necessary and sufficient condition in order that G(R) to be complete.

Proposition 3.1. Let R be a ring. Then the following statements are equivalent:
(1) G(R) is complete.
(2) If I ∈ A(R)∗ is not a minimal ideal of R, then I ∈ E(R).

Proof. (1)⇒ (2) We are assuming that G(R) is complete. Let I ∈ A(R)∗ be such that I is not a minimal ideal of R.
Note that there exists a non-zero ideal J of R such that J ⊂ I . It is clear that J ∈ A(R)∗. Since G(R) is complete, it
follows that I and J are adjacent in G(R). Therefore, I + J = I ∈ E(R).
(2) ⇒ (1) We are assuming that if I ∈ A(R)∗ is such that I is not a minimal ideal of R, then I ∈ E(R). Let
A,B ∈ A(R)∗ be such that A 6= B. Then either A 6⊆ B or B 6⊆ A. Without loss of generality, we can assume that
A 6⊆ B. Then (0) 6= B ⊂ A+B. Then A+B is not a minimal ideal of R. If A+B ∈ A(R), then it follows from the
assumption that A+B ∈ E(R) . If A+B /∈ A(R), then we know from Lemma 2.1 that A+B ∈ E(R). Therefore,
A and B are adjacent in G(R). This shows that G(R) is complete.

Let R be a ring such that Soc(R) 6= (0). In Corollary 3.2, we prove that G(R) is complete if and only if
Soc(R) ⊆ I for each I ∈ A(R)∗ such that I is not a minimal ideal of R.

Corollary 3.2. Let R be a ring such that Soc(R) 6= (0). The following statements are equivalent:
(1) G(R) is complete.
(2) If I ∈ A(R)∗ is not a minimal ideal of R, then Soc(R) ⊆ I .

Proof. (1) ⇒ (2) We are assuming that G(R) is complete. Let I ∈ A(R)∗ be such that I is not a minimal ideal
of R. We know from (1) ⇒ (2) of Proposition 3.1 that I ∈ E(R). Let J be any minimal ideal of R. Note that
I ∩ J 6= (0) and so, I ∩ J = J . Therefore, J ⊆ I . Since Soc(R) is the sum of all the minimal ideals of R, we obtain
that Soc(R) ⊆ I .
(2) ⇒ (1) By hypothesis, Soc(R) 6= (0). First, we verify that Soc(R) ∈ E(R). Let A ∈ I(R)∗. If A /∈ A(R), then
ASoc(R) 6= (0) and so, Soc(R) ∩ A 6= (0). Suppose that A ∈ A(R)∗. If A is a minimal ideal of R, then it is clear
that A ⊆ Soc(R) and so, Soc(R) ∩A = A 6= (0). If A is not a minimal ideal of R, then by assumption, Soc(R) ⊆ A
and hence, Soc(R) ∩ A = Soc(R) 6= (0). This shows that Soc(R) ∈ E(R). Let I ∈ A(R)∗. If I is not a minimal
ideal of R, then by assumption, Soc(R) ⊆ I . Since Soc(R) ∈ E(R), we get that I ∈ E(R). Therefore, we obtain
from (2)⇒ (1) of Proposition 3.1 that G(R) is complete.

Let R be a ring such that dimR = 0. In Corollary 3.4, we show that there is a restriction on |Max(R)| in order
that G(R) to be complete. We use Lemma 3.3 in the proof of Corollary 3.4.

Lemma 3.3. Let R1, R2, R3 be rings and let R = R1 ×R2 ×R3. Then G(R) is not complete.

Proof. Let A = R1 × R2 × (0) and let B = R1 × (0) × (0). It is clear that A,B ∈ A(R)∗ and B ⊂ A. Hence, A is
not a minimal ideal of R. Let C = (0)× (0)×R3. Observe that C ∈ I(R)∗ and A∩C = (0)× (0)× (0). Therefore,
A /∈ E(R). It now follows from (1)⇒ (2) of Proposition 3.1 that G(R) is not complete.
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Corollary 3.4. Let R be a ring such that dimR = 0. If G(R) is complete, then |Max(R)| ≤ 2.

Proof. We are assuming that G(R) is complete. Suppose that |Max(R)| ≥ 3. Since dimR = 0 by hypothesis, we
obtain from [24, Lemma 2.2] that there exist zero-dimensional rings R1, R2, R3 such that R ∼= R1×R2×R3 as rings.
Let us denote the ring R1 × R2 × R3 by T . We know from Lemma 3.3 that G(T ) is not complete. Since R ∼= T as
rings, we get that G(R) is not complete. This is in contradiction to the assumption that G(R) is complete. Therefore,
|Max(R)| ≤ 2.

For a ring R with dimR = 0 and |Max(R)| = 2, we prove in Corollary 3.6 that G(R) is complete if and only if
R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}. We use Lemma 3.5 in the proof of Corollary 3.6.

Lemma 3.5. Let R1, R2 be rings and let R = R1 ×R2. Then the following statements are equivalent:
(1) G(R) is complete.
(2) Both R1 and R2 are fields.

Proof. (1) ⇒ (2) We are assuming that G(R) is complete. Suppose that R1 is not a field. Let I1 ∈ I(R1)∗. Let
A = I1 × (0) and let B = R1 × (0). Observe that A,B ∈ A(R)∗, A ⊂ B and so, B is not a minimal ideal of R.
Note that B ∩ ((0) × R2) = (0) × (0). Hence, B /∈ E(R). Therefore, we obtain from (1) ⇒ (2) of Proposition 3.1
that G(R) is not complete. This is in contradiction to the assumption that G(R) is complete. Hence, R1 is a field.
Similarly, it can be shown that R2 is a field.
(2) ⇒ (1) We are assuming that R1 and R2 are fields. Observe that I(R)∗ = A(R)∗ = {R1 × (0), (0) × R2}. As
(R1 × (0)) + ((0)×R2) = R ∈ E(R), it follows that G(R) is complete.

Corollary 3.6. Let R be a ring such that dimR = 0 and |Max(R)| = 2. Then the following statements are equiva-
lent:
(1) G(R) is complete.
(2) R ∼= F1 × F2 as rings, where F1 and F2 are fields.

Proof. We are assuming that dimR = 0 and |Max(R)| = 2. We know from [24, Lemma 2.2] that there exist
zero-dimensional rings R1, R2 such that R ∼= R1 × R2 as rings. Therefore, we obtain from Lemma 3.5 that G(R) is
complete if and only if R ∼= F1 × F2 as rings, where F1 and F2 are fields.

Remark 3.7. For any ring T with A(T )∗ 6= ∅, it is already observed in Section 1 that G(T ) is the subgraph of
ET induced by A(T )∗. As V (G(T )) = A(T )∗ and V (ET ) = I(T )∗, it follows that G(T ) = ET if and only if
I(T )∗ = A(T )∗. It is already noted in Section 1 that for any Artinian ring R, G(R) = ER. Let F1, F2 be fields and
let T = F1 × F2. Observe that I(T )∗ = A(T )∗ = {m1 = (0) × F2,m2 = F1 × (0)}. It is clear that m1 + m2 =
T /∈ A(T ) and so, m1,m2 are adjacent in (Ω(T ))c and hence, they are adjacent in G(T ). From AnnT (m1) = m2
and AnnT (m2) = m1, it follows that AnnT (m1) +AnnT (m2) = T ∈ E(T ) and so, m1 and m2 are adjacent in AET .
Therefore, we get that (Ω(T ))c = G(T ) = ET = AET . LetR1, R2 be rings and letR = R1×R2. If G(R) is complete,
then it follows from (1)⇒ (2) of Lemma 3.5 and the above given arguments that (Ω(R))c = G(R) = ER = AER.

Let (R,m) be a quasilocal ring. It is already noted in Section 1 that Soc(R) = AnnR(m). Hence, Soc(R) has the
structure of a vector space over R

m by defining (r +m)s = rs for any r +m ∈ R
m and s ∈ Soc(R). In Corollary 3.8,

we provide a necessary condition on dimR
m
(Soc(R)) in order that G(R) to be complete.

Corollary 3.8. Let (R,m) be a quasilocal ring. If G(R) is complete, then dimR
m
(Soc(R)) ≤ 2.

Proof. We are assuming that G(R) is complete. Suppose that dimR
m
(Soc(R)) ≥ 3. Let x, y, z ∈ Soc(R) be such

that {x, y, z} is linearly independent over R
m . Let I = Rx + Ry. Note that Im = (0) and so, I ∈ A(R)∗. It

is clear that I is not a minimal ideal of R. Since G(R) is complete, we obtain from (1) ⇒ (2) of Corollary 3.2
that Soc(R) ⊆ I . Hence, Rz ⊆ I . This is impossible since {x, y, z} is linearly independent over R

m . Therefore,
dimR

m
(Soc(R)) ≤ 2.

In Example 3.9, we provide a local Artinian ring (R,m) such that dimR
m
(Soc(R)) = 2 but G(R) is not complete

thereby illustrating that the converse of Corollary 3.8 can fail to hold.

Example 3.9. Let T = Z2[X,Y, Z] be the polynomial ring in three variables X,Y, Z over Z2. Let I be the ideal of T
generated by {X2, Y 2, Z2, XZ, Y Z}. Let R = T

I . Let m = TX+TY +TZ
I . Then (R,m) is a local Artinian ring with

dimR
m
(Soc(R)) = 2 but G(R) is not complete.

Proof. As T is Noetherian by [6, Corollary 7.6], it follows thatR = T
I is Noetherian. It is convenient to denoteX+I

by x, Y + I by y, and Z + I by z. Note that TX + TY + TZ ∈Max(T ) and so, m = TX+TY +TZ
I ∈Max(R). It is

easy to verify that m3 = (0 + I). Hence, it follows that Spec(R) = Max(R) = {m}. Therefore, dimR = 0. It now
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follows from [6, Theorem 8.5] that R is Artinian. Hence, (R,m) is a local Artinian ring. It is not hard to verify that
Soc(R) = Rxy + Rz and {xy, z} is linearly independent over R

m . Therefore, dimR
m
(Soc(R)) = 2. We next verify

that G(R) is not complete. Observe that A = Rx+Ry ∈ I(R)∗ = A(R)∗ and as (0 + I) 6= Rx ⊂ A, we obtain that
A is not a minimal ideal of R. Since Rz ∈ I(R)∗ and A ∩ Rz = (0 + I), we get that A /∈ E(R). Hence, we obtain
from (1)⇒ (2) of Proposition 3.1 that G(R) is not complete.

Let (R,m) be the local Artinian ring mentioned in Example 3.9. It is shown in Example 3.9 that G(R) is not
complete. We know from [1, Lemma 2] that AER is complete. Therefore, G(R) 6∼= AER.

Let (R,m) be a local Artinian ring. In Proposition 3.10, we provide a sufficient condition on dimR
m
(Soc(R)) in

order that G(R) to be complete.

Proposition 3.10. Let (R,m) be a local Artinian ring. If dimR
m
(Soc(R)) = 1, then G(R) is complete.

Proof. We are assuming that (R,m) is a local Artinian ring with dimR
m
(Soc(R)) = 1. Let m ∈ Soc(R) be such

that Soc(R) = Rm. Observe that R has Rm as its unique minimal ideal. Let I ∈ I(R)∗ = A(R)∗ be such that
I is not a minimal ideal of R. As in an Artinian ring, each non-zero ideal contains a minimal ideal, we get that
Soc(R) = Rm ⊂ I . Hence, we obtain from (2)⇒ (1) of Corollary 3.2 that G(R) is complete.

We provide Example 3.11 to illustrate Proposition 3.10.

Example 3.11. Let T = Z2[X,Y ] be the polynomial ring in two variables X,Y over Z2. Let I = TX2 + TY 2 and
let R = T

I . Then G(R) is complete.

Proof. Note that R is local with m = TX+TY
I as its unique maximal ideal. It is clear that XY /∈ I and hence,

m2 6= (0 + I). Observe that m3 = (0 + I), dimR
m
(m2) = 1, and dimR

m
( m
m2 ) = 2. Let us denote X + I by x and

Y + I by y. Note that m = Rx + Ry and m2 = Rxy. From m3 = (0 + I) and m ∈ Max(R), it follows that
Spec(R) = Max(R) = {m} and so, dimR = 0. Hence, we obtain from [6, Theorem 8.5] that R is Artinian. Thus
(R,m) is a local Artinian ring. It is clear that m2 ⊆ Soc(R). Let t ∈ TX + TY be such that t + I ∈ Soc(R). Let
t = t1X + t2Y for some t1, t2 ∈ T . As t(TX + TY ) ⊆ I , it can be shown that t ∈ TX2 + TXY + TY 2 and so,
t + I ∈ Rxy = m2. This shows that Soc(R) ⊆ m2 and so, Soc(R) = m2 = Rxy. Therefore, dimR

m
(Soc(R)) = 1.

Hence, we obtain from Proposition 3.10 that G(R) is complete.

We provide Example 3.12 to illustrate that the conclusion of Proposition 3.10 can fail to hold if the hypothesis
that R is Artinian is omitted in the statement of Proposition 3.10.

Example 3.12. Let T = K[[X,Y ]] be the power series ring in two variables X,Y over a field K. Let I = TX2 +
TXY . Let R = T

I . Then G(R) is not complete.

Proof. It follows from [6, Exercise 5(iv), page 11] that Max(T ) = {TX + TY } and we know from [16, Theorem
71] that T is Noetherian. Therefore, R = T

I is Noetherian and m = TX+TY
I is its unique maximal ideal. Observe that

I = TX ∩ (TX + TY )2 is an irredundant primary decomposition of I in T with TX ∈ Spec(T ) and (TX + TY )2

is a TX + TY -primary ideal of T . It is convenient to denote X + I by x and Y + I by y. Since TX ∈ Spec(T ) with
TX ⊃ I , it follows that Rx ∈ Spec(R). As X /∈ TY , TY ∈ Spec(T ), and TX + TY 6= T , it follows that X /∈ I and
so, x 6= 0 + I . We claim that Soc(R) = Rx. From m = Rx+Ry, we get that x(rx+ sy) = 0 + I for any r, s ∈ R.
Therefore, Rx ⊆ AnnR(m) = Soc(R). Let t ∈ TX+TY be such that t+I ∈ Soc(R). Hence, (t+I)(Y +I) = 0+I
and this implies that tY ∈ I ⊂ TX . From Y /∈ TX , we get that t ∈ TX . Therefore, t + I ∈ Rx. This shows that
Soc(R) ⊆ Rx and so, Soc(R) = Rx. Therefore, dimR

m
(Soc(R)) = 1. Note that if A ∈ I(R)∗, then Ax = (0+I) and

so, A ∈ A(R)∗. Therefore, I(R)∗ = A(R)∗. Let A = Ry and let B = Ry2. If A = B, then Y − tY 2 ∈ TX2 + TXY
for some t ∈ T . This implies that 1 − tY ∈ TX . This is impossible. Therefore, A 6= B. Observe that A+ B = A.
Note that Rx ∈ I(R)∗ and A∩Rx = TX2+TY

I ∩ TX
I equals (0 + I). This shows that A /∈ E(R). Therefore, A and B

are not adjacent in G(R) and so, G(R) is not complete.

Let (R,m) be a quasilocal ring with m2 = (0). Note that Soc(R) = m and Spec(R) = Max(R) = {m}. Thus if
dimR

m
(Soc(R)) ≤ 2, then for any I ∈ I(R)∗, dimR

m
(I) ≤ 2 and so, I is generated as an ideal of R by at most two

elements. Therefore, R is Noetherian and as dimR = 0, we get that R is Artinian. For a local Artinian ring (R,m)
with m2 = (0), we verify in Proposition 3.13 that G(R) is complete if and only if dimR

m
(Soc(R)) ≤ 2..

Proposition 3.13. Let (R,m) be a local Artinian ring with m2 = (0). The following statements are equivalent:
(1) G(R) is complete.
(2) dimR

m
(Soc(R)) ≤ 2.
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Proof. (1) ⇒ (2) This follows from Corollary 3.8. (For this part of the proof, we do not need the hypothesis that
m2 = (0).)
(2) ⇒ (1) We are assuming that dimR

m
(Soc(R)) ≤ 2. From m2 = (0) by hypothesis, we get that Soc(R) = m.

Therefore, dimR
m
(m) ∈ {1, 2}. If dimR

m
(m) = 1, then I(R)∗ = A(R)∗ = {m} and so, G(R) is a graph on a single

vertex and so, it is complete. Suppose that dimR
m
(m) = 2. Let I ∈ A(R)∗ be such that I is not a minimal ideal of R.

Then dimR
m
(I) = 2 and so, I = m = Soc(R). Therefore, we obtain from (2) ⇒ (1) of Corollary 3.2 that G(R) is

complete.

Let T = K[X,Y ] be the polynomial ring in two variables X,Y over a field K. Let I = TX2 + TXY + TY 2

and let R = T
I . Observe that TX + TY ∈ Max(T ) and I = (TX + TY )2. It is clear that (R,m = TX+TY

I ) is a
local Artinian ring with m2 = (0 + I), Soc(R) = m, and dimR

m
(Soc(R)) = 2. Hence, it follows from (2) ⇒ (1) of

Proposition 3.13 that G(R) is complete.
Example 3.9 of this article illustrates that (2) ⇒ (1) of Proposition 3.13 can fail to hold if the hypothesis that

m2 = (0) is omitted in the statement of Proposition 3.13.
Recall from [12, Exercise 8, page 184] that a ring R is said to be a chained ring if the set of ideals of R is linearly

ordered by inclusion.

Proposition 3.14. Let R be a chained ring. Then G(R) is complete. In particular, if (R,m) is an SPIR, then G(R) is
complete.

Proof. Let I ∈ I(R)∗. Then for any J ∈ I(R)∗, I ∩ J is either I or J and hence, I ∩ J 6= (0). This shows that
I ∈ E(R) for any I ∈ I(R)∗. It is now clear that G(R) is complete.

Suppose that (R,m) is an SPIR and let n ≥ 2 be least with the property that mn = (0). In such a case, it is
remarked in Section 1 that I(R)∗ = {mi | i ∈ {1, . . . , n − 1}}. Hence, (R,m) is a chained ring and so, G(R) is
complete.

Proposition 3.15. Let R be a ring such that R is not reduced. Then the following statements are equivalent:
(1) diam(G(R)) = 2.
(2) There exists at least one A ∈ A(R)∗ such that A is not a minimal ideal of R and A /∈ E(R).

Proof. (1)⇒ (2) We are assuming that diam(G(R)) = 2. Hence, there exist I1, I2 ∈ A(R)∗ such that d(I1, I2) = 2
in G(R). Therefore, I1, I2 are not adjacent in G(R) and so, I1 + I2 /∈ E(R). As I1 6= I2, we obtain that either I1 6⊆ I2
or I2 6⊆ I1. Without loss of generality, we can assume that I1 6⊆ I2. Then I2 ⊂ I1 + I2. Let us denote I1 + I2 by A.
As A /∈ E(R), we obtain from Lemma 2.1 that A ∈ A(R). From (0) 6= I2 ⊂ A, it follows that A is not a minimal
ideal of R. Therefore, there exists A ∈ A(R)∗ such that A is not a minimal ideal of R and A /∈ E(R).
(2) ⇒ (1) We are assuming that there exists A ∈ A(R)∗ such that A is not a minimal ideal and A /∈ E(R). It
follows from (1)⇒ (2) of Proposition 3.1 that diam(G(R)) ≥ 2. As R is not reduced by hypothesis, we know from
Proposition 2.13 that diam(G(R)) ≤ 2 and so, diam(G(R)) = 2.

Let R be as given in Example 3.12. In the notation of Example 3.12, x 6= 0 + I is such that x2 = 0 + I and so,
R is not reduced. It is already verified in the proof of Example 3.12 that A = Ry ∈ A(R)∗ is such that A is not a
minimal ideal of R and A /∈ E(R). Hence, we obtain from (2)⇒ (1) of Proposition 3.15 that diam(G(R)) = 2.

Corollary 3.16. Let R be a ring such that R is not reduced. If there exist I1, I2, I3 ∈ A(R)∗ such that I1 ⊃ I2 ⊃ I3,
with a2 6= 0 for each a ∈ I2\{0}, then diam(G(R)) = 2.

Proof. As I3 ∈ I(R)∗ with I3 ⊂ I2, it follows that I2 is not a minimal ideal of R. As a2 6= 0 for each a ∈ I2\{0},
it follows that I2 ∩ AnnR(I2) = (0). From I1 ∈ A(R)∗, it follows that AnnR(I1) 6= (0). Observe that from
I1 ⊃ I2, we get that AnnR(I1) ⊆ AnnR(I2). Hence, I2 ∩ AnnR(I1) ⊆ I2 ∩ AnnR(I2) = (0). This implies
that I2 ∩ AnnR(I1) = (0). Therefore, I2 /∈ E(R). Thus the non-reduced ring R admits I2 ∈ A(R)∗ such that
I2 is not a minimal ideal of R and I2 /∈ E(R). Therefore, we obtain from (2) ⇒ (1) of Proposition 3.15 that
diam(G(R)) = 2.

We provide an example of a non-reduced ring R which satisfies the hypotheses of Corollary 3.16. Let R be as
in Example 3.12. Let I1 = Ry, I2 = Ry2, and I3 = Ry3, where y is as in the proof of Example 3.12. Observe
that Ii ∈ A(R)∗ for each i ∈ {1, 2, 3} and I1 ⊃ I2 ⊃ I3. It is not hard to verify that if r ∈ I2\{0 + I}, then
r2 6= 0+ I . From x 6= 0+ I but x2 = 0+ I , it follows that R is not reduced. It now follows from Corollary 3.16 that
diam(G(R)) = 2.

An element e of a ring R is said to be idempotent if e = e2. An idempotent element e of R is said to be non-trivial
if e /∈ {0, 1}.
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Remark 3.17. Let R be a ring such that R is not reduced. Suppose that R has a non-trivial idempotent element e.
Let R1 = Re and let R2 = R(1 − e). Observe that the mapping f : R → R1 × R2 defined by f(r) = (re, r(1 − e))
is an isomorphism of rings. Since R is not reduced, it follows that either R1 or R2 is not a field. Hence, it follows
from (1) ⇒ (2) of Lemma 3.5 that diam(G(R1 × R2)) ≥ 2 and so, diam(G(R)) ≥ 2. Since R is not reduced, we
obtain from Proposition 2.13 that diam(G(R)) ≤ 2 and so, diam(G(R)) = 2. Suppose that R does not admit any
non-trivial idempotent. It is clear that |MNP (R)| = 1 (equivalently, Z(R) is an ideal of R) is a sufficient condition
in order that R to have no non-trivial idempotent.

Let R be a ring such that |MNP (R)| = 1. Next, we discuss some results on diam(G(R)).

Corollary 3.18. Let R be a ring such that MNP (R) = {p}. If p ∈ A(R)∗, then diam(G(R)) ≤ 2.

Proof. Note that Z(R) = p and there exists x ∈ R\{0} such that px = (0). It is clear that x ∈ Z(R) and so, x2 = 0.
Hence, we obtain that R is not reduced. It now follows from Proposition 2.13 that diam(G(R)) ≤ 2.

Example 3.19. (1) Let R be as in Example 3.11. Then Z(R) ∈ A(R)∗ and diam(G(R)) = 1.
(2) Let R be as in Example 3.12. Then Z(R) ∈ A(R)∗ and diam(G(R)) = 2.

Proof. In the notation of Example 3.11, (R,m) is a local Artinian ring with m3 = (0 + I) but m2 6= (0 + I), and so,
Z(R) = m ∈ A(R)∗. It is verified in the proof of Example 3.11 that diam(G(R)) = 1.
(2) In the notation of Example 3.12, R is Noetherian, Max(R) = {m = Rx+ Ry}, x 6= 0 + I , and mx = (0 + I).
Therefore, Z(R) = m ∈ A(R)∗. It is already verified in the paragraph which appears just preceding the statement of
Corollary 3.16 that diam(G(R)) = 2.

Let R be a ring such that MNP (R) = {p}. It is clear that Z(R) = p. Since ((0) :R x) ⊆ p for any x ∈ R\{0}, it
follows that p /∈ A(R) if and only if p is not a B-prime of (0) in R. We provide in Example 3.20(1) (respectively, in
Example 3.20(2)) a ring R such that Z(R) is an ideal of R with Z(R) /∈ A(R) and diam(G(R)) = 1 (respectively,
diam(G(R)) = 2).

Let M be a module over a ring R. Then R ×M = {(r,m) | r ∈ R,m ∈M} can be made into a ring by defining
addition and multiplication as follows: for any (r1,m1)(r2,m2) ∈ R×M , (r1,m1) + (r2,m2) = (r1 + r2,m1 +m2)
and (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). The ring obtained in this way is called the ring obtained by using
Nagata’s principle of idealization and is denoted by R(+)M . Example 3.20(2) given below is from [16, Exercises 6
and 7, pages 62-63].

Example 3.20. (1) Let (V,m) be a rank one valuation domain which is not discrete. Let m ∈ m\{0}. Let R = V
mV .

Then Z(R) is an ideal of R, Z(R) /∈ A(R), and diam(G(R)) = 1.
(2) Let S = K[X,Y ] be the polynomial ring in two variables X,Y over a field K. Let m = SX + SY and let
T = Sm. Let P denote the set of all pairwise non-associate prime elements of T . Let W =

⊕
p∈P

T
Tp be the direct

sum of the T -modules T
Tp , where p varies over P . Let R = T (+)W be the ring obtained by using Nagata’s principle

of idealization. Then Z(R) is an ideal of R, Z(R) /∈ A(R), and diam(G(R)) = 2.

Proof. (1) Let us denote the ideal m
mV by p. It was verified in [22, Example 2.7] that Z(R) = p. Therefore, Z(R) is

an ideal of R. Moreover, we know from the proof of [20, Example 3.1(ii)] that p /∈ A(R). As V is a chained ring, it
follows that R is a chained ring and hence, we obtain from Proposition 3.14 that diam(G(R)) = 1.
(2) Note that S is a unique factorization domain (UFD). Hence, we obtain from [16, Theorem 5] and [6, Proposition
3.11(iv)] that T = Sm is a UFD. As S is Noetherian by [6, Corollary 7.6], we obtain from [6, Proposition 7.3]
that T is Noetherian. Observe that T is local and Max(T ) = {mT}. Since height(mT ) = 2, it follows from [16,
Theorem 144] that T has an infinite number of height one prime ideals. Hence, the set of pairwise non-associate
prime elements of T is infinite. It was verified in [22, Example 2.8] that Z(R) = mT (+)W . Let us denote the ideal
mT (+)W by p. Therefore, Z(R) is an ideal of R. Moreover, it was shown in [22, Example 2.8] that p /∈ A(R). Let
us denote the zero element of W by 0W . It is clear that ((0)(+)W )2 = (0)(+)(0W ). Therefore, R is not reduced.
We assert that diam(G(R)) = 2. For any element w ∈ W and for p ∈ P , let us denote by wp, the component of w
corresponding to p. Fix two distinct elements p, q ∈ P . Let w ∈ W be such that wp = 1 + Tp and wp′ = 0 + Tp′

for any p′ ∈ P\{p}. Let N1 be the submodule of W given by N1 = Tw. Let w′ ∈ W be such that w′q = 1 + Tq and
w′p′ = 0 + Tp′ for any p′ ∈ P\{q}. Let N2 be the submodule of W given by N2 = Tw′. Let Ii = (0)(+)Ni for each
i ∈ {1, 2}. Note that Ii ∈ A(R)∗ for each i ∈ {1, 2}, I1 6= I2, and I1 + I2 = (0)(+)N , where N = N1 + N2. Let
I = Tp(+)(0W ). It is clear that I is a non-zero ideal of R and (I1 + I2) ∩ I = (0)(+)(0W ). Hence, I1 + I2 /∈ E(R).
Observe that (0)(+)(0W ) 6= I1 ⊂ I1 + I2. Hence, I1 + I2 ∈ A(R)∗ is not a minimal ideal of R and I1 + I2 /∈ E(R).
Since R is not reduced, it follows from (2)⇒ (1) of Proposition 3.15 that diam(G(R)) = 2.

Proposition 3.21. Let R be a ring. If Z(R) is an ideal of R, then Z(R) ∈ E(R).

Proof. By hypothesis, Z(R) is an ideal of R. Hence, |MNP (R)| = 1. Let us denote Z(R) by p. Observe that
MNP (R) = {p}. Let a ∈ R\{0}. If a /∈ Z(R), then for any x ∈ p\{0}, ax 6= 0 and ax ∈ p ∩ Ra. If a ∈ p, then
Ra ⊆ p and so, p ∩Ra = Ra 6= (0). This shows that Z(R) ∈ E(R).
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Let n ∈ N be such that n ≥ 2. Let R be a ring such that |MNP (R)| = n. In Proposition 3.22, we provide a
necessary and sufficient condition in order that at least one member of MNP (R) to be a member of E(R).

Proposition 3.22. Let n ∈ N be such that n ≥ 2. Let R be a ring such that |MNP (R)| = n. Let MNP (R) = {pi |
i ∈ {1, 2, . . . , n}}. Then the following statements are equivalent:
(1) pi ∈ E(R) for at least one i ∈ {1, 2, . . . , n}.
(2)

⋂n
k=1 pk 6= (0).

Proof. (1)⇒ (2) We are assuming that pi ∈ E(R) for some i ∈ {1, 2, . . . , n}. Since distinct members of MNP (R)
are not comparable under the inclusion relation, |MNP (R)| = n, it follows from [6, Proposition 1.11(ii)] that⋂
j∈{1,2,...,n}\{i} pj 6= (0). As pi ∈ E(R), we get that pi ∩ (

⋂
j∈{1,2,...,n}\{i} pj) 6= (0) and this shows that

⋂n
k=1 pk 6=

(0).
(2) ⇒ (1) We are assuming that

⋂n
k=1 pk 6= (0). Suppose that pi /∈ E(R) for each i ∈ {1, 2, . . . , n}. Then for each

i ∈ {1, 2, . . . , n}, there exists Ai ∈ I(R)∗ such that pi ∩ Ai = (0). Let i ∈ {1, 2, . . . , n}. From piAi = (0) ⊆ pj
for each j ∈ {1, 2, . . . , n}\{i}, and pi 6⊆ pj , it follows that Ai ⊆ pj . We obtain from pi ∩ Ai = (0) that Ai 6⊆ pi.
Thus Ai ⊆ pj for all j ∈ {1, 2, . . . , n}\{i} but Ai 6⊆ pi. Since MNP (R) = {pi | i ∈ {1, 2, . . . , n}}, it follows that
Z(R) =

⋃n
i=1 pi. Observe that it follows from [6, Proposition 1.11(i)] that

∑n
i=1 Ai 6⊆

⋃n
i=1 pi = Z(R). Hence,

there exist a1, a2, . . . , an such that ai ∈ Ai for each i ∈ {1, 2, . . . , n} and
∑n
i=1 ai /∈ Z(R). We are assuming that⋂n

k=1 pk 6= (0). Let x ∈
⋂n
k=1 pk, x 6= 0. It follows from piAi = (0) for each i ∈ {1, 2, . . . , n} that (

∑n
i=1 ai)x = 0.

This is impossible, since
∑n
i=1 ai /∈ Z(R) and x 6= 0. Therefore, pi ∈ E(R) for at least one i ∈ {1, 2, . . . , n}.

For any ring R, we denote the group of units of R by U(R) and the set of all non-units of R by NU(R). Recall
from [12, Exercise 16, page 111] that a ring R is said to be von Neumann regular if given a ∈ R, there exists b ∈ R
such that a = a2b. We know from (a) ⇔ (d) of [12, Exercise 16, page 111] that a ring R is von Neumann regular if
and only if dimR = 0 and R is reduced. Let a ∈ NU(R), where R is von Neumann regular. From a = a2b for some
b ∈ R, it follows that a(1− ab) = 0. As 1− ab 6= 0, we get that a ∈ Z(R). Thus in a von Neumann regular ring R,
Z(R) = NU(R). As dimR = 0 and Z(R) = NU(R), we get that Spec(R) = Max(R) = Min(R) = MNP (R).
Let a ∈ R. Then we know from (1)⇒ (3) of [12, Exercise 29, page 113] that a = ue for some u ∈ U(R) and e ∈ R is
idempotent. Let p ∈MNP (R) =Max(R). Let p ∈ A(R). Then there exists a ∈ R\{0} such that pa = (0). Hence,
p ⊆ ((0) :R a). Since R is reduced, a2 6= 0 and so, a /∈ p. Therefore, ((0) :R a) ⊆ p and hence, p = ((0) :R a). As
a = ue for some u ∈ U(R) and e ∈ R is idempotent, we obtain that p = ((0) :R ue) = ((0) :R e) = R(1 − e) is
principal. We provide Example 3.23 to illustrate that (1)⇒ (2) of Proposition 3.22 can fail to hold if the hypothesis
that |MNP (R)| <∞ is omitted in the statement of Proposition 3.22.

Example 3.23. Let L be the field of algebraic numbers (that is, L is the algebraic closure of Q). Let A be the ring of
all algebraic integers. Let R = A√

2A
. Then p ∈ E(R) for each p ∈MNP (R) but

⋂
p∈MNP (R) p = (0 +

√
2A).

Proof. It was already verified in the proof of [21, Example 2.20(3)] that R is von Neumann regular. Hence,
Spec(R) = Max(R) = Min(R) = MNP (R). Since R is reduced, it follows from [6, Proposition 1.8] that⋂

p∈Spec(R)=MNP (R) p = (0 +
√

2A). Let p ∈MNP (R) =Max(R). With the help of [12, Proposition 42.8], it was
already shown in the proof of [21, Example 2.20(3)] that p is not principal and hence, it follows from the arguments
given in the paragraph which appears just preceding the statement of Example 3.23 that p /∈ A(R). Hence, we obtain
from Lemma 2.1 that p ∈ E(R).

Let R be a ring such that |MNP (R)| ≥ 2. In Proposition 3.24, we verify that diam(G(R)) = 2 if R is not
reduced and p /∈ E(R) for some p ∈MNP (R).

Proposition 3.24. Let R be a ring such that |MNP (R)| ≥ 2. If R is not reduced and p /∈ E(R) for some p ∈
MNP (R), then diam(G(R)) = 2.

Proof. By assumption, p /∈ E(R) for some p ∈ MNP (R). Hence, it follows from Lemma 2.1 that p ∈ A(R). As
|MNP (R)| ≥ 2 by assumption, it is possible to find p′ ∈ MNP (R)\{p}. Since R is not reduced by assumption,
we get that p ∩ p′ 6= (0). From p ∩ p′ ⊂ p, it follows that p is not a minimal ideal of R. Thus p ∈ A(R) is such
that p is not a minimal ideal of R and p /∈ E(R). Therefore, we obtain from (2) ⇒ (1) of Proposition 3.15 that
diam(G(R)) = 2.

We provide Example 3.25 to illustrate Proposition 3.24.

Example 3.25. Let T = K[X,Y ] be the polynomial ring in two variables X,Y over a field K. Let I = TX2Y and
let R = T

I . Then diam(G(R)) = 2.
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Proof. It is clear that I = TX2 ∩ TY is an irredundant primary decomposition of I in T with TX2 is a TX-
primary ideal of T and TY ∈ Spec(T ). It is convenient to denote X + I by x and Y + I by y. Observe that
(0 + I) = Rx2 ∩Ry is an irredundant primary decomposition of the zero ideal in R with Rx2 is a Rx-primary ideal
of R and Ry ∈ Spec(R). Hence, we obtain from [6, Proposition 4.7] that Z(R) = Rx ∪ Ry. Let us denote Rx by
p1 and Ry by p2. As p1 and p2 are not comparable under the inclusion relation, it follows from Z(R) =

⋃2
i=1 pi that

MNP (R) = {pi | i ∈ {1, 2}}. Thus |MNP (R)| = 2. Note that Rx2 ∈ I(R)∗ and from (0 + I) = Rx2 ∩ Ry, it
follows that p2 = Ry /∈ E(R). As xy 6= 0 + I but x2y2 = 0 + I , we get that R is not reduced. It now follows from
Proposition 3.24 that diam(G(R)) = 2.

Let R be a ring which is not reduced. If |MNP (R)∩A(R)| ≥ 2 and if at least one member of MNP (R)∩A(R)
is not in Max(R), then we verify in Proposition 3.26 that diam(G(R)) = 2.

Proposition 3.26. Let R be a ring such that R is not reduced. If |MNP (R) ∩A(R)| ≥ 2 and if at least one member
of MNP (R) ∩A(R) is not in Max(R), then diam(G(R)) = 2.

Proof. Let {pi | i ∈ {1, 2}} ⊆MNP (R) ∩ A(R) be such that pi /∈Max(R) for some i ∈ {1, 2}. Let i ∈ {1, 2}. As
pi ∈ A(R), there exists ui ∈ R\{0} such that pi = ((0) :R ui). It is clear that Rui ∈ A(R)∗ for each i ∈ {1, 2}. If∑2
i=1 pi ⊆ Z(R), then it follows from Zorn’s lemma and [16, Theorem 1] that there exists p ∈ MNP (R) such that∑2
i=1 pi ⊆ p. This implies that pi = p for each i ∈ {1, 2}. This is in contradiction to the assumption that p1 6= p2.

Therefore,
∑2
i=1 pi 6⊆ Z(R). Hence, there exists ai ∈ pi for each i ∈ {1, 2} such that

∑2
i=1 ai /∈ Z(R). We claim that

Ru1∩Ru2 = (0). Let x ∈ Ru1∩Ru2. Then x = ru1 = su2 for some r, s ∈ R. From aiui = 0 for each i ∈ {1, 2}, we
get that (

∑2
i=1 ai)x = 0. As

∑2
i=1 ai /∈ Z(R), it follows that x = 0 and so, Ru1 ∩ Ru2 = (0). Hence, Rui /∈ E(R)

for each i ∈ {1, 2}. By assumption, pi /∈ Max(R) for at least one i ∈ {1, 2}. Without loss of generality, we can
assume that p1 /∈ Max(R). Note that the mapping f : R → Ru1 given by f(r) = ru1 is an onto homomorphism of
R-modules with ker(f) = p1. Hence, it follows from the fundamental theorem of homomorphism of modules that
R
p1
∼= Ru1 as R-modules. As p1 /∈ Max(R), we obtain that Ru1 is not a minimal ideal of R. Thus Ru1 ∈ A(R)∗

is not a minimal ideal of R and Ru1 /∈ E(R). Since R is not reduced by hypothesis, we obtain from (2) ⇒ (1) of
Proposition 3.15 that diam(G(R)) = 2.

We provide Example 3.27 to illustrate Proposition 3.26.

Example 3.27. Let T = K[X1, X2] be the polynomial ring in two variables X1, X2 over a field K. Let I =

T (
∏2
i=1 X

2
i ). Let R = T

I . Then R is not reduced, |MNP (R)| = 2, each member of MNP (R) belongs to
(A(R) ∩ E(R))\Max(R), and diam(G(R)) = 2.

Proof. Note that I =
⋂2
i=1 TX

2
i is an irredundant primary decomposition of I in T with TX2

i is a TXi-primary
ideal of T for each i ∈ {1, 2}. It is convenient to denote Xi + I by xi for each i ∈ {1, 2}. Note that x1x2 6= 0 + I

but x2
1x

2
2 = 0 + I . Therefore, R is not reduced. Observe that (0 + I) =

⋂2
i=1 Rx

2
i is an irredundant primary

decomposition of the zero ideal in R with Rx2
i is a Rxi-primary ideal of R for each i ∈ {1, 2}. Let us denote Rxi by

pi for each i ∈ {1, 2}. It follows from [6, Proposition 4.7] that Z(R) =
⋃2
i=1 pi. Since p1 and p2 are not comparable

under the inclusion relation, it follows from Z(R) =
⋃2
i=1 pi that MNP (R) = {pi | i ∈ {1, 2}}. Observe that

p1 = ((0 + I) :R x1x
2
2) and p2 = ((0 + I) :R x2

1x2). Hence, pi ∈ A(R) for each i ∈ {1, 2}. Let i ∈ {1, 2}.
As Rx1 + Rx2 6= R and Rxi ⊂ Rx1 + Rx2, we get that pi /∈ Max(R). Since R is not reduced, it follows from
Proposition 3.26 that diam(G(R)) = 2. We next verify that pi ∈ E(R) for each i ∈ {1, 2}. Let A ∈ I(R)∗. If A ⊆ pi,
then pi ∩ A = A 6= (0 + I). Suppose that A 6⊆ pi. As Rx2

i is a Rxi-primary ideal of R with Rxi 6= Rx2
i , it follows

that piA 6⊆ Rx2
i and so, piA 6= (0 + I). Hence, pi ∩A 6= (0 + I). This shows that pi ∈ E(R) for each i ∈ {1, 2}.

Let R be a ring such that R is not reduced. If |MNP (R) ∩ A(R)| ≥ 3, then we verify in Proposition 3.28 that
diam(G(R)) = 2.

Proposition 3.28. Let R be ring such that R is not reduced. If |MNP (R) ∩A(R)| ≥ 3, then diam(G(R)) = 2.

Proof. Let {pi | i ∈ {1, 2, 3}} ⊆ MNP (R) ∩ A(R). Note that for each i ∈ {1, 2, 3}, there exists ui ∈ R\{0} such
that pi = ((0) :R ui). It follows from [8, Lemma 3.6] that u1u2 = u2u3 = u1u3 = 0. Since distinct members of
MNP (R) are not comparable under the inclusion relation, it follows that Rui and Ruj are not comparable under the
inclusion relation for all distinct i, j ∈ {1, 2, 3}. Let I = Ru1 + Ru2. As Iu3 = (0), we get that I ∈ A(R)∗. Let
J = Ru1. Note that J 6= (0) and J ⊂ I . Therefore, I is not a minimal ideal of R. We claim that Ru3 ∩ I = (0).
Let a ∈ Ru3 ∩ I . Then a = ru3 = su1 + tu2 for some r, s, t ∈ R. It follows from [6, Proposition 1.11(ii)] that
p3 6⊇

⋂2
k=1 pk. Let b ∈ (

⋂2
k=1 pk)\p3. Then bu1 = bu2 = 0 and so, from a = ru3 = su1 + tu2, we get that bru3 = 0.

Hence, br ∈ p3. From b /∈ p3, it follows that r ∈ p3 and so, a = ru3 = 0. This shows that Ru3 ∩ I = (0). Therefore,
I /∈ E(R). Thus the ideal I ∈ A(R)∗ is such that I is not a minimal ideal of R and I /∈ E(R). As R is not reduced by
hypothesis, we obtain from (2)⇒ (1) of Proposition 3.15 that diam(G(R)) = 2.
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Remark 3.29. Let R be a ring such that (0) admits a strong primary decomposition (for example, we can take R to be
any strongly Laskerian ring, in particular R to be any Noetherian ring). Let (0) =

⋂n
i=1 qi be an irredundant strong

primary decomposition of (0) in R with n ≥ 3, where qi is a strongly primary ideal of R for each i ∈ {1, 2, 3, . . . , n}.
Let
√
qi = pi for each i ∈ {1, 2, 3, . . . .n}. It can be shown as in the proof of [6, Proposition 7.14] that for each i ∈

{1, 2, 3, . . . , n} that there exists ri ∈ R\{0} such that pi = ((0) :R ri). Thus pi ∈ A(R)∗ for each i ∈ {1, 2, 3, . . . , n}.
We know from [6, Proposition 4.7] that Z(R) =

⋃n
i=1 pi. Let us denote the set {pi | i ∈ {1, 2, 3, . . . , n}} by

∑
. It

follows from [6, Proposition 1.11(i)]that MNP (R) = {pj | pj is a maximal member of
∑
}. If |MNP (R)| = k ≥ 3

and if R is not reduced, then it follows from Proposition 3.28 that diam(G(R)) = 2.

We provide Example 3.30 to illustrate Proposition 3.28.

Example 3.30. Let T = Q[X1, X2, X3] be the polynomial ring in three variables X1, X2, X3 over the field Q. Let
i ∈ {1, 2, 3} and let Qi = T (X1 − i) + TX2

2 + TX3. Let I =
⋂3
i=1 Qi. Let R = T

I . Then R is not reduced,
|MNP (R)| = 3, each member of MNP (R) belongs to A(R) ∩ E(R) ∩Max(R), and diam(G(R)) = 2.

Proof. Let i ∈ {1, 2, 3}. Note that Mi = T (X1 − i) + TX2 + TX3 ∈ Max(T ). Since
√
Qi = Mi ∈ Max(T ), we

obtain from [6, Proposition 4.2] that Qi is a Mi-primary ideal of T and it is clear that M2
i ⊆ Qi. Thus I =

⋂3
i=1 Qi is

an irredundant strong primary decomposition of I in T . It is convenient to denote Xi+ I by xi for each i ∈ {1, 2, 3}.
As x2 6= 0 + I but x2

2 = 0 + I , we get that R is not reduced. Since Q ∩ I = (0), for any α ∈ Q, we identify α + I
with α. For each i ∈ {1, 2, 3}, let us denote R(x1 − i) + Rx2 + Rx3 by mi and R(x1 − i) + Rx3 by qi. It is clear
that mi ∈ Max(R) and qi is a mi-primary ideal of R and m2

i ⊆ qi. Note that (0 + I) =
⋂3
i=1 qi is an irredundant

strong primary decomposition of the zero ideal in R. As distinct maximal ideals of a ring are not comparable under
the inclusion relation, it follows from the arguments given in Remark 3.29 that MNP (R) = {mi | i ∈ {1, 2, 3}}.
It now follows from Remark 3.29 that diam(G(R)) = 2. Thus |MNP (R)| = 3 and each member of MNP (R) is
a member of A(R) ∩Max(R). Let i ∈ {1, 2, 3}. We verify that mi ∈ E(R). Let A ∈ I(R)∗. If A ⊆ mi, then
mi ∩ A = A 6= (0 + I). Suppose that A 6⊆ mi. As x2 ∈ mi\qi, it follows that mi 6= qi and so, mi 6⊆ qi. Since qi is
a mi-primary ideal of R, we get that Ami 6⊆ qi and so, Ami 6= (0 + I). As A 6⊆ mi by assumption, it follows that
A+mi = R and so, mi ∩A = miA 6= (0 + I). This shows that mi ∈ E(R) for each i ∈ {1, 2, 3}.

Let G = (V,E) be a graph. Let e ∈ E. Then G−e is the subgraph of G obtained by deleting e from G. It is useful
to mention here that V (G− e) = V and E(G− e) = E\{e}. Theorem 3.31 is motivated by [2, Theorem 2.7]. Let R
be a ring. In Theorem 3.31, necessary and sufficient conditions are determined in order that G(R) to be isomorphic
to K4 − e, where e is an edge of K4. For any ring T , we denote the Jacobson radical of T by J(T ).

Theorem 3.31. Let R be a ring. The following statements are equivalent:
(1) G(R) ∼= K4 − e, where e is an edge of K4.
(2) ER ∼= K4 − e, where e is an edge of K4.
(3) R ∼= F × S as rings, where F is a field and (S,m) is an SPIR with m 6= (0) but m2 = (0).
(4) AER ∼= K4 − e, where e is an edge of K4.

Proof. (1)⇒ (2) We are assuming that G(R) ∼= K4− e, where e is an edge of K4. This implies that |V (G(R))| = 4.
As V (G(R)) = A(R)∗, we get that |A(R)∗| = 4. Therefore, R satisfies d.c.c. on annihilating ideals of R. Hence, we
obtain from [9, Theorem 1.1] that R is Artinian. In such a case, it is already noted in Section 1 that I(R)∗ = A(R)∗
and ER = G(R). Therefore, ER ∼= K4 − e, where e is an edge of K4

(2) ⇒ (3) We are assuming that ER ∼= K4 − e, where e is an edge of K4. As V (ER) = I(R)∗, it follows that
|I(R)∗| = 4. Hence, R is Artinian and so, I(R)∗ = A(R)∗ and therefore, ER = G(R). We claim that |Max(R)| = 2.
If R has more than two maximal ideals, then |I(R)∗| ≥ 6. This is impossible. Hence, |Max(R)| ≤ 2. Suppose that
R is local. Let Max(R) = {m}. If m is principal, then as m is nilpotent, it follows as is remarked in Section 1 that
(R,m) is an SPIR. In such a case, we know from Proposition 3.14 that G(R) is complete. This is a contradiction,
since G(R) is not complete. Hence, m cannot be principal. It is clear that m is finitely generated. Therefore,
it follows from [6, Proposition 2.8] that there exist x, y ∈ m such that x + m2, y + m2 are linearly independent
over R

m . As Rx,Ry,R(x + y), Rx + Ry are distinct members of I(R)∗ and |I(R)∗| = 4, we get that I(R)∗ =

{Rx,Ry,R(x + y), Rx + Ry}. As m2 ∈ I(R) and m2 /∈ {Rx,Ry,R(x + y), Rx + Ry}, it follows that m2 = (0).
Moreover, Soc(R) = m and dimR

m
(m) = 2. In such a case, we know from (2)⇒ (1) of Proposition 3.13 that G(R) is

complete. This is a contradiction. Therefore, |Max(R)| = 2. LetMax(R) = {mi | i ∈ {1, 2}}. As |I(F1×F2)∗| = 2,
where Fi is a field for each i ∈ {1, 2} and |I(R)∗| = 4, we obtain that R cannot be isomorphic to the direct product
of two fields. If

⋂2
i=1 mi = (0), then from m1 + m2 = R, it follows from [6, Proposition 1.10(ii) and (iii)] that

R ∼= R
m1
× R

m2
as rings. This is impossible, since R

mi
is a field for each i ∈ {1, 2}. Hence,

⋂2
i=1 mi 6= (0). If m2

i 6= mi

for each i ∈ {1, 2}, then m1,m2
1,m2,m2

2,m1 ∩m2 are distinct members of I(R)∗. This implies that |I(R)∗| ≥ 5. This
is impossible. Therefore, mi = m2

i for some i ∈ {1, 2}. Without loss of generality, we can assume that m1 = m2
1.

Observe that m2 6= m2
2. For if m2 = m2

2, then we obtain that J(R) = m1 ∩ m2 = m1m2 = m2
1m

2
2 = (J(R))2. This
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implies by Nakayama’s lemma [6, Proposition 2.6] that J(R) = (0). This is impossible. Therefore, m2 6= m2
2. Since

|I(R)∗| = 4, we get that I(R)∗ = {m1,m2,m2
2,m1∩m2}. Hence, (J(R))2 = (0). Therefore, m1∩m2

2 = m2
1∩m2

2 = (0).
As m1 + m2

2 = R, we obtain from [6, Proposition 1.10(ii) and (iii)] that the mapping f : R → R
m1
× R

m2
2

defined

by f(r) = (r + m1, r + m2
2) is an isomorphism of rings. Let us denote R

m1
by F and R

m2
2

by S. Note that for any

y ∈ m2\(m1 ∪ m2
2), m2 = Ry. Let us denote m2

m2
2

by m. It is clear that F is a field and (S,m) is an SPIR with

m 6= (0 +m2
2) but m2 = (0 +m2

2) and R ∼= F × S as rings.
(3) ⇒ (1) Let us denote the ring F × S by T , where F is a field and (S,m) is an SPIR with m 6= (0) but m2 = (0).
Observe that I(T )∗ = A(T )∗ = {F × (0), (0) × m, F × m, (0) × S}. Note that G(T ) is the union of the cycle
F × (0)− (0)×m−F ×m− (0)× S −F × (0) and the edge F × (0)−F ×m. Hence, G(T ) ∼= K4 − e, where e is
an edge of K4. Since R ∼= T as rings, we obtain that G(R) ∼= K4 − e, where e is an edge of K4.
(3) ⇒ (4) We are assuming that R ∼= F × S as rings, where F is a field and (S,m) is an SPIR with m 6= (0) but
m2 = (0). Now, it follows from Corollary 2.10 and (3) ⇒ (1) of this theorem that AER ∼= K4 − e, where e is an
edge of K4.
(4) ⇒ (3) We are assuming that AER ∼= K4 − e, where e is an edge of K4. As V (AER) = A(R)∗, it follows that
|A(R)∗| = 4. It follows as in the proof of (1) ⇒ (2) this theorem that R is Artinian. It follows as in the proof of
(2)⇒ (3) of this theorem that |Max(R)| ≤ 2. If R is local, then we know from [1, Lemma 2] that AER is complete.
This is impossible, since AER is not complete. Therefore, |Max(R)| = 2. Since I(R)∗ = A(R)∗ and |I(R)∗| = 4,
proceeding as in the proof of (2)⇒ (3) of this theorem, it can be shown that R ∼= F × S as rings, where F is a field
and (S,m) is an SPIR with m 6= (0) but m2 = (0).

Remark 3.32. Let R = F × S, where F is a field and (S,m) is a SPIR with m 6= (0) but m2 = (0). We know from
Corollary 2.10 that G(R) ∼= AER. We verify in this remark that G(R) 6= AER. Let us denote the ideal F × (0) of R
by I and the ideal F × m of R by J . Observe that I + J = F × m ∈ E(R). Hence, I and J are adjacent in G(R).
However, AnnR(I) = (0)× S and AnnR(J) = (0)×m and so, AnnR(I) +AnnR(J) = (0)× S /∈ E(R). Hence, I
and J are not adjacent in AER. This shows that G(R) 6= AER.
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