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Abstract The main purpose of the present paper is to study the commutativity of a quotient
ringR/P by considering derivations ofR satisfying algebraic identities involving the prime ideal
P. This approach allows us to generalize some well known results characterizing commutativity
of rings.

1 Introduction

Throughout this article, R will represent an associative ring with center Z(R). Recall that an
ideal P of R is said to be prime if P 6= R and for all x, y ∈ R, xRy ⊆ P implies that x ∈ P
or y ∈ P . Therefore, R is called a prime ring if and only if (0) is the only prime ideal of R.
R is 2-torsion free if whenever 2x = 0, with x ∈ R implies x = 0. For any x, y ∈ R, the
symbol [x, y] will denote the commutator xy − yx; while the symbol x ◦ y will stand for the
anti-commutator xy + yx. A map d : R −→ R is a derivation of a ring R if d is additive and
satisfies d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping ∗ : R −→ R is called an
involution if ∗ is an anti-automorphism of order 2; that is (x∗)∗ = x for all x ∈ R. An element x
in a ring with involution (R, ∗) is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x.
The sets of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R),
respectively. The involution is said to be of the first kind if ∗ induces the identity map on the
center Z(R) of R, otherwise it is said to be of the second kind. In the latter case, it is worthwhile
to see that S(R) ∩ Z(R) 6= {0}.
Recently many authors have obtained commutativity of prime and semiprime rings admitting
suitably constrained additive mappings, as automorphisms, derivations, skew derivations and
generalized derivations acting on appropriate subsets of the rings. We first recall that for a subset
S of R, a mapping f : S −→ R is called centralizing if [f(x), x] ∈ Z(R) for all x ∈ S, in
the special case where [f(x), x] = 0 for all x ∈ S, the mapping f is said to be commuting
on S. In [16], Posner proved that if a prime ring R admits a nonzero derivation d such that
[d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. Over the last few decades, several
authors have subsequently refined and extended these result in various directions ( see [1], [12],
[13] and [14] where further references can be found).
Long ago Herstein [9] proved that if a prime ring R of characteristic different from two admits
a derivation d such that d(x)d(y) = d(y)d(x) holds for all x, y ∈ R, then R is commutative.
Motivated by this result Bell and Daif [6] obtained the same result by considering the identity
d[x, y] = 0 for all x, y in a nonzero ideal of R. Recall that a mapping f : R −→ R preserves
commutativity if [f(x), f(y)] = 0 whenever [x, y] = 0 for all x, y ∈ R. A mapping f : R −→ R
is said to be strong commutativity preserving (SCP) on a subset S ofR if [f(x), f(y)] = [x, y] for
all x, y ∈ S. In [5], Bell and Daif investigated the commutativity of rings admitting a derivation
that is SCP on a nonzero right ideal. Indeed, they proved that if a semiprime ring R admits a
derivation d satisfying [d(x), d(y)] = [x, y] for all x, y in a right ideal I of R, then I ⊆ Z(R). In
particular, R is commutative if I = R. Further, Ali and Huang [2] showed that if R is a 2-torsion
free semiprime ring an d is a derivation of R satisfying [d(x), d(y)] + [x, y] = 0 for all x, y in
a nonzero ideal I of R, then R contains a nonzero central ideal. Motivated by this results the
authors in [11] introduce the notions of *-SCP, *-Skew SCP and give some commutativity criteria
in case of prime ring with involution. Many related generalizations of these results can be found
in the literature (see for instance [7] and [14]). In [8] Daif and Bell established commutativity
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of semiprime ring satisfying d([x, y]) = [x, y] for all x, y in a nonzero ideal of R, and d a
derivation ofR. Further, in the year 1997 M. Hongan [10] proved that a 2-torsion free semiprime
ring R must be commutative if it admits a derivation d satisfying d([x, y]) + [x, y] ∈ Z(R) for
all x, y ∈ I or d([x, y]) − [x, y] ∈ Z(R) for all x, y ∈ I, where I is an ideal of R. In [15]
Oukhtite and all generalized these results for ∗−prime ringR satisfying any one of the properties:
(i) d[x, y] = 0, (ii) d([x, y])− [x, y] ∈ Z(R), (iii) d([x, y]) + [x, y] ∈ Z(R), (iv) d(x ◦ y) = 0,
(v) d(x ◦ y)− x ◦ y ∈ Z(R), (vi) d(x ◦ y) + x ◦ y ∈ Z(R) for all x, y ∈ J, where J is a nonzero
Jordan ideal of R.

The present paper is motivated by the previous results and we here continue this line of
investigation by considering a generalization to any ring rather then a prime ring. More precisely,
we will establish a relationship between the structure of a quotient ring R/P and the behavior of
derivations of R satisfying some identities involving the prime ideal P.

2 Main results

We will use frequently the following fact whose proof will be left to the reader. Indeed, this fact
and the following lemmas are very crucial for developing the proofs of our main results.
Fact 1. Let R be a ring, I a non zero ideal of R, P a prime ideal such that P  I and a, b ∈ R.
Then aIb ⊆ P implies that a ∈ P or b ∈ P .

In [[3], Theorem 2.2] it is proved that if P is a prime ideal of a ring R and d a derivation of
R such that

[
[x, d(x)], y

]
∈ P for all x, y ∈ R, then d(R) ⊆ P or R/P is a commutative ring.

Using similar arguments with some modifications, we get the following lemma which plays a
crucial role in developing the proofs of our main results.

Lemma 2.1. Let R be a ring, I a nonzero ideal, P a prime ideal such that P  I and d a
derivation of R. Then [d(x), x] ∈ P for all x ∈ I if and only if R/P is a commutative integral
domain or d(R) ⊆ P .

Lemma 2.2. Let R be a ring, I a nonzero ideal, P a prime ideal such that P  I and R/P is
2-torsion free. If d is a derivation of R, then [d(x), x] ∈ Z(R/P ) for all x ∈ I if and only if R/P
is a commutative integral domain or d(R) ⊆ P .

Proof. We are given that

[d(x), x] ∈ Z(R/P ) for all x ∈ I. (2.1)

Writing x2 instead of x we find that

x2[d(x), x] + 2x[d(x), x]x+ [d(x), x]x2 ∈ Z(R/P ) for all x ∈ I. (2.2)

By view of (2.1), equation (2.2) yields

4[d(x), x]x2 ∈ Z(R/P ) for all x ∈ I. (2.3)

Since R/P is 2-torsion free it follows that

[d(x), x]x2 ∈ Z(R/P ) for all x ∈ I. (2.4)

Commuting the last equation with d(x) we arrive at

[d(x), x]2x = 0 for all x ∈ I. (2.5)

Using the hypothesis with equation (2.5) we get

[d(x), x]2d(x)x = 0 for all x ∈ I. (2.6)

Right multiplying (2.5) by d(x) and combining with (2.6), we obtain

[d(x), x]3 = 0 for all x ∈ I. (2.7)
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Since the center of a semiprime ring contains no nonzero nilpotent elements then [d(x), x] = 0
for all x ∈ I . Hence by Lemma 2.1 we conclude that R/P is a commutative or d(R) ⊆ P . 2

In [10], Hongan established commutativity of 2-torsion free semiprime ring R which admits
a derivation d satisfying d([x, y]) + [x, y] ∈ Z(R) for all x, y ∈ I or d([x, y])− [x, y] ∈ Z(R) for
all x, y ∈ I, where I is an ideal of R. Our next aim is to generalize this result in two directions.
First of all, we will assume that the above algebraic identities belongs to Z(R/P ) where P is any
prime ideal rather than the zero ideal. Secondly, we will treat more general differential identities
involving two derivations.

Theorem 2.3. Let R be a ring, I a nonzero ideal of R, P a prime ideal such that P  I and
R/P is 2-torsion free. If d is a derivation of R then the following assertions are equivalent:
(1) d[x, y]− [x, y] ∈ Z(R/P ) for all x, y ∈ I;
(2) R/P is a commutative integral domain.
Moreover, if d[x, y] ∈ Z(R/P ) for all x, y ∈ I, then d(R) ⊆ P or R/P is a commutative integral
domain.

Proof. We are given that

d[x, y]− [x, y] ∈ Z(R/P ) for all x, y ∈ I. (2.8)

Replacing y by [y, t], we get

[d(x), [y, t]] + [x, d[y, t]]− [x, [y, t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.9)

Combining (2.8) with (2.9), we may conclude that

[d(x), [y, t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.10)

Substituting ty for y, one can see that

[d(x), t[y, t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.11)

Therefore commuting with d(x) we find that

[t[d(x), [y, t]] + [d(x), t][y, t], d(x)] = 0̄ for all t, x, y ∈ I (2.12)

and thus

2[d(x), t][[y, t], d(x)] + [[d(x), t], d(x)][y, t] = 0̄ for all t, x, y ∈ I. (2.13)

Replacing y by yt and using the 2-torsion freeness of R/P , one can verify that

[d(x), t]3 = 0̄ for all t, x ∈ I (2.14)

in such a way that
[d(x), [t, y]]3 = 0̄ for all t, x, y ∈ I. (2.15)

By view of (2.10) equation (2.15) yields

[d(x), [t, y]] = 0̄ for all t, x, y ∈ I. (2.16)

Substituting ty for y we get

[d(x), t][t, y] = 0̄ for all t, x, y ∈ I. (2.17)

Writing ry instead of y, we arrive at

[d(x), t]r[t, y] = 0̄ for all r, t, x, y ∈ I, (2.18)

thereby obtaining
[d(x), t](I/P )[d(x), t] = 0̄ for all t, x ∈ I. (2.19)
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Since P is a semiprime ideal then [d(x), t] ∈ P for all t, x ∈ I . Using Lemma 2.1 we are forced
to conclude that R/P is commutative or d(R) ⊆ P in which case the hypothesis assures that
[x, y] ∈ Z(R/P ) for all x, y ∈ I and thus I/P is commutative. Hence R/P is a commutative
integral domain.

Now, if d[x, y] ∈ Z(R/P ) for all x, y ∈ I; replacing y by [y, t] we obtain

[d(x), [y, t]] + [x, d[y, t]] ∈ Z(R/P ) for all t, x, y ∈ I (2.20)

whence
[d(x), [y, t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.21)

That is just equation (2.10), so we may argue as before that d(R) ⊆ P or R/P is a commutative
integral domain. 2

Remark 2.4. Using the same technics as in the preceding proof, it is obvious to see that d[x, y]+
[x, y] ∈ Z(R/P ) for all x, y ∈ I implies that R/P is a commutative integral domain.

In ([10],Theorem 1) it is proved that if R is a 2-torsion free semiprime ring, I a nonzero ideal of
R, and d a derivation of R. Then the following assertions are equivalent:
(1) d[x, y]− [x, y] ∈ Z(R) for all x, y ∈ I;
(2) d[x, y] + [x, y] ∈ Z(R) for all x, y ∈ I;
(3) I ⊆ Z(R).

As an application of our Theorem 1, the following proposition gives an improved version of
([10],Theorem 1).

Corollary 2.5. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, and d a deriva-
tion of R. Then the following assertions are equivalent :
(1) d[x, y]− [x, y] ∈ Z(R) for all x, y ∈ I;
(2) d[x, y] + [x, y] ∈ Z(R) for all x, y ∈ I;
(3) R is commutative.

Proof. Assume that d[x, y] − [x, y] ∈ Z(R) for all x, y ∈ I . By view of the semiprimeness
of the ring R, there exists a family Γ of prime ideals such that

⋂
P∈Γ

P = {0}, thereby obtain-
ing [d[x, y] − [x, y], r] ∈ P for all P ∈ Γ. Invoking Theorem 2.3 we conclude that R/P is a
commutative integral domain for all P ∈ Γ which, because of

⋂
P∈Γ

P = {0}, assures that R
is commutative. Similarly, if d[x, y] + [x, y] ∈ Z(R) for all x, y ∈ I , then the same reasoning
proves that R is commutative. 2

As mentioned before, our present objective is to prove the following theorem which general-
izes [[10], Theorem 1].

Theorem 2.6. Let R be a ring, I a nonzero ideal of R, P a prime ideal such that P  I and
R/P is 2-torsion free, d1 and d2 two derivations of R. The following assertions are equivalent:
(1) [d1(x), y] + [x, d2(y)]− [x, y] ∈ Z(R/P ) for all x, y ∈ I;
(2) R/P is a commutative integral domain.
Moreover, if [d1(x), y] + [x, d2(y)] ∈ Z(R/P ) for all x, y ∈ I, then R/P is a commutative
integral domain or

(
d1(R) ⊆ P and d2(R) ⊆ P

)
.

Proof. We are given that

[d1(x), y] + [x, d2(y)]− [x, y] ∈ Z(R/P ) for all x, y ∈ I. (2.22)

Substituting [y, t] for y, we obtain

[d1(x), [y, t]] + [x, [d2(y), t]] + [x, [y, d2(t)]]− [x, [y, t]] ∈ Z(R/P ) (2.23)
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for all t, x, y ∈ I . Combining (2.22) with (2.23), we may write

[d1(x), [y, t]] + [x, [d2(y), t]]− [x, [d1(y), t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.24)

Taking y = t in the last equation one can see that

[x, [d(t), t]] ∈ Z(R/P ) for all t, x ∈ I, (2.25)

where d = d1 - d2, and thus for x = x[d(t), t] we arrive at

[x, [d(t), t]][d(t), t] ∈ Z(R/P ) for all t, x ∈ I. (2.26)

Using equation (2.25), equation (2.26) yields

[d(t), t] ∈ Z(R/P ) for all t ∈ I. (2.27)

By view of Lemma 2.2 we conclude that R/P is commutative or d(R) ⊆ P in which case the
hypothesis forces

d1[x, y]− [x, y] ∈ Z(R/P ) for all x, y ∈ I. (2.28)

Using Theorem 2.3 we obtain the required result.

Assume that
[d1(x), y] + [x, d2(y)] ∈ Z(R/P ) for all x, y ∈ I. (2.29)

Replacing y by [y, t], we obtain

[d1(x), [y, t]] + [x, [d2(y), t]] + [x, [y, d2(t)]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.30)

Subtracting (2.29) from (2.30), we are forced to conclude that

[d1(x), [y, t]] + [x, [d2(y), t]]− [x, [d1(y), t]] ∈ Z(R/P ) for all t, x, y ∈ I. (2.31)

That is just equation (2.24), so we may argue as before that R/P is commutative or (d1 −
d2)(R) ⊆ P ; using equation (2.29) one can see that

d1[x, y] ∈ Z(R/P ) for all x, y ∈ I. (2.32)

By view of Theorem 2.3 we conclude that R/P is commutative or d1(R) ⊆ P in which case
using the hypothesis we deduce that d2(R) ⊆ P . 2

As a consequence of Theorem 2.6, if R is a prime ring, then
[d1(x), y] + [x, d2(y)]− [x, y] ∈ Z(R) for all x, y ∈ I

assures that R is a commutative integral domain. The following corollary proves that the similar
conclusion remains valid on semiprime rings.

Corollary 2.7. LetR be a 2-torsion free semiprime ring, I a nonzero ideal, d1 and d2 two deriva-
tions of R. Then the following assertions are equivalent:
(1) [d1(x), y] + [x, d2(y)]− [x, y] ∈ Z(R) for all x, y ∈ I;
(2) R is commutative.

Proof. Assume that [d1(x), y] + [x, d2(y)] − [x, y] ∈ Z(R) for all x, y ∈ I . By view of the
semiprimeness of the ring R, there exists a family Γ of prime ideals such that

⋂
P∈Γ

P = {0},
thereby obtaining [[d1(x), y] + [x, d2(y)] − [x, y], r] ∈ P for all P ∈ Γ. Invoking Theorem
2.6, we conclude that R/P is a commutative integral domain for all P ∈ Γ which, because of⋂

P∈Γ
P = {0}, assures that R is commutative.2

In [4] Ashraf and Rehman proved that, if R is a prime ring, I is a nonzero ideal of R and d is
a derivation of R such that d(x ◦ y)− (x ◦ y) = 0 for all x, y ∈ I, then R is commutative.
The fundamental aim of the next theorem is to establish a generalization of the above result
by investigating the behaviour of the more general expression d1(x) ◦ y + x ◦ d2(y)− x ◦ y ∈
Z(R/P ) for all x, y ∈ I . More precisely we will prove the following result.
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Theorem 2.8. LetR be a ring, I a nonzero ideal ofR, P a prime ideal such that P  I andR/P
is 2-torsion free, d1 and d2 two derivations of R. Then the following assertions are equivalent:
(1) d1(x) ◦ y + x ◦ d2(y)− x ◦ y ∈ Z(R/P ) for all x, y ∈ I;
(2) R/P is a commutative integral domain.
Moreover, if d1(x) ◦ y + x ◦ d2(y) ∈ Z(R/P ) for all x, y ∈ I, then R/P is a commutative
integral domain or

(
d1(R) ⊆ P and d2(R) ⊆ P

)
.

Proof. We are given that

d1(x) ◦ y + x ◦ d2(y)− x ◦ y ∈ Z(R/P ) for all x, y ∈ I. (2.33)

If Z(R/P ) = {0}, then the hypothesis reduces to

d1(x) ◦ y + x ◦ d2(y)− x ◦ y = 0 for all x, y ∈ I. (2.34)

Replacing y by yx, we obtain

d1(x) ◦ (yx) + x ◦ (d2(y)x) + x ◦ (yd2(x))− x ◦ (yx) = 0 for all x, y ∈ I. (2.35)

Therefore

(d1(x) ◦ y)x− y[d1(x), x] + (x ◦ d2(y))x+ x ◦ (yd2(x))− (x ◦ y)x = 0 (2.36)

for all x, y ∈ I. Combining (2.34) together with (2.36) one can see that

−y[d1(x), x] + (x ◦ y)d2(x) + y[d2(x), x] = 0 for all x, y ∈ I. (2.37)

Writing ty instead of y, we obviously get

[x, t]yd2(x) = 0 for all t, x, y ∈ I (2.38)

and thus
[x, t](I/P )d2(x) = 0 for all t, x ∈ I. (2.39)

Using Brauer’s trick we are forced to conclude thatR/P is commutative which is a contradiction
or d2(R) ⊆ P in which case the hypothesis becomes

d1(x) ◦ y − x ◦ y ∈ P for all x, y ∈ I. (2.40)

Replacing y by yx, we obtain

(d1(x) ◦ y)x− y[d1(x), x]− (x ◦ y)x ∈ P for all x, y ∈ I. (2.41)

By view of equation (2.40) we find that

y[d1(x), x] ∈ P for all x, y ∈ I (2.42)

which leads to
yR[d1(x), x] ⊆ P for all x, y ∈ I. (2.43)

Since P ( I it follows that [d1(x), x] ∈ P for all x ∈ I . Consequently d1(R) ⊆ P or R/P is
commutative which is a contradiction. Hence the hypothesis reduces to x ◦ y ∈ P and thus for
y = yr we obtain [x, y]r ∈ P , so that [x, y]R[x, y] ⊆ P for all x, y ∈ I which leads to conclude
that I/P is commutative. Therefore R/P is commutative, a contradiction.
Hence Z(R/P ) 6= {0}; substituting yz for y in (2.33), where z ∈ Z(R/P ), one can verify that(

d1(x) ◦ y
)
z +

(
x ◦ d2(y)

)
z + (x ◦ y)d2(z)− y[x, d2(z)]− (x ◦ y)z ∈ Z(R/P ) (2.44)

for all x, y ∈ I. In light of (2.33), one can see that

(x ◦ y)d2(z)− y[x, d2(z)] ∈ Z(R/P ) for all x, y ∈ I. (2.45)
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Writing z instead of x in the last equation, we arrive at

yd2(z)z ∈ Z(R/P ) for all y ∈ I. (2.46)

Since Z(R/P ) 6= {0}, it follows that yd2(z) ∈ Z(R/P ); substituting ty instead of y one can
conclude that t ∈ Z(R/P ) and thus R/P is commutative or yd2(z) = 0 for all y ∈ I in which
case we obtain d2(z) = 0 because of P ( I . Taking y ∈ Z(R/P ) in equation (2.33) we find that

2(d1(x)− x)y ∈ Z(R/P ) for all x, y ∈ I (2.47)

thereby obtaining
d1(x)− x ∈ Z(R/P ) for all x ∈ I (2.48)

and thus
[d1(x), x] = 0 for all x ∈ I. (2.49)

Hence R/P is commutative or d1(R) ⊆ P .
If d1(R) ⊆ P , then equation (2.48) yields x ∈ Z(R/P ) for all x ∈ I . Hence R/P is commuta-
tive.

Suppose that
d1(x) ◦ y + x ◦ d2(y) ∈ Z(R/P ) for all x, y ∈ I. (2.50)

If Z(R/P ) = {0}, then the hypothesis becomes

d1(x) ◦ y + x ◦ d2(y) ∈ P for all x, y ∈ I. (2.51)

Substituting yx for y, we arrive at

(d1(x) ◦ y)x− y[d1(x), x] + (x ◦ d2(y))x+ x ◦ (yd2(x)) ∈ P for all x, y ∈ I. (2.52)

Combining (2.52) together with (2.51) one can see that

−y[d1(x), x] + (x ◦ y)d2(x) + y[d2(x), x] ∈ P for all x, y ∈ I. (2.53)

That is just equation (2.37), so we may argue as before that d2(R) ⊆ P and the hypothesis forces

d1(x) ◦ y ∈ P for all x, y ∈ I. (2.54)

Replacing y by yx we find that

y[d1(x), x] ∈ P for all x, y ∈ I (2.55)

which leads to
yR[d1(x), x] ⊆ P for all x, y ∈ I. (2.56)

Hence [d1(x), x] ∈ P for all x ∈ I and thus d1(R) ⊆ P .
Now if Z(R/P ) 6= {0}; substituting yz for y in (2.50), where z ∈ Z(R/P ) \ {0}, we arrive at(

d1(x) ◦ y
)
z +

(
x ◦ d2(y)

)
z + (x ◦ y)d2(z)− y[x, d2(z)] ∈ Z(R/P ) (2.57)

for all x, y ∈ I . By view of equation (2.50), it follows that

(x ◦ y)d2(z)− y[x, d2(z)] ∈ Z(R/P ) for all x, y ∈ I. (2.58)

So we may argue as in equation (2.45) to get d2(z) = 0 in which case the hypothesis assures that
for y ∈ Z(R/P ) \ {0} we have

2d1(x)y ∈ Z(R/P ) for all x, y ∈ I (2.59)

in such a way that
d1(x) ∈ Z(R/P ) for all x ∈ I. (2.60)
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Commuting the last equation with x we obtain

[d1(x), x] ∈ Z(R/P ) for all x ∈ I (2.61)

hence R/P is commutative or d1(R) ⊆ P . On the other hand, taking x ∈ Z(R/P ) in the
hypothesis we are forced to conclude that 2xd2(y) ∈ Z(R/P ), so that by the same technics used
in equation (2.59) one can prove that R/P is commutative or d2(R) ⊆ P .2
As a consequence of Theorem 2.8, if R is a prime ring, then d1(x)◦ y+x◦d2(y)−x◦ y ∈ Z(R)
for all x, y ∈ I, assures that R is commutative. The following corollary extends this result on
semiprime rings.

Corollary 2.9. LetR be a 2-torsion free semiprime ring, I a nonzero ideal, d1 and d2 two deriva-
tions of R. The following assertions are equivalent:
(1) d1(x) ◦ y + x ◦ d2(y)− x ◦ y ∈ Z(R) for all x, y ∈ I;
(2) R is commutative.

Proof. Assume that R is a 2-torsion free semiprime ring. Then there exists a family Γ of prime
ideals such that

⋂
P∈Γ

P = {0}. Suppose there exists two derivations d1 and d2 such that [d1(x)◦
y+x◦d2(y)−x◦y, r] = 0 for all x, y ∈ I, r ∈ R.Accordingly, [d1(x)◦y+x◦d2(y)−x◦y, r] ∈ P
for all P ∈ Γ and thus Theorem 2.6 yields R/P is commutative for all P ∈ Γ. Therefore, for all
x, y ∈ R we have [x, y] ∈ P for all P ∈ Γ so that [x, y] = 0 for all x, y ∈ R.2

The following example proves that the condition R is 2-torsion free is necessary in
Theorems 2.3, 2.6 and 2.8.

Example 1.

Let us consider R = M2(Z/2Z), it is straightforward to check that R is a noncommutative
prime ring with charR = 2. Moreover, if we take d : R −→ R the inner derivation defined on R

by d(X) = [A,X] where A =

(
1 0
0 0

)
, then for all X =

(
a b

c d

)
, Y =

(
α β

γ δ

)
∈ R,

we find that

d[X,Y ]− [X,Y ] =

(
bγ − βc 0

0 bγ − βc

)
∈ Z(R).

Hence d satisfies the conditions of Theorems 2.3, 2.6 and 2.8 but R is not commutative.

The following example proves that the condition of the primeness imposed on the ideal is
necessary in Theorems 2.3, 2.6 and 2.8.

Example 2.

Let us consider R =

{(
a b

0 c

)
| a, b, c ∈ R

}
; where R is a noncommutative ring, I =(

0 a

0 0

)
an ideal of R. It is clear that R is a 2-torsion free non-prime ring. Moreover, if

we take the same derivation defined in Example 1 then for all X,Y ∈ R one can check that
d(X ◦ Y ) −X ◦ Y = d[X,Y ] − [X,Y ] = 0 for all x, y ∈ I . Hence d satisfies the conditions of
Theorems 2.3, 2.6 and 2.8 but R is not commutative.
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