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Abstract A ring R is defined to be a weakly tri normal ring if for all a ∈ R and a tripotent
element t of R such that at = 0, implies that Rtra is a nil left ideal of R. It is proved that a ring
R is weakly tri normal if and only if tR(1 + t2) ⊆ N∗(R), where t is an op-tripotent element of
R. Furthermore, we introduce the concept of quasi tri normal ring. A ring R is a quasi tri normal
ring if at = 0, implies taRt = 0, where t is a tripotent element of R. It is observed that for a
weakly tri normal ring R, (1) Every quasi tri normal ring is a weakly tri normal ring, (2) Every
weakly tri normal ring is directly finite, (3) If R is a weakly tri normal π-regular ring then R is
strongly π-regular.

1 Introduction

Throughout this paper, all rings are associative with identity. LetR be a ring, the op-idempotent
element of R is defined as in [17]. Extending this concept op-tripotent element of R is defined,
the set of tripotent element and the set of op-tripotent element of R are denoted by T (R) and
T 0(R) respectively. Also, N∗(R), J(R) and N(R), denote the nilradical, the Jacobson radical
and the set of all nilpotent elements of R respectively. According to (Wei and Li, 2012) [17], a
ring is said to be a weakly normal only when for all a, r ∈ R and e ∈ E(R), ae = 0 inferred
Rera is a nil left ideal of R, where E(R) exemplify the set of all idempotent elements of R, they
proved that R is a weakly normal ring if and only if Rer(1 − e) is a nil left ideal of R for each
e ∈ E(R) and r ∈ R. According to [18], a ring R is called a quasi normal if ae = 0 implies that
eaRe = 0 for a ∈ N(R) and e ∈ E(R).

Chen (2007) [7], reported that a ring R is said to be a semiabelian when every idempotent
of R is either left semi-central or right semi-central. It was proved that in a π-regular ring R,
N(R) is an ideal of R under the condition that R/J(R) is an abelian ring. Also, Chen(2007),
studied that a semiabelian ring R is π-regular only when N(R) is an ideal of R and R/N(R) is
regular, which extends the results of Badawi(1997). According to Badawi(1997) [2], a ring is
called π-regular if for a ∈ R there exists n > 1 and b ∈ R so that an = anban and in case of
n = 1 for all a ∈ R, then R is called Von Neumann regular ring and so Von Neumann regular
rings are π-regular.

Cohn [8], in 1999 stated that a ring is said to be reversible if for any a, b ∈ R, ab = 0 =⇒
ba = 0. Baser et al. [3], extended the concept of reversible rings and they defined a ring R to be
semicommutative if for any a, b ∈ R, ab = 0 =⇒ aRb = 0.
Zhao, et al., generalised reversible rings and introduced that a ring R is called weakly reversible
[12], if ab = 0 =⇒ Rbra is a nil left ideal of R, for all a, b, r ∈ R. It is obvious that
semicommutative rings are weakly reversible. A ring R is called directly finite if for all a, b ∈ R
such that ab = 1 implies that ba = 1. Clearly reversible rings are directly finite.

Wei [16], studied the concept of left minimal element and left minimal idempotent of a ring
R. Extending this concept the left minimal tripotent element of R is defined using tripotent
element. A ring R is called left min-abel [16], if every left minimal tripotent element is left
semicentral in R. It is obvious that, abelian rings are left min-abel.

In this study, the results appeared in Wei and Li [17, 18], Chen [7] are extended and gener-
alized using the concept of tripotent element. The objective is to study and to define a new type
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of ring called a weakly tri normal ring using tripotent element. It is interesting to note that using
tripotent element which is not an idempotent in a weakly normal ring [17], it is seen that every
condition of weakly normal rings is also satisfied and hence it is named as weakly tri normal
ring.
Thus, a ring R is called weakly tri normal if for all a, r ∈ R and t ∈ T (R) with at = 0, implies
Rtra is a nil left ideal of R.
For example let, R = M2×2(R) be an upper triangular matrix ring over a real number field R.

Then

(
−1 0
0 0

)
is tripotent but not idempotent, such that

(
0 0
0 2

)(
−1 0
0 0

)
=

(
0 0
0 0

)
= 0,

implies

(
−1 0
0 −1

)(
−1 0
0 0

)(
−1 0
0 −1

)(
0 0
0 2

)
=

(
0 0
0 0

)
= 0.

Thus,

(
−1 0
0 −1

)(
−1 0
0 0

)(
−1 0
0 −1

)(
0 0
0 2

)
∈ N(M2×2(R)).

So, R =M2×2(R) is a weakly tri normal ring.
Clearly, idempotents are also tripotents and so, every weakly normal ring is weakly tri normal
ring. And hence, weakly reversible ring, abelian ring are weakly tri normal ring.

In a similar way like weakly tri normal ring, another new type of ring termed as Quasi tri
normal ring is defined.
Thus, a ringR is called Quasi tri normal if at = 0, implies taRt = 0 for a ∈ N(R) and t ∈ T (R).
For example Let, R = M2×2(R) be a full matrix ring over a real number field R. Then(

0 0
0 −1

)
is tripotent but not idempotent, such that

(
0 0
1 0

)(
0 0
0 −1

)
=

(
0 0
0 0

)
= 0,

implies

(
0 0
0 −1

)(
0 0
1 0

)(
1 0
0 0

)(
0 0
0 −1

)
=

(
0 0
0 0

)
= 0.

So, R = M2×2(R) is a quasi tri normal ring. From the above it is proved that Quasi tri normal
rings are weakly tri normal but the converse does not hold.

Throughout the study it is found that R is a weakly tri normal ring if and only if tR(1+ t2) ⊆
N∗(R), where t ∈ T 0(R) and moreover it is proved that a ring R is quasi tri normal if and
only if t2R(1 − t2)Rt2 = 0, for all t ∈ T (R). A ring R is quasi tri normal if and only if
t2R(1+ t2)Rt2 = 0, for all t ∈ T 0(R). And various properties of weakly tri normal rings as well
as quasi tri normal rings are established.

2 Weakly Tri normal rings

In this section some characterizations of weakly tri normal rings are discussed.

Theorem 2.1. The following conditions are equivalent for a ring R.

(1) R is a weakly tri normal ring.

(2) Rtr(1− t2) is a nil left ideal of R for all t ∈ T (R), r ∈ R.

(3) tR(1− t2) ⊆ N∗(R) for any t ∈ T (R).

Proof. (1) =⇒ (2) since, t3 = t =⇒ t− t3 = 0 =⇒ (1− t2)t = 0. Therefore, Rtr(1− t2)
is a nil left ideal of R.
(2) =⇒ (3). Let, t ∈ T (R) then Rtr(1− t2) ⊆ N∗(R) for all r ∈ R, by(2). Thus, tR(1− t2) ⊆
N∗(R).
(3) =⇒ (1). Let us assume that, at2 = 0, a ∈ R and t ∈ T (R). Then t = t3 =⇒ (1− t2)t = 0
and a = a−at2 = a(1− t2). Now, tRa = tRa(1− t2) ⊆ tR(1− t2), since tR(1− t2) ⊆ N∗(R).
So, tRa = tRa(1−t2) ⊆ tR(1−t2) ⊆ N∗(R) =⇒ tRa(1−t2) ⊆ N∗(R) =⇒ tRra(1−t2) ⊆
N∗(R), r ∈ R =⇒ Rtra(1 − t2) ⊆ N∗(R) =⇒ Rtra ⊆ N∗(R). So, for any r ∈ R and
t ∈ T (R), we get Rtra is a nil left ideal of R. Hence, R is a weakly tri normal ring.

Theorem 2.2. A ring R is a weakly tri normal ring if and only if tN(R)(1 − t2) ⊆ N∗(R) for
any t ∈ T (R).



A study on Weakly Tri normal and Quasi Tri normal Rings 127

Proof. Let R be a weakly tri normal ring. Since N(R) is the set of all nilpotent elements of R.
So, tN(R)(1−t2) is a nil right ideal of R for any t ∈ T (R) , which implies that tN(R)(1−t2) ⊆
N∗(R).

For the converse part, for any t ∈ T (R), (tR(1−t2))(tR(1−t2)) = (tR−tRt2)(tR−tRt2) =
tRtR − tRtRt2 − tRt2tR+ tRt2tRt2 = tRtR − tRtRt2 − tRtR+ tRtRt2 = 0, as t3 = t. So,
tR(1− t2) ⊆ N(R). Hence, tR(1− t2) = t(tR(1− t2))(1− t2) ⊆ tN(R)(1− t2) ⊆ N∗(R) =⇒
tR(1− t2) ⊆ N∗(R). Thus, R is a weakly tri normal ring.

An element t of a ring R is called an op-tripotent element if t3 = −t, the set of all op-
tripotent elements is denoted by T 0(R). In general op-tripotent is not tripotent. For example let,

R =M2×2(C) then

(
i 0
0 −i

)
∈ R is op-tripotent but not tripotent.

An element t ∈ R is called potent if there exists some positive integer n > 2 such that tn = t,
clearly tripotent is potent but every potent element is not tripotent. For example, R =M2×2(C)

then

(
i 0
0 −i

)
∈ R is potent but not tripotent, as

(
i 0
0 −i

)5

=

(
i 0
0 −i

)

but

(
i 0
0 −i

)3

6=

(
i 0
0 −i

)
, the set of all potent elements of R is denoted by PT (R).

Theorem 2.3. A ring R is a weakly tri normal if and only if tR(1 + t2) ⊆ N∗(R), where t ∈
T 0(R).

Proof. Let R be a weakly tri normal ring, since t is op-tripotent, t3 = −t =⇒ t+ t3 = 0 =⇒
(1 + t2)t = 0. Therefore, Rtr(1 + t2) is a nil left ideal for any r ∈ R. Since, N∗(R) is the sum
of nil ideals so, Rtr(1 + t2) ⊆ N∗(R) =⇒ tRr(1 + t2) ⊆ N∗(R), as tripotents are central.
Thus, tR(1 + t2) ⊆ N∗(R), r ∈ R.

Conversely let, at2 = 0, a ∈ R and t ∈ T 0(R). Then (1 + t2)t = 0 and a = a + at2 =
a(1 + t2). Now, tRa = tRa(1 + t2) ⊆ tR(1 + t2), since tR(1 + t2) ⊆ N∗(R). So, tRa =
tRa(1 + t2) ⊆ tR(1 + t2) ⊆ N∗(R) =⇒ tRa(1 + t2) ⊆ N∗(R) =⇒ tRra(1 + t2) ⊆ N∗(R),
r ∈ R =⇒ Rtra(1 + t2) ⊆ N∗(R) =⇒ Rtra ⊆ N∗(R). So, for any r ∈ R and t ∈ T 0(R),
Rtra is a nil left ideal of R. Hence, R is a weakly tri normal ring.

Theorem 2.4. R is a weakly tri normal ring if and only if tR
(
1 − tp(t)−1

)
⊆ N∗(R) for any

t ∈ PT (R) and p(t) is the minimal positive integer.

Proof. Suppose R be a weakly tri normal ring. So for all a, r ∈ R and t ∈ PT (R), at = 0,
implies Rtra is a nil left ideal of R. Since every tripotent is potent, so t ∈ PT (R), tp(t) = t
=⇒ t− tp(t) = 0 =⇒

(
1− tp(t)−1

)
t = 0. Since R is a weakly tri normal so, Rtr

(
1− tp(t)−1

)
is

a nil left ideal ofR. Therefore, Rtr
(
1−tp(t)−1

)
⊆ N∗(R) =⇒ tRr

(
1−tp(t)−1

)
⊆ N∗(R) =⇒

tR
(
1− tp(t)−1

)
⊆ N∗(R), as Rr ⊆ R. Clearly converse part also holds.

Theorem 2.5. Weakly tri normal rings are directly finite.

Proof. Let, R be a weakly tri normal ring such that xy = 1, for any x, y ∈ R. Also let, t ∈ T (R)
and t = yx. Then xt = x. Using Theorem 2.1, tR(1−t2) ⊆ N∗(R). Now, 1−t2 = xy(1−t2) =
xty(1 − t2) ∈ N∗(R). This implies that 1 − t2 = 0 =⇒ 1 = t2 = (yx)(yx) = y(xy)x = yx.
Therefore, yx = 1. Hence, R is directly finite.

Corollary 2.6. It is observed that, the converse part of the Theorem 2.5, does not hold in general.

Proof. For n > 2 let the full matrix ring R = Mn×n(R) over the field of real number R is
directly finite. But, R =Mn×n(R) is not a weakly tri normal ring for n > 2.
For n = 2 it can be easily shown. For n = 3,−1 0 0

0 0 0
0 0 0

 be a tripotent element and

0 0 0
0 0 0
0 0 3

 be any element in M3×3(R).
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Then,

0 0 0
0 0 0
0 0 3


−1 0 0

0 0 0
0 0 0

= 0. Now for

0 0 1
0 1 0
1 0 0

 in M3×3(R).

We get,

0 0 1
0 1 0
1 0 0


−1 0 0

0 0 0
0 0 0


0 0 1

0 1 0
1 0 0


0 0 0

0 0 0
0 0 3

 =

 0 0 0
0 0 0
−1 0 0


0 0 3

0 0 0
0 0 0



=

0 0 0
0 0 0
0 0 −3

 6=
0 0 0

0 0 0
0 0 0

 = 0.

Therefore,

0 0 1
0 1 0
1 0 0


−1 0 0

0 0 0
0 0 0


0 0 1

0 1 0
1 0 0


0 0 0

0 0 0
0 0 3

 /∈ N(M3×3(R)).

This shows that, R = M3×3(R) is not a weakly tri normal ring. Similarly the result can be
proved for n > 4.

Corollary 2.7. As a consequence of Corollary 2.6, we get the Corollary 2.7, if R is a weakly tri
normal ring, then the full matrix ring Mn×n(R) is not weakly tri normal for n > 2.

Theorem 2.8. Weakly tri normal rings are left min-abel.

Proof. Let t2 be the left minimal tripotent element of R and a ∈ R. Let, h = at2 − t2at2. If
h 6= 0, then th = 0 and ht2 = h and Rh = Rt. Since R is a weakly tri normal ring, by Theorem
2.1, R(1− t2)rt ⊆ N∗(R) for any r ∈ R. So, Rt = Rh = R(1− t2)h = R(1− t2)ht ⊆ N∗(R),
which is a contradiction. Thus, h = 0, this implies t2 is left semicentral in R, hence R is a left
min-abel.

By [[17], Corollary 2.6(1), (3)], the following corollary follows from Theorem 2.1.

Corollary 2.9. (1) The subrings and finite direct products of weakly tri normal rings are weakly
tri normal.

(2) Let R be a weakly tri normal ring. If t ∈ T (R) such that Rt2R = R then t2 = 1.

Lemma 2.10. Let R be a ring and I be an ideal of R such that R/I is a weakly tri normal ring.
If I ⊆ N(R), then R is a weakly tri normal ring.

Proof. Let, a, t ∈ R and t ∈ T (R) with at = 0. So in R̄ = R/I , āt̄ = 0̄. Since R̄ = R/I is
weakly tri normal so, R̄t̄r̄ā is a nil left ideal of R̄. So, there exists n > 1 for any x̄ ∈ R̄ such that
(x̄t̄r̄ā)n = 0̄. Thus, (xtra)n ∈ I , since I ⊆ N(R), there exists m > 1 such that for x ∈ R we
get (xtra)nm = 0. This implies that xtra ∈ N(R) for all x ∈ R. Hence Rtra is a nil left ideal
of R for all r ∈ R. So R is a weakly tri normal ring.

Theorem 2.11. Let S and T be two rings, and M be a (S, T )-bimodule. Let, R =

(
S M

0 T

)
.

Then R is a weakly tri normal ring if and only if S and T are weakly tri normal.

Proof. If R is a weakly tri normal ring then S and T are also weakly tri normal rings,
by Corollary 2.9.(1).

Conversely, let S and T be weakly tri normal rings. Let I =

(
0 M

0 0

)
. Then I is an ideal of

R and R/I ∼= S × T is a weakly normal ring by Corollary 2.9.(1) and the hypothesis. Since
I ⊆ N(R), by Lemma 2.10, R is a weakly tri normal ring.

The following corollary directly follows from the above Theorem 2.11 and induction on n.

Corollary 2.12. A ring R is weakly tri normal if and only if for any n > 1, the n × n upper
triangular matrix ring Mn×n(R) is a weakly tri normal ring.
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3 Quasi Tri normal rings

In this section some properties of quasi tri normal rings are discussed and a relation between
quasi tri normal ring and weakly tri normal ring is derived.

Theorem 3.1. A ring R is a quasi tri normal if and only if t2R(1− t2)Rt2 = 0, for all t ∈ T (R).

Proof. For any a ∈ R, let h = t2a− t2at2. Then ht2 = (t2a− t2at2)t2 = t2at2− t2at4 = t2at2−
t2at2 = 0, t2h = t2(t2a− t2at2) = t4a− t4at2 = t2a− t2at2 = h and h2 = (t2a− t2at2)(t2a−
t2at2) = 0, as t3 = t. Let R be a quasi tri normal ring, then t2hRt2 = 0 =⇒ hRt2 = 0. Since
h = t2a(1 − t2), so t2a(1 − t2)Rt = hRt2 = 0, which shows that t2a(1 − t2)Rt2 = 0 for all
a ∈ R.

Conversely let, t ∈ T (R) such that at2 = 0, where a ∈ N(R). Then by the hypothesis
t2aRt2 = t2a(1− t2)Rt2 ∈ t2R(1− t2)Rt2. Thus t2aRt2 = 0, as t2R(1− t2)Rt2 = 0. So R is a
quasi tri normal ring.

Theorem 3.2. A ring R is a quasi tri normal if and only if t2R(1+ t2)Rt2 = 0, for all t ∈ T 0(R).

Proof. Let R be a quasi tri normal ring. Since t ∈ T 0(R), then t3 = −t. Let h = t2a + t2at2,
where a ∈ R. Then t2h = −h, ht2 = 0 and h2 = 0, as t3 = −t. Since R is a quasi tri normal
ring. So, t2hRt2 = 0 =⇒ −hRt2 = 0 =⇒ hRt2 = 0. Also, h = t2a(1 + t2) implies that
hRt2 = t2a(1 + e2)Rt2 = 0 =⇒ t2R(1 + t2)Rt2 = 0, for any a ∈ R. Clearly converse also
holds.

Corollary 3.3. (1) A ring R is a quasi tri normal if and only if for any t ∈ T (R), t2yxt2 =
t2yt2xt2, x, y ∈ R.

(2) Let R be a quasi tri normal ring. If t ∈ T (R) is such that RtR = R then t2 = 1.

(3) Semi-abelian rings are quasi tri normal. But the converse does not hold in general.

Proof. (1) Let x, y ∈ R, t ∈ T (R) and t = yx. Let R be a quasi tri normal then by Theorem 3.1,
t2R(1 − t2)Rt2 = 0. Thus, t2y(1 − t2)xt2 = 0 =⇒ t2yxt2 = t2yt2xt2. The converse part is
clear.
(2) Since R is a quasi tri normal, by Theorem 3.1, t2R(1− t2)Rt2 = 0. Since Rt2R = R
so, R(1− t2)R = Rt2R(1− t2)Rt2R = 0. Thus, t2 = 1.
(3) Let, t ∈ T (R) be right semicentral, then t2R(1− t2)Rt2 = t2Rt2(1− t2)Rt2 = 0, and if t is
left semicentral then t2R(1− t2)Rt2 = t2R(1− t2)t2Rt2 = 0, by Theorem 3.1. So, R is a quasi
tri normal ring. For the converse part, let R1 and R2 be semiabelian rings which are not abelian.
If t1 ∈ T (R1) is right semicentral which is not central and t2 ∈ T (R2) be left semicentral which
is not central, then the tripotent (t1, t2) is neither right nor left semicentral in R1 ⊕ R2. Hence
R1 ⊕R2 is not semiabelian but, R1 ⊕R2 is a quasi tri normal ring.

Theorem 3.4. Quasi tri normal rings are directly finite.

Proof. Let x, y ∈ R be such that, xy = 1. Also let t ∈ T (R) and t2 = yx. Then xt2 = xyx = x
and t2y = yxy = y. Let R be a quasi tri normal. Then by Theorem 3.1, t2R(1 − t2)Rt2 = 0.
Thus, t2y(1 − t2)xt2 = 0. Therefore, y(1 − t2)x = 0 =⇒ yx = yt2x. Now, 1 = xyxy =
x(yx)y = x(yt2x)y = xyt2xy = t2 = yx. Thus, xy = 1 =⇒ yx = 1. Hence R is directly
finite.

Theorem 3.5. Quasi tri normal rings are left min-abel.

Proof. Let t2 be the left minimal tripotent element of R and a ∈ R. Let h = at2 − t2at2. If
h 6= 0, then t2h = 0 and ht2 = h and h ∈ N(R). Since, R is a quasi tri normal, this implies
ht2Rt2 = 0 =⇒ hRt2 = 0, a contradiction. Hence h = 0, which implies t2 is left semicentral
in R, hence R is left min-abel.

Theorem 3.6. Quasi tri normal rings are weakly tri normal.
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Proof. Let R be a quasi tri normal ring and t ∈ T 0(R) then t3 = −t. Let h = t2a + t2at2,
for any a ∈ R. Then t2h = −h, ht2 = 0 and h2 = 0, as t3 = −t. Since R is a quasi tri
normal ring, t2hRt2 = 0 =⇒ −hRt2 = 0 =⇒ hRt2 = 0. Also, h = t2a(1 + t2) implies
that hRt2 = t2a(1 + t2)Rt2 = 0 =⇒ t2R(1 + t2)Rt2 = 0, for any a ∈ R ...(1). Now,
Rt2R(1 + t2)Rt2R(1 + t2) = R(t2R(1 + t2)Rt2)R(1 + t2) = 0, by (1). So, Rt2R(1 + t2) is a
nilpotent left ideal of R. Hence R is a weakly tri normal ring.

The following example shows that the converse of Theorem 3.6 does not hold in general.

Let R =

(
F F

0 F

)
, where F is a division ring.

Considering the tripotent t = t11 + t22, i.e, t =

(
t 0
0 0

)
+

(
0 0
0 t

)
, then by calculating it is

observed that t2R(1 − t2)Rt 6= 0, thus R is not a quasi tri normal by Theorem 3.1. But by
Corollary 2.12, R is weakly tri normal ring. Again, by YU[[19], Pro-2.1], R is left quasi-duo
ring, so R is left min-abel. Thus the above example also shows that the converse of the Theorem
3.5 does not hold.

4 Some applications

Generalizing the notion defined by [17], the following concepts are defined using tripotent ele-
ment.

A ring R is called left tripotent reflexive if aRt = 0 =⇒ tRa = 0, for all a ∈ R and
t ∈ T (R) ; A ring R is called strongly left tripotent reflexive if at = 0 =⇒ ta = 0, for all
a ∈ J(R), t ∈ T (R) ; and weakly left tripotent reflexive if at = 0 =⇒ ta = 0, for all a ∈ R
and left semicentral tripotent t of R.

By using the concept of tripotent in the results appeared in [17], the following results are
obtained.

Lemma 4.1. Strongly left tripotent reflexive rings are left tripotent reflexive and left tripotent
reflexive rings are weakly left tripotent reflexive.

Proof. Firstly, R is a strongly left tripotent reflexive ring, then for all a ∈ J(R) and t ∈ T (R),
at = 0 =⇒ ta = 0. Let, aRt = 0 where a ∈ R and t ∈ T (R). If possible let, tRa 6= 0
then there exists b ∈ R such that tba 6= 0. Now, (tbaR)2 = tbaRtbaR = tb(aRt)baR = 0.
Therefore, tba ∈ J(R). Since, R is a strongly left tripotent reflexive ring, So, tba ∈ J(R),
(tba)t = 0 =⇒ t(tba) = 0. So, tba = 0. Hence, tRa = 0 and so R is a left tripotent reflexive
ring. For the second part let R be a left tripotent reflexive ring, so aRt = 0 =⇒ tRa = 0 for
all a ∈ R and t ∈ T (R). Let, at = 0, where t is a left semicentral tripotent element of R. Since,
aRt = atRt = 0 and R is a left tripotent reflexive ring. So, tRa = 0. Thus ta = 0. Hence R is a
weakly left tripotent reflexive ring.

Lemma 4.2. Let R be a weakly tri normal ring and x ∈ R. If x is Von Neumann regular then
x ∈ Rx2 ∩ x2R.

Proof. Let R be a weakly tri normal ring and x ∈ R is Von Neumann regular then there exists
y ∈ R such that x = xyx. Let, t = yx. Then t3 = (yx)3 = yxyxyx = yxyx = yx = t. So,
t3 = t ∈ R is a tripotent and x = xyx = xt, since R is a weakly tri normal ring, so R(1 − t2)x
is a nil left ideal of R. Thus, there exists n > 1 such that (y(1 − t2)x)n = 0, y ∈ R. Since,
y(1−t2)x = yx−yt2x = t−yt2x. So, there exists a ∈ R such that,(y(1−t2)x)n = (t−yt2x)n =
t − at2x = 0 =⇒ t = at2x. Hence, x = xt = xat2x = xa(yx)2x = xayxyxx = xayxx =
xayx2 ∈ Rx2, as x = xyx. Therefore, x ∈ Rx2. Again let, t = xy then x = tx and t3 = (xy)3 =
xyxyxy = xyxy = xy = t, so t3 = t ∈ R is tripotent. So by Theorem 2.1, tR(1− t2) ⊆ N∗(R),
implies that x(1− t2) = tx(1− t2) ∈ tR(1− t2) ⊆ N∗(R). Thus, x(1− t2)y ∈ N∗(R) ; y ∈ R.
So, there exists m > 1 such that, (x(1− t2)y)m = 0. Since, x(1− t2)y = xy− xt2y = t− xt2y.
So, there exists b ∈ R such that, (x(1 − t2)y)m = (t − xt2y)m = t − xt2b = 0 =⇒ t = xt2b.
Therefore, x = tx = xt2bx = x(xy)2bx = xxyxybx = xxybx = x2ybx ∈ x2R =⇒ x ∈ x2R.
Thus, x ∈ Rx2 ∩ x2R.
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Let R be a ring and an element a ∈ R is called π-regular [11], if there exists b ∈ R such that
an = anban ; n > 1. For n = 1, a is called Von Neumann regular. Also, a is called strongly
π-regular, if an = ban+1. In case of n = 1, a is called strongly regular. A ring R is said to be
Von Neumann regular, strongly regular, π-regular and strongly π-regular, if every elements of R
is Von Neumann regular, strongly regular, π-regular and strongly π-regular respectively. A ring
R is said to be unit-regular, if for any a ∈ R such that a = aua, where u ∈ U(R), group of units
of R. Clearly unit regular implies Von Neumann regular.

Lemma 4.3. If R is a weakly tri normal π-regular ring then R is strongly π-regular.

Proof. Let R be a π-regular weakly tri normal ring. So, for any x ∈ R, there exists n > 1 and
for y ∈ R such that xn = xnyxn. This implies that xn is Von Neumann regular. Since, R is a
weakly tri normal ring, so by Lemma 4.2, we have xn ∈ R(xn)2 ⊆ Rx(n+1). This shows that R
is a strongly π-regular ring.

Lemma 4.4. Let R be a quasi tri normal ring and x ∈ R. If x is Von Neumann regular then x is
strongly regular.

Proof. If x is Von Neumann regular, then for some y ∈ R, we get, x = xyx. Let, t ∈ T (R)
then, t = yx, then t3 = yxyxyx = yxyx = yx = t, t2 = yxyx = yx = t and x = xt. Since,
t = t3 = t2tt2 = t2yxt2 = t2yt2xt2, by Corollary 3.3. Thus, t = t2yt2xt2 = tytxt = tyyxxt =
tyyxx = ty2x2. So, we have x = xt = xty2x2 = xy2x2. Similarly, we can show x = x2y2x.
Hence x is strongly regular.

Corollary 4.5. If a is π-regular, then there exists a tripotent, t ∈ T (R) such that ta is Von
Neumann regular.

Proof. If a is π-regular then there exists n > 1, such that an = anuan, where u ∈ U(R),
this implies that an is Von Neumann regular. So by Lemma 4.4, an is strongly regular. Let
t = anu, then t3 = anuanuanu = (anuan)uanu = anuanu = anu = t. Thus, t3 = t, t
is a tripotent. Also, an = tan and t = anu =⇒ an = tu−1 = tv, as v = u−1. Since,
(ta)(an−1u)(ta) = t(an)uta = ttvuta = tt1ta = t3a = ta. This shows that ta is Von Neumann
regular.
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