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Abstract Let R be a commutative ring with nonzero identity and S ⊆ R be a multiplicatively
closed subset of R. In this paper, we introduce and study S-Nil∗-coherent rings which are a
generalization of Nil∗-coherent and S-coherent rings. An R-module M is said to be an S-
Nil∗-coherent R-module if every finitely generated R-submodule of M contained in Nil(R)M
is S-finitely presented; and a ring R is S-Nil∗-coherent if it is S-Nil∗-coherent as R-module.
Besides giving many properties of S-Nil∗-coherent rings, we generalize some results on Nil∗-
coherent rings to S-Nil∗-coherent rings. Furthermore, we characterize Nil∗-coherent rings in
terms of S-Nil∗-coherent rings.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all
modules are nonzero unital. LetR denote such a ring and S denote such a multiplicatively closed
subset of R. Reg(R), denotes the set of regular elements of the ring R; Q(R) := RReg(R), the
total quotient ring of R; Nil(R) denotes the set of nilpotent elements of R (also known as the
nilradical of R). For an ideal I of R and an element a ∈ R, we denote by (I : a) = {x ∈ R |
xa ⊆ I} the conductor of Ra into I . Recall that an R-module M is called a finitely presented R-
module if there is an exact sequence of R-modules F1 → F0 →M → 0 such that both F0 and F1
are finitely generated free R-modules. A finitely generated R-module M is said to be a coherent
R-module if every finitely generated R-submodule of M is a finitely presented R-module; and
a ring R is called a coherent ring if R is coherent as an R-module. An excellent summary of
work done on coherence up to 1989 can be found in [12]. In [2], Alaoui Ismaili et al. introduced
Nil∗-coherent modules over commutative rings as a new generalization of coherent modules.
An R-module M is called a Nil∗-coherent R-module if every finitely generated R-submodule
of Nil(R)M is a finitely presented R-module; and a commutative ring R is said to be a Nil∗-
coherent ring if it is Nil∗-coherent as an R-module, that is, if every finitely generated ideal of
R that is contained in Nil(R) is finitely presented. In [3], Anderson and Dumitrescu introduced
the concept of S-finite modules as follows: an R-module M is called an S-finite module if there
exist a finitely generated R-submodule N of M and s ∈ S such that sM ⊆ N. Recently, in
[7], Bennis and El Hajoui investigated the S-versions of finitely presented modules and coherent
modules which are called, respectively, S-finitely presented modules and S-coherent modules.
AnR-moduleM is called an S-finitely presented module for some multiplicatively closed subset
S of R if there exists an exact sequence of R-modules 0 → K → F → M → 0, where F is a
finitely generated free R-module and K is an S-finite R-module. Moreover, an R-module M is
said to be S-coherent, if it is finitely generated and every finitely generated submodule of M is
S-finitely presented. They showed that the S-coherent rings have a characterization similar to
the classical one given by Chase for coherent rings (see [7, Theorem 3.8]).

Some of our results use the R ∝ M construction. Let R be a ring and M be an R-module.
Then R ∝ M , the trivial (ring) extension of R by M , is the ring whose additive structure is that
of the external direct sum R ⊕M and whose multiplication is defined by (r1,m1)(r2,m2) :=
(r1r2, r1m2 + r2m1) for all r1, r2 ∈ R and all m1,m2 ∈ M . The basic properties of trivial ring
extensions are summarized in the books [12, 13]. Mainly, trivial ring extensions have been useful
for solving many open problems and conjectures in both commutative and non-commutative ring
theory. See for instance [4, 5, 6, 14, 15].
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In present article, we define S-Nil∗-coherent rings as a new generalization of S-coherent and
Nil∗-coherent rings. If R is a ring and S is a multiplicatively closed subset of R, then we say
that an R-module M is S-Nil∗-coherent if every finitely generated R-submodule of Nil(R)M is
S-presented; and a ring R is S-Nil∗-coherent if it is S-Nil∗-coherent as R-module, that is, every
finitely generated ideal of R which is contained in Nil(R) is S-finitely presented. Among many
results of this paper, we give a necessary and sufficient condition for a ring to be S-Nil∗-coherent
(see Theorem 2.6). Also, we characterizeNil∗-coherent rings in terms of S-Nil∗-coherent rings.
Moreover, we study the S-Nil∗-coherence property under homomorphism, direct products and
localization (see Theorem 2.8, Proposition 2.13, Theorem 2.14 and Proposition 2.15). Also, we
study some particular cases of the trivial ring extension and examine conditions under which
R ∝ M is an (S ∝ M)-Nil∗-coherent ring (see Theorem 2.16). Finally, we investigate the
S-Nil∗-coherence property on amalgamated algebras.

2 Main results

We shall begin with the following definition:

Definition 2.1. Let R be a ring and S be a multiplicatively closed subset of R.

(1) An R-module M is said to be an S-Nil∗-coherent if every finitely generated R-submodule
of Nil(R)M is S-presented.

(2) R is called an S-Nil∗-coherent ring if it is S-Nil∗-coherent as R-module.

Remark 2.2. Let R be a ring and S be a multiplicatively closed subset of R. Then the followings
hold:

(1) Every Nil∗-coherent R-module is an S-Nil∗-coherent module. The converse is also true
when S ⊆ U(R).

(2) Every S-coherent R-module is an S-Nil∗-coherent module.

(3) If R is an S-Noetherian ring, then every module over R is an S-Nil∗-coherent module.

The following example shows that the converse of Remark 2.2(1) is not true, in general.

Example 2.3. Let M be a countable direct sum of copies of Z/2Z, R = Z ∝ M and S =
{(2, 0)n | n ∈ N} is a multiplicatively closed subset of R. Then, R is an S-coherent ring and
hence R is an S-Nil∗-coherent ring. However, R is not a Nil∗-coherent. Indeed, let m =
(1̄, 0̄, . . .) ∈M. So, (0 : (0,m)) = 2Z ∝M is not finitely generated.

For each multiplicatively closed subset S ⊆ R, S∗ := {a ∈ R | a
1 is a unit of RS} denotes

the saturation of S. Note that S∗ is a multiplicatively closed subset containing S.

Proposition 2.4. Let R be a ring and M be an R-module. Then the following statements are
satisfied:

(1) If S1 ⊆ S2 are multiplicatively closed subsets of R and M is an S1-Nil∗-coherent module,
then M is an S2-Nil∗-coherent module.

(2) M is an S-Nil∗-coherent module if and only if M is an S∗-Nil∗-coherent module, with S∗

is the saturation of S.

Proof. (1) It is explicit.
(2) If M is an S-Nil∗-coherent module, then M is an S∗-Nil∗-coherent module since S ⊆ S∗.
For the converse, it suffices to prove that every submodule S∗-presented is S-presented. This, in
turn, follows from the fact that any S∗-finite module is an S-finite.

Proposition 2.5. Let R be a ring and S be a multiplicatively closed subset of R such that S ⊆
Reg(R). If M is an S-Nil∗-coherent R-module, then MS is a Nil∗-coherent RS-module.
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Proof. Let L be a finitely generated RS-submodule of MS such that L ⊆ Nil(RS)MS . So, L is
of the form NS , where N is a finitely generated R-submodule of M . Moreover, by hypothesis,
Nil(RS)MS

∼= Nil(R)SMS
∼= (Nil(R)M)S , and hence N ⊆ Nil(R)M . Since M is an S-

Nil∗-coherent R-module, we then have N is an S-finitely presented module. Which proves that
L is a finitely presentedRS-module and thusMS is aNil∗-coherentRS-module, as required.

The following theorem provides a necessary and sufficient condition for a ring to be an S-
Nil∗-coherent ring.

Theorem 2.6. LetR be a ring and S be a multiplicatively closed subset ofR. Then the followings
are equivalent:

(1) R is an S-Nil∗-coherent ring.

(2) (0 : a) is an S-finite ideal of R for each a ∈ Nil(R) and the intersection of any two finitely
generated ideals of R which are contained in Nil(R) is an S-finite ideal.

Proof. Suppose that R is an S-Nil∗-coherent ring. Take an element a ∈ Nil(R). Via the exact
sequence 0 → (0 : a) → R → Ra → 0, we can see that (0 : a) is an S-finite ideal. Now, let
I and J be two finitely generated ideals of R that are contained in Nil(R). Consider the exact
sequence 0→ I ∩ J → I

⊕
J → I + J → 0. Since I + J is an S-finitely presented ideal of R,

we conclude that I ∩ J is an S-finite ideal. Conversely, let I be a finitely generated ideal of R
such that I ⊆ Nil(R). So, I =

∑n
i=1 Rai for some a1, . . . , an ∈ R. By induction on n, we will

prove that I is an S-finitely presented ideal. For n = 1, we are done. For the induction step (with
n > 1), consider the exact sequence 0→ (

∑n−1
i=1 Rai) ∩Ran → (

∑n−1
i=1 Rai)

⊕
Ran → I → 0.

By hypothesis, we have (
∑n−1

i=1 Rai) ∩ Ran is an S-finite ideal. Also, (
∑n−1

i=1 Rai)
⊕
Ran is

an S-finitely presented ideal of R since (
∑n−1

i=1 Rai) and Ran are S-finitely presented ideals.
It follows that I is an S-finitely presented ideal of R by [7, Theorem 2.4]. This completes the
proof.

Let P be a prime ideal of a ring R. We say that an R-module M is a P -finitely presented
if it is (R \ P )-finitely presented. Also, M is called a P -Nil∗-coherent module if M is an
(R \ P )-Nil∗-coherent module.

Theorem 2.7. Let R be a ring and M be an R-module. Then the followings are equivalent:

(1) M is a Nil∗-coherent module.

(2) M is a P -Nil∗-coherent module for each P ∈ Spec(R).

(3) M is an m-Nil∗-coherent module for each m ∈Max(R).

Proof. (1)⇒ (2) By Remark 2.2.
(2)⇒ (3) It is obvious.
To prove (3) ⇒ (1), we only need show that an R-submodule N of M is finitely presented if
and only if N is an m-finitely presented module for each m ∈Max(R). Suppose that N is an m-
finitely presented module for each m ∈Max(R). So, N is a finitely generated module. Consider
the following exact sequence of R-modules 0 → K → Rn → N → 0 for some positive integer
n. By hypothesis, K is an m-finite module for each m ∈Max(R). This yields that K is a finitely
generated module by a similar arguments of [3, Proposition 12]. Hence N is finitely presented.
This completes the proof.

Theorem 2.8. Let R be a ring, S be a multiplicatively closed subset of R and 0→M1
v→M2

u→
M3 → 0 be an exact sequence of R-modules. Then the following statements are satisfied:

(1) Assume that M1 is a finitely generated module such that v(M1) ⊆ Nil(R)M2 and M2 is an
S-Nil∗-coherent module, then M3 is an S-Nil∗-coherent module.

(2) If M1 is an S-coherent module and M3 is a Nil∗-coherent module, then M2 is an S-Nil∗-
coherent module.
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(3) If M2 is an S-Nil∗-coherent module, then so is M1.

Proof. (1) Let N3 be a finitely generated submodule of M such that N3 ⊆ Nil(R)M3. So, there
is an exact sequence of R-modules 0 → T3 → Rm → N3 → 0, where m is a positive integer
and T3 is an R-module. On the other hand, fix an exact sequence 0 → T1 → Rn → M1 → 0,
for some positive integer n and R-module T1. Then, by the Horseshoe Lemma, we obtain the
following exact commutative diagram:

0 0 0y y y
0 −−−−→ T1 −−−−→ T2 −−−−→ T3 −−−−→ 0y y y
0 −−−−→ Rn −−−−→ Rn+m −−−−→ Rm −−−−→ 0y y y
0 −−−−→ M1 −−−−→ u−1(N3) −−−−→ N3 −−−−→ 0y y y

0 0 0
Since u−1(N3) is finitely generated of the S-Nil∗-coherent moduleM2 and u−1(N3) ⊆ u−1(Nil(R)M3) ⊆
Nil(R)u−1(M3) = Nil(R)M2 + ker(u) ⊆ Nil(R)M2, we have that u−1(N3) is S-finitely pre-
sented. So, by [7, Proposition 2.3], T2 is S-finite, and hence T3 is S-finite. Thus N3 is S-finitely
presented.
(2) Take a finitely generated N2 of M2 such that N2 ⊆ Nil(R)M2 and consider the exact se-
quence of R-modules 0 → ker(u|N2) → N2 → u(N2) → 0. Then, u(N2) is finitely generated
R-submodule of Nil(R)M3. As M3 is an Nil∗-coherent module, we get that u(N2) is finitely
presented. Which implies that ker(u|N2) is finitely generated and so ker(u|N2) is S-finitely pre-
sented since M is S-coherent. Therefore, by [7, Theorem 2.4], N2 is S-finitely presented.
(3) It is clear that every submodule of an S-Nil∗-coherent module is also an S-Nil∗-coherent
module. This completes the proof.

Corollary 2.9. Let R be a ring, S be a multiplicatively closed subset of R and I be an ideal of
R such that I ∩ S = ∅. Then the following statements hold:

(1) If R an S-Nil∗-coherent ring and I is a finitely generated ideal such that I ⊆ Nil(R), then
R/I is a π(S)-Nil∗-coherent ring, with π : R→ R/I is the canonical epimorphism.

(2) If I is an S-coherent R-module and R/I is a Nil∗-coherent ring, then R is an S-Nil∗-
coherent ring.

Proof. (1) By applying Theorem 2.8 to the exact sequence 0 → I → R → R/I → 0, we
obtain that R/I is an S-Nil∗-coherent R-module. Now, let J/I be a finitely generated ideal of
R/I such that J/I ⊆ Nil(R/I). We must prove that J/I is a π(S)-finitely presented ideal of
R/I . By [7, Proposition 2.6], it is enough to show that J/I is an S-finitely presented R-module.
This, in turn, follows from the fact that J/I is a finitely generated R-submodule of R/I and
J/I ⊆ Nil(R)(R/I).
(2) Since R/I is a Nil∗-coherent ring, then R/I is a Nil∗-coherent R-module by the proof of
[2, Corollary 2.3]. The result follows from Theorem 2.8 (2).

LetR be a ring and S be a multiplicatively closed subset ofR. We say that anR-moduleM is
an S-pseudo coherent module if every finitely generated submodule ofM is S-finitely presented.

Theorem 2.10. Let R be a ring, S be a multiplicatively closed subset of R and {Mi | 1 ≤ i ≤ n}
be a family of R-modules. Then M :=

⊕n
i=1 Mi is an S-Nil∗-coherent R-module if and only if

Mi is an S-Nil∗-coherent R-module, for each i = 1, . . . , n.
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Proof. The necessity follows from Theorem 2.8(3). For the converse, we will prove the assertion
for n = 2. Take a finitely generated submodule N of M such that N ⊆ Nil(R)M. For i = 1, 2,
note πi : M → Mi the canonical projection and set Ni := πi(N). One can see that N1 and N2
are finitely generated R-submodules of Nil(R)M1 and Nil(R)M2, respectively. Hence, N1 and
N2 are S-pseudo coherent R-modules. By a similar argument of [7, Proposition 3.2], we have
N1
⊕
N2 is an S-pseudo coherentR-module. Thus, N is an S-finitely presentedR-module since

N can be seen as an R-submodule of N1
⊕
N2, as required.

Corollary 2.11. Let R be a ring and S be a multiplicatively closed subset of R. If R admits a
finitely generated faithful S-Nil∗-coherent R-module M , then R is an S-Nil∗-coherent ring.

Proof. Let M :=
∑n

i=1 Rmi and let φ : R →
⊕n

i=1 Rmi be the homomorphism of R-modules,
given by φ(r) =

∑n
i=1 rmi. Since M is faithful, we conclude that φ is injective. Moreover, the

fact thatM is an S-Nil∗-coherentR-module gives thatRmi is an S-Nil∗-coherentR-module for
each 1 ≤ i ≤ n. Hence

⊕n
i=1 Rmi is an S-Nil∗-coherent R-module and so is R, as needed.

Corollary 2.12. Let R be a ring, S be a multiplicatively closed subset of R and M be a finitely
generated R-module. If N is an S-Nil∗-coherent R-module, then so is HomR(M,N).

Proof. SinceM is a finitely generated module, then there exists an exact sequence ofR-modules
0→ K → Rn →M → 0.HenceHomR(M,N) can be seen as anR-submodule ofHomR(Rn, N) ∼=
Nn because Hom(., N) is left-exact. By Theorem 2.10, we have Nn is an S-Nil∗-coherent R-
module and thus HomR(M,N) is also an S-Nil∗-coherent R-module.

Let {Ri | 1 ≤ i ≤ n} be a family of rings andR := R1×· · ·×Rn be the direct product of those
rings. If Si is a multiplicatively closed subset ofRi for each i = 1, . . . , n, then S := S1×· · ·×Sn

is a multiplicatively closed subset of R.

Proposition 2.13. Suppose that Si is a multiplicatively closed subset of a ring Ri for each i =
1, . . . , n. Let R := R1 × · · · ×Rn and S := S1 × · · · × Sn. Then R is an S-Nil∗-coherent ring if
and only if Ri is an Si-Nil∗-coherent ring for each i = 1, . . . , n.

Proof. Suppose that R is an S-Nil∗-coherent ring. Let I1 be a finitely generated ideal of R1
such that I1 ⊆ Nil(R1). Then I := I1 × 0 × · · · × 0 is finitely generated ideal of R such that
I ⊆ Nil(R). By assumption, we get that I is an S-finitely presented ideal of R, which implies
that I1 is an S1-finitely presented ideal of R1. Thus R1 is an S-Nil∗-coherent ring. Similarly, we
prove thatRi is an Si-Nil∗-coherent ring, for i = 2, . . . , n. For the converse, let I := I1×· · ·×In
be a finitely generated ideal of R such that I ⊆ Nil(R)(= Nil(R1) × · · · × Nil(Rn)). Hence,
by hypothesis, Ii is an Si-presented ideal of Ri, for each i = 1, . . . , n. This yields that I is an
S-finitely presented ideal of R. Hence R is an S-Nil∗-coherent ring, as desired.

Let R and T be two rings and φ : R → T be a ring homomorphism making T an R-module.
Recall from [12] thatR is called a retract of T (via φ) if there is a ring homomorphism ψ : T → R
satisfying ψ◦φ = idR; ψ is called a retraction of φ. It will be convenient to view φ as an inclusion
map.

Theorem 2.14. Let R and T be two rings, φ : R → T be a ring homomorphism making R a re-
tract of T and let ψ be a retraction of φ. If T is an S-Nil∗-coherent ring for some multiplicatively
closed subset S of T such that ker(ψ) ∩ S = ∅, then R is a ψ(S)-Nil∗-coherent ring.

Proof. Let I :=
∑n

i=1 Rai be a finitely generated ideal of R such that I ⊆ Nil(R). Since T is
an S-Nil∗-coherent ring, we then have IT is an S-finitely presented ideal of T . Take the exact
sequence of T -modules 0 → ker(u) → Tn u→ IT → 0, where u((ti)i) =

∑n
i=1 tiai. It follows

that ker(u) is an S-finite submodule of Tn. Now, we consider theR-epimorphism ψn : Tn → Rn

given by ψn((ti)i) = (ψ(ti))i. We will prove that ψn(ker(u)) is a ψ(S)-finiteR-module. Indeed,
since ker(u) is an S-finite T -module, then s ker(u) ⊆ J ⊆ ker(u) for some finitely generated
T -submodule J of ker(u) and s ∈ S. Hence ψ(s)ψn(ker(u)) ⊆ ψn(J) ⊆ ψn(ker(u)) and ψn(J)
is a finitely generated R-module, we are done. On the other hand, let v : Rn → I be the
canonical epimorphism of R-modules. One can prove that ker(v) = ψn(ker(u)) and thus I is a
ψ(S)-finitely presented ideal of R, as desired.
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Proposition 2.15. Let R be a ring and V be a multiplicatively closed subset of R such that
V ⊆ Reg(R). If R is an S-Nil∗-coherent ring for some multiplicatively closed subset S of R,
then RV is an SV -coherent ring.

Proof. Let J be a finitely generated ideal of RV such that J ⊆ Nil(RV ). Then there is a finitely
generated R-submodule I of Nil(R) such that J = IV . Since R is an S-Nil∗-coherent ring, then
I is an S-finitely presented ideal. Using [7, Lemma 3.10], we conclude that J = I ⊗R RV is an
SV -finitely presented ideal of RV , as needed.

Theorem 2.16. Let (R,m) be a local ring, S be a multiplicatively closed subset of R and M be
an R-module such that mM = 0. Then R ∝M is an (S ∝M)-Nil∗-coherent ring if and only if
R is an S-Nil∗-coherent ring and M is an S-finite R-module.

Proof. Suppose that R ∝ M is an (S ∝ M)-Nil∗-coherent ring. Let φ : R → R ∝ M be
the usual embedding (given by φ(r) = (r, 0)) and let ψ : R ∝ M → R be the R-module
homomorphism, given by ψ(r,m) = r. Note that ψ ◦ φ = idR, so R is a module retract of
R ∝M (via φ). Hence, by Theorem 2.14, R is an S-Nil∗-coherent ring since S ∝M is disjoint
with ker(ψ) = 0 ∝M.Now, we will prove thatM is an S-finite module overR.We may assume,
without loss of generality, that M 6= 0. Pick a nonzero element m ∈ M . Since R ∝ M is an
(S ∝M)-Nil∗-coherent ring, we then have (0 : (0,m)) = m ∝M is an (S ∝M)-finite ideal of
R ∝ M. So, there exist an element (s,m1) ∈ S ∝ M and a finite subset {(r1, e1), . . . , (rn, en)}
of R ∝ M such that (s,m1)(m ∝ M) ⊆ ( (r1, e1), . . . , (rn, en) ) ⊆ m ∝ M. It follows that
sM ⊆ (e1, . . . , en), and thus M is an S-finite module.
Conversely, let J be a finitely generated ideal of R ∝ M such that J ⊆ Nil(R ∝ M) and let
X := {(ri, ei) | 1 ≤ i ≤ n} be a minimal generating set of J , where ri ∈ Nil(R) and ei ∈ M .
Consider the exact sequence of (R ∝M)-modules:

0→ ker(u)→ (R ∝M)n
u→ J → 0

where u((ai, fi)i) =
∑n

i=1(ai, fi)(ri, ei) =
∑n

i=1(airi, aiei). Moreover, the minimality of X
yields ker(u) = {(ai, fi)1≤i≤n ∈ (R ∝ M)n |

∑n
i=1 airi = 0}. Now, let I :=

∑n
i=1 Rri

and consider the R-module epimorphism v : Rn → I , given by v((bi)i) =
∑n

i=1 biri. Then
ker(v) is an S-finite R-module; that is, s ker(v) ⊆ (x1, . . . , xl) ⊆ ker(v) for some finite sub-
set {x1, . . . , xl} ⊆ R and s ∈ S. Also, we have tM ⊆ (e1, . . . , ep) for some finite subset
{e1, . . . , ep} ⊆M and t ∈ S. Notice that ker(u) = ker(v) ∝M . It follows that

(st, 0) ker(u) ⊆ ((x1, 0), . . . , (xl, 0), (0, e1), . . . , (0, ep)) ⊆ ker(u).

Thus ker(u) is an (S ∝M)-finite ideal of R ∝M . This completes the proof.

Corollary 2.17. Let (R,m) be a local ring and S be a multiplicatively closed subset of R. Then
R is an S-Nil∗-coherent ring if and only if R ∝ R/m is an (S ∝ R/m)-Nil∗-coherent ring.

Next, we explore a different context, namely, the trivial ring extension of a domain by its
quotient field.

Proposition 2.18. Let R be a domain which is not a field, and K its quotient field. Then R ∝ K
is not an S-Nil∗-coherent ring for every multiplicatively closed subset S of R.

Proof. The result follows since (0 : (0, 1)) = 0 ∝ K is not an (S ∝ K)-finite ideal.

Let A and B be two rings, J be an ideal of B and f : A → B be a ring homomorphism. In
this setting, we can consider the following subring of A×B:

A ./f B = {(a, f(a) + j) | a ∈ A and j ∈ J}

called the amalgamation of A with B along J with respect to f . This construction has been
first indroduced and studied D’Anna, Finocchiaro, and Fontana in [8, 9]. In particular, if I is
an ideal of A and idA : A → A is the identity homomorphism on A, then A ./ I = A ./idA

I = {(a, a+ i) | a ∈ R and i ∈ I} is the amalgamated duplication of A along J (introduced and
studied by D’Anna and Fontana in [10]). The basic properties of the amalgamation extension
are summarized in [11].
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Theorem 2.19. Let f : A → B be a ring homomorphism, J be an ideal of B and S be a
multiplicatively closed subset of A such that ker(f) ∩ S = ∅. Let R := A ./f J and S′ :=
{(s, f(s)) | s ∈ S}. Then the following statements hold:

(1) If R is an S′-Nil∗-coherent ring, then A is an S-Nil∗-coherent ring.

(2) If f−1(J) is a finitely generated ideal of A such that f−1(J) ⊆ Nil(A) and R is an S′-
Nil∗-coherent ring, then f(A) + J is an f(S)-Nil∗-coherent ring.

(3) Assume that f−1(J) and J are finitely generated ideals of A and f(A) + J, respectively,
and f−1(J) ⊆ Nil(A). If A is an S-Nil-coherent ring and f(A) + J is a Nil∗-coherent
ring then R is an S′-Nil∗-coherent ring.

Proof. (1) Since A is a module retract of R via φ, where φ : R → A ./f J, a 7→ (a, f(a)). So,
by Theorem 2.14, A is an S-Nil∗-coherent ring.
(2) By assumption, we have f−1(J)×{0} is a finitely generated ideal of R and f−1(J)×{0} ⊆
Nil(R). Therefore, f(A) + J ∼= R/(f−1(J)× {0}) is an f(S)-Nil∗-coherent ring by Corollary
2.9.
(3) Our task is to show that R is an S′-Nil∗-coherent ring. By Corollary 2.9(2), it remains
to prove that f−1(J) × {0} is an S′-coherent R-module. It is clear that f−1(J) × {0} is a
finitely generated R-module. On the other hand, let K be a finitely generated R-submodule of
f−1(J)×{0}. So, K := I ×{0} for some finitely generated ideal I of A. Write I :=

∑n
i=1 Aai,

where ai ∈ I for each i. Consider the natural exact sequence ofA-modules 0→ ker(u)→ An u→
I → 0, where u((αi)i) =

∑n
i=1 αiai. Since I ⊆ Nil(A) and A is an S-Nil∗-coherent ring, we

have that ker(u) is an S-finite A-module. As K =
∑n

i=1 R(ai, 0), we get the following short
exact sequence of R-modules 0→ ker(v)→ Rn v→ K → 0, where v : Rn → K is given by

v((αi, f(αi) + ji)i) =
n∑

i=1

(αi, f(αi) + ji)(ai, 0) =

(
n∑

i=1

αiai, 0

)
.

Note that Rn ∼= An ./f
n

Jn, where fn : An → Bn is defined by fn((αi)i) = (f(αi))i.
Therefore, since ker(u) is an S-finite, then there are s ∈ S and a finitely generated A-module F
such that s ker(u) ⊆ F ⊆ ker(u). Hence (s, f(s))(ker(u) ./f

n

Jn) ⊆ F ./f
n

Jn ⊆ ker(u) ./f
n

Jn. By [1, Lemma 2.4], we have ker(u) ./f
n

Jn is an S′-finite module and so is ker(v) because
ker(v) ∼= ker(u) ./f

n

Jn as R-modules. This completes the proof.
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