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AbstractThe ’Fibonacci sequence’, a unique and acclaimed series of integers, albeit simple
and abstract in principle, plays a significant role in modern mathematics. In this paper, we
introduce the Fibonacci-difference graph Gn and investigate some of its properties. We also
present various bounds for the energy of Gn. Finally we introduce a new variant of graph energy
called the equi-degree energy and obtain its spectrum for Gn whenever n is a Fibonacci number.

1 Introduction

The Fibonacci sequence {Fn}n≥1 is defined by F1 = 1, F2 = 2 and for n ≥ 3, Fn = Fn−1 +
Fn−2. For millennia, the Fibonacci sequence has been a mainstay of mathematical theory due to
its remarkable precision in modeling real-world phenomena and its ability to provide elegant so-
lutions to technical quandaries. The simplistic sequence, whose elements are derived by adding
the previous two terms together, is ostensibly unrivalled in its applicability to patterns in nature,
art, and technical disciplines. It is an invaluable implement utilized in algorithm development
in computer science. Unlike binary search, Fibonacci search divides large arrays into unequal
intervals and uses simple addition and subtraction operations rather than the division operation
used in binary search. As a result, Fibonacci search examines relatively more nearby elements
in subsequent steps, narrowing down data location search. Inspired by the work of A. Arman,
David S. Gunderson, Pak Ching Li’s [[2]] on the Fibonacci-sum graph, in this paper we intro-
duce the Fibonacci-difference graph and analize some of its properties.

For each positive integer n ≥ 1, the Fibonacci-difference graph Gn = (V,E) is a sim-
ple graph defined on the vertex set V = {v1, v2, ..., vn} and the edge set E = {vivj | |i −
j| is a Fibonacci number for i 6= j}.

The graph shown in the figure below is the Fibonacci-difference graph G8.

In this paper the results corresponding to the Fibonacci-difference graph is structured as fol-
lows: In Section 2, some properties of Fibonacci-difference graph related to the vertex degree,
the degree sequence and the connectivity of the graphs are discussed. In Section 3, we derive two
upper bounds and a lower bound for the energy of the Fibonacci-difference graph. In Section
4, the adjacency matrix of the Fibonacci-difference graph which is a toeplitz matrix is studied
by expressing it as a sum of two known matrices and hence a bound for its energy is obtained.
Section 5 investigates a new variant of graph energy called equi-degree energy for the Fibonacci-
difference graph.

2 Properties of the Fibonacci-difference graph

In this section we study certain basic properties of Fibonacci-difference graph.

Proposition 2.1. The Fibonacci-difference graph Gn has a Hamiltonian path for all n ≥ 2.
Moreover it is not unique for n ≥ 3.
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Figure 1. The Fibonacci-difference graph G8

Proof. Since vivi+1 is an edge in Gn for i = 1 to n− 1, we have v1, v2, . . . , vn is a Hamiltonian
path in Gn. For n ≥ 3, v1, v3, v2, v4, v5, . . . , vn is also a Hamiltonian path in Gn.

Proposition 2.2. The Fibonacci-difference graph Gn is complete if and only if n is either 2,3 or
4.

Proof. For n = 2, 3 and 4, Gn is complete. If n ≥ 5, then there is no edge between v1 and
v5. Hence Gn is not complete for n ≥ 5.

Proposition 2.3. For n ≥ 3, in Gn, every vertex has more than one neighbor.

Proof. Note that v2 and v3 are neighbors of v1. For, 2 ≤ i ≤ n− 1, vi−1 and vi+1 are neighbors
of vi. Also, vn−1 and vn−2 are adjacent to vn. Thus each vertex has at least two neighbors.

Proposition 2.4. Let n ≥ 2 and let d be such that Fd ≤ n < Fd+1. Then

deg(vn) =

{
d− 1 if n = Fd,

d if Fd < n < Fd+1.

Proof. In Gn, the vertex vn is adjacent to

vn−F1 , vn−F2 , ..., vn−Fd−1 if n = Fd,

and vn is adjacent to

vn−F1 , vn−F2 , ..., vn−Fd if Fd < n < Fd+1.

Thus

deg(vn) =

{
d− 1 if n = Fd,

d if Fd < n < Fd+1.

Proposition 2.5. For each n ≥ 1, Gn is connected.

Proof. For n = 1, the proof is obvious. Suppose 1 ≤ i < j ≤ n. Then, vi and vj are connected
by the path vi, vi+1, vi+2, ..., vj .

Proposition 2.6. Let n ≥ 2 and d be such that Fd ≤ n < Fd+1. Then inGn, deg(vFd) = d−1+k,
where ‘k’ is the number of Fibonacci numbers less than or equal to n− Fd.
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Proof. The neighbors of vFd are

vFd−F1 , vFd−F2 , ..., vFd−Fd−1 ,

and
vFd+F1 , vFd+F2 , ..., vFd+Fk ,

where Fk is the largest Fibonacci number such that Fk ≤ n−Fd. Thus, deg(vFd) = d−1+k.

Theorem 2.7. Let n ≥ 2 and let k ∈ [1, n]. Let N(0) = 0 and for m ≥ 1, N(m) be the number
of Fibonacci numbers less than or equal to m. Then

deg(vk) = N(k − 1) +N(n− k).

Proof. Suppose 1 ≤ i < k. Then vk is adjacent to vi, if k− i is a Fibonacci number. Thus among
v1, v2, ..., vk−1 there are N(k − 1) vertices adjacent to vk. Suppose k < i ≤ n. Then vk and vi
are adjacent if and only if i − k is a Fibonacci number. Thus among vk+1, vk+2, ..., vn there are
N(n− k) vertices adjacent to vk. Hence the result.

Corollary 2.8. If Fd ≤ n < Fd+1, then

deg(v1) = N(0) +N(n− 1) =

{
d− 1 if n = Fd,

d if n > Fd.

Corollary 2.9.
deg(vk) = deg(vn−k+1).

Proof. We have
deg(vk) = N(k − 1) +N(n− k),

and
deg(vn−k+1) = N(n− k) +N(k − 1).

Hence
deg(vk) = deg(vn−k+1).

This implies

deg(v1) = deg(vn), deg(v2) = deg(vn−1), deg(v3) = deg(vn−2), ....

Corollary 2.10. If n is even, there are at least two vertices having maximum degree ∆ in Gn.

Proof. Suppose n is even. Since N(m) is monotonically increasing function, vn
2

and vn
2 +1 have

maximum degree in Gn. Also, we have

deg(vn
2
) = deg(vn

2 +1)

and hence

∆ = deg
(
vn

2

)
= N

(n
2
− 1
)
+N

(n
2

)
=

{
2N(n2 − 1) if n

2 is not a Fibonacci number,
2N(n2 − 1) + 1 otherwise.

Corollary 2.11. If n is odd, then vn+1
2

has maximum degree in Gn. In fact

∆ = deg(vn+1
2
) = 2N

(
n− 1

2

)
.

Remark 2.12. 1. If n is even, then maximum degree ofGn is even if n
2 is not a Fibonacci number

and maximum degree of Gn is odd if n
2 is a Fibonacci number.

2. If n is odd, then maximum degree of Gn is even.
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Corollary 2.13. Let n ≥ 2 and Fd ≤ n− 1 < Fd+1. Then the number of edges in Gn is given by

|E(Gn)| = nd+ 2− Fd+2.

Proof. By Theorem 2.7, we have

|E(Gn)| =
1
2

n∑
k=1

deg(vk)

=
1
2

n∑
k=1

{N(k − 1) +N(n− k)}

=
1
2
{

n∑
k=1

N(k − 1) +
n∑

k=1

N(n− k)}

=
n−1∑
k=0

N(k) =
n−1∑
k=1

N(k)

= (F2 − F1) + 2(F3 − F2) + 3(F4 − F3) + . . .+ (d− 1)(Fd − Fd−1) + d(n− Fd)

= −F1 − F2 − F3 − · · · − Fd + nd

= −(Fd+2 − 2) + nd

= nd+ 2− Fd+2.

Example 2.14. For n = 5, since F3 < 4 < F4, by above theorem

|E(G5)| = 9.

Theorem 2.15. The degree sequence of GFd , (d ≥ 6) is

(2d− 4)Fd−1−Fd−5 , (2d− 5)2Fd−5 , . . . , (d+ 2)2F2 , (d+ 1)2F1 , d2, (d− 1)2.

Here, αm means degree α appears m times.

Proof. For m = 0, 1, 2, . . . , (d− 4), define

Am = Bm ∪ Cm

where
B0 = {v1}, C0 = {vFd},

and
Bm = {vk | Fm < k ≤ Fm+1},

Cm = {vk|Fd − Fm+1 + 1 ≤ k < Fd − Fm + 1}, (1 ≤ m ≤ d− 4).

Also, define Ad−3 = {vk|Fd−3 + 1 ≤ k ≤ Fd − Fd−3}.
It is easy to check that Bm ∩ Cm = φ for m = 0, 1, 2, ..., (d − 4), Ai ∩ Aj = φ for i 6= j and
V (GFd) =

⋃d−3
m=0 Am.

Note that, |B0| = |C0| = 1, |B1| = |C1| = 1, |Bm| = |Cm| = Fm−1, (2 ≤ m ≤ d− 4).
Hence, |A0| = 2, |A1| = 2, |Am| = |Bm|+ |Cm| = 2Fm−1, (2 ≤ m ≤ d− 4).
Moreover, |Ad−3| = Fd − 2Fd−3 = Fd−1 − Fd−5.

Now, we shall show that degree of each vertex in Am is same.

Case (i): Degree of each vertex in A0 is d− 1.
In fact neighbors of v1 are vF1+1, vF2+1, . . . , vFd−1+1 and hence d(v1) = d − 1. Also d(vFd) =
d(v1) = d− 1 (∵ d(vk) = d(vFd−k+1)).
Thus degree (d− 1) repeat 2 times.
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Case (ii): Degree of each vertex in A1 is d.
The neighbors of v2 are vF1+2, vF2+2, . . . , vFd−1+2, v2−F1 .
So, d(v2) = d. Also, d(vFd−1) = d(v2) = d.
Hence two vertices have degree d.

Case (iii): Degree of each vertex in Am, (2 ≤ m ≤ d− 4) is (d− 1 +m).
Suppose vk ∈ Bm, i.e., Fm < k ≤ Fm+1 ≤ Fd−3.
The neighbors of vk are vF1+k, vF2+k, . . . , vFd−1+k, vk−F1 , vk−F2 , . . . , vk−Fm .
Thus, d(vk) = d − 1 +m. Since d(vk) = d(vFd−k+1), it follows that degree of each vertex in
Cm (2 ≤ m ≤ d − 4) is also (d − 1 + m). Hence (d − 1 + m) repeat |Am| = 2Fm−1 times
(2 ≤ m ≤ d− 4).

Case (iv): Degree of each vertex in Ad−3 is (2d− 4).
Suppose vk ∈ Ad−3. Then, k ∈ [Fd−3 + 1, Fd − Fd−3].
Since [Fd−3 + 1, Fd − Fd−3] = [Fd−3 + 1, Fd−2) ∪ [Fd−2, Fd−1) ∪ [Fd−1, Fd − Fd−3],
k ∈ [Fd−3 + 1, Fd−2) or k ∈ [Fd−2, Fd−1) or k ∈ [Fd−1, Fd − Fd−3].
Suppose k ∈ [Fd−3 + 1, Fd−2). We shall show that d(vk) = 2d− 4.
In fact neighbors of vk are vk+F1 , vk+F2 , . . . , vk+Fd−1 , vk−F1 , vk−F2 , vk−Fd−3 .
Thus d(vk) = 2d− 4.
Similarly in other two cases we can show that d(vk) = 2d − 4. Hence, (2d − 4) repeat
|Ad−3| = Fd − 2Fd−3 = Fd−1 − Fd−5 times.
So, the degree sequence of GFd(d ≥ 6) is

(2d− 4)Fd−1−Fd−5 , (2d− 5)2Fd−5 , . . . , (d+ 2)2F2 , (d+ 1)2F1 , d2, (d− 1)2.

Example 2.16. The degree sequence of GF6 is {87, 72, 62, 52}.
The degree sequence of GF7 is {1011, 94, 82, 72, 62}.

Theorem 2.17. If n ≥ 3, then Gn has no pendent vertices.

Proof. G3 has no pendent vertices. For n ≥ 4 and Fd ≤ n < Fd+1, the minimum degree δ of Gn

is given by

δ = deg(v1) = deg(vn) =

{
d− 1 if n = Fd,

d if n > Fd.

Thus
deg(vk) ∈ {d− 1, d, d+ 1, . . . ,∆},

and
2 ≤ d− 1 ≤ δ.

Thus
deg(vk) 6= 1 for 1 ≤ k ≤ n.

Theorem 2.18. For n ≥ 3, Gn is not bipartite.

Proof. G2 is bipartite. For n ≥ 3, v1v2, v1v3, v2v3 are adjacent in Gn which implies Gn contains
a triangle. Hence Gn is not bipartite.

Proposition 2.19. For n ≥ 3, girth of Gn is 3.

Proof. In Gn(n ≥ 3), (v1, v2, v3) is a cycle. More generally, (vi, vi+1, vi+2) for 1 ≤ i ≤ (n− 2),
is a 3-cycle. Hence, the length of the shortest cycle in Gn is 3.

Theorem 2.20. Let n be a Fibonacci number. Then Gn+1 contains a cycle of length n+ 1.

Proof. Observe that (v1, v2, v3, . . . , vn+1, v1) is a cycle in Gn+1 of length n+ 1.



146 M Deepthi Rao, Chandrashekar Adiga and Anitha N

Theorem 2.21. Let n ≥ 5. If C = (v1, v2, . . . , vm) is a cycle in Fibonacci-difference graph Gn,
then there do exist edges (vivk) and (vjvl) in C with i < j < k < l. That is, there exists crossing
chords inside C.

Proof. IfC = (v1, v2, . . . , vm) is a cycle inGn, (n ≥ 5). Then {v2v4} and {v3v5} are the crossing
chords inside C.

Theorem 2.22. Gn is non outer planar.

Proof. For n ≥ 4, Gn contains a complete graph K4 and also number of edges in Gn is greater
than 2n− 3 for n > 1. Therefore Gn is non outer planar.

3 Bounds for energy of Gn

The eigen structure of the toeplitz matrices is a task and often required in variety of problems,
including trigonometric moment problems, optimum filtering, stochastic processes and signal
processing. The adjacency matrix of the graph Gn denoted by A(Gn) is a symmetric toeplitz
matrix of order n with the elements of the first row as a1, a2, . . . an, where

ai =

{
1 if |i− 1| is a Fibonacci number,
0 otherwise.

The purpose of this section is to obtain bounds for the energy of Gn.
Let λ1 ≥ λ2 ≥ λ3 . . . ≥ λn be the eigenvalues of A(Gn) and m be the number of edges in Gn.
As well known,

n∑
i=1

λi = 0,

n∑
i=1

λ2
i = 2m,

and

detA =
n∏

i=1

λi.

Also, The energy of Gn, denoted by ε(Gn) is defined as

ε(Gn) =
n∑

i=1

|λi|.

This concept was introduced by I. Gutman and extensive research has been done on energy of
graphs. We make use of the following well known lemmas to prove our results.

Lemma 3.1. [5] Let G be a graph with n ≥ 2 vertices and m-edges. Then for 1 ≤ r ≤ n, we
have √

2m(n− 1)
nr

≥ λr ≥

√
2m(r − 1)
n(n− r + 1)

.

Lemma 3.2 ([5]). Let G be a simple graph with n vertices and having degree sequence d1 ≥
d2 ≥ d3 ≥ . . . ≥ dn. Then, λ1 ≥ d1+d2√

2n
.

Lemma 3.3. [5] We have λ1(G) ≤
√

2m− (n− 1)dn + (dn − 1)d1, where d1 and dn are the
maximum and the minimum degrees of the vertices of the graph G respectively.
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Theorem 3.4. For the graph Gn, we have

ε(Gn) ≤
√

(n− 1)(4mn− (d1 + d2)2)

2n
+

√
2m(n− 1)

n
,

where m is the number of edges and d1 and d2 are the first and the second largest degrees
respectively.

Proof. Let
f(x) = x2 − kx+ 1.

The function f(x) is increasing for x ≥ k
2 and decreasing for x < k

2 . So, f(x) ≥ f(k2 ).

x2 +
k2

4
≥ kx.

Or equivalently,

x ≤ x2

k
+
k

4
, k > 0. (3.1)

We have,

ε(Gn) = λ1 +
n∑

i=2

|λi|.

Using (3.1), we have

ε(Gn) ≤ λ1 +
n∑

i=2

|λi|2

k
+

n∑
i=2

k

4
.

Employing Lemma 3.1 and Lemma 3.2 in the above inequality we deduce

ε(Gn) ≤
√

2m(n− 1)
n

+
2m
k
− (d1 + d2)2

2nk
+
k(n− 1)

4
.

Let

g(x) =

√
2m(n− 1)

n
+

2m
x
− (d1 + d2)2

2nx
+
x(n− 1)

4
. (3.2)

Then we can verify that the point at which the function g(x) attains its minimum value is

x =

√
2(4mn− (d1 + d2)2)

n(n− 1)
. (3.3)

On substituting (3.3) in (3.2) we get the required result.

Lemma 3.5. [4] If G is a graph with n vertices with λ1 being the largest eigenvalue, then

λ1(G) ≥
√
d1

where d1 is the highest degree.

Lemma 3.6. [3] If G is a graph with n vertices and the clique number ω, then,

λ1 ≤
√

2m(ω − 1)
ω

.

Theorem 3.7. If Gn is non-singular, then we have

ε(Gn) ≤
√

3m
2

+
1
4
ln


√

3m
2

|detA|

+
m

2
− d1

4
+ 2(n− 1),

where m is the number of edges and d1 is the highest degree in Gn.
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Proof. If Gn is non-singular, we have |λi| > 0 for i = 1, 2, . . . , n. Thus,

|detA| =
n∏

i=1

|λi| > 0.

Also we have
n∑

i=1

λi
2 = 2m.

Now consider the function f(x) = x2 − 4x− lnx, x > 0.
Since f ′(x) = 2x− 4− 1

x , f(x) increases for x ≥ 1 +
√

6
2 and decreases for x < 1 +

√
6

2 . Thus,

f(x) ≥ f

(
1 +

√
6

2

)
.

This implies,

x2 − 4x− lnx ≥

(
1 +

√
6

2

)2

− 4

(
1 +

√
6

2

)
− ln

(
1 +

√
6

2

)
,

which implies,

x ≤ x2

4
− lnx

4
+
ln
(

1 +
√

6
2

)
4

+
2
√

6 + 3
8

,

or

x ≤ x2

4
− lnx

4
+ 2. (3.4)

Using (3.4), Lemma 3.5 and Lemma 3.6 we have,

ε(Gn) = λ1 +
n∑

i=2

|λi|

≤ λ1 +
n∑

i=2

|λi|2

4
−

n∑
i=2

ln|λi|
4

+
n∑

i=2

2

≤
√

3m
2

+
1
4
(2m− λ1

2)−
n∑

i=1

ln|λi|
4

+
ln(λ1)

4
+ 2(n− 1)

≤
√

3m
2

+

(
m

2
− d1

4

)
− ln|detA|

4
+

1
4
ln

(√
3m
2

)
+ 2(n− 1).

Hence the result.

Theorem 3.8. We have

ε(Gn) ≥
2md1 − n

√
2m− (n− 1)dn + (dn − 1)d1

d1
√

2m− (n− 1)dn + (dn − 1)d1 − 1
.

Proof. Let p1, p2, p3, . . . , pn and q1, q2, q3 . . . qn be the real numbers for which there exists real
constants r and R such that for each i, i = 1, 2, 3 . . . n and
rpi ≤ qi ≤ Rpi, the following inequality is valid [7]:

n∑
i=1

q2
i + rR

n∑
i=1

p2
i ≤ (r +R)

n∑
i=1

piqi. (3.5)

Equality in equation (3.5) holds if and only if for at least one i, 1 ≤ i ≤ n, rpi = qi = Rpi.
For pi = 1

d1
, r = −1, R = d1

√
2m− (n− 1)dn + (dn − 1)d1 and qi = |λi| in equation (3.5) we
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get,

n∑
i=1

|λi|2 −
n

d1

√
2m− (n− 1)dn + (dn − 1)d1

≤
(√

2m− (n− 1)dn + (dn − 1)d1 −
1
d1

) n∑
i=1

|λi|.

Using the fact that
∑n

i=1 λ
2
i = 2m, in the above equation, we get

2md1 − n
√

2m− (n− 1)dn + (dn − 1)d1

d1

≤
(√

2m− (n− 1)dn + (dn − 1)d1 −
1
d1

) n∑
i=1

|λi|.

Hence the result.

4 Bounds for the energy of the graph GFd

Graphs with Fibonacci number of vertices are mathematically similar to hypercube graphs.
These graphs support efficient protocol for routing and broadcasting in distributed computa-
tions. They serve as a network topological descriptor in parallel computing. In this section, we
derive a new bound for the energy of the graph GFd .

4.1 Splitting of a toeplitz matrix as the sum of Circulant and Skew Circulant matrices

Using the concept explained in the papers [8] and [6], we split the adjacency matrix A(GFd) as
the sum of a circulant matrix C and a skew-circulant matrix S whose first rows (c1, c2, c3, . . . , cn)
and (c′1, c

′
2, c
′
3, . . . , c

′
n) are given by

c1 = a1 = 0, c2 =
a2 + an

2
, c3 =

a3 + an−1

2
, . . . , cn−1 =

an−1 + a3

2
, cn =

an + a2

2
,

and

c′1 = a1 = 0, c′2 =
a2 − an

2
, c′3 =

a3 − an−1

2
, . . . , c′n−1 =

an−1 − a3

2
, c′n =

an − a2

2
.

Here a1, a2, a3, . . . , an are the first row elements ofA(GFd). If ν1, ν2, ν3, . . . , νn are non-increasing
eigenvalues of C and τ1, τ2, τ3, . . . , τn are the non-increasing eigenvalue of S, then

νj =
n∑

k=1

cke
2πi(j−1)(k−1)

n for j = 1, 2, . . . , n

and

τj =
n∑

k=1

c′ke
πi(2j−1)(k−1)

n for j = 1, 2, . . . , n.

Nikiforov [9] recognized that the energy of the graph is equal to the sum of the singular values
of its adjacency matrix and hence

n∑
j=1

sj(C) =
n∑

j=1

|νj |
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and
n∑

j=1

sj(S) =
n∑

j=1

|τj |

where sj(C), j = 1, 2, 3, . . . , n are the singular values of C and sj(S), j = 1, 2, 3, . . . , n are the
singular values of S respectively. Now we state the Fan’s lemma [10] which we will be using to
prove our main result.

Lemma 4.1. Let X , Y and Z be the square matrices of order n such that Z = X + Y . Then

n∑
i=1

si(Z) ≤
n∑

i=1

si(X) +
n∑

i=1

si(Y ).

Equality holds if and only if there exists an orthogonal matrix P , such that PX and PY are both
positive semi-definite.

Theorem 4.2. If λj for j = 1, 2, 3, . . . , n are the eigenvalues of the toeplitz adjacency matrix
A(GFd) and νj and τj are the eigenvalues of circulant and skew-circulant matrices respectively,
then

ε(GFd) ≤ 2n(d− 1).

Proof. Using Fan’s Lemma 4.1, we have,

n∑
j=1

sj(C + S) ≤
n∑

j=1

sj(C) +
n∑

j=1

sj(S)

n∑
j=1

|λj | ≤
n∑

j=1

|νj |+
n∑

j=1

|τj |

≤
n∑

j=1

(
n∑

k=1

|cke
2πi(j−1)(k−1)

n |+
n∑

k=1

|c′ke
πi(k−1)(2j−1)

n |

)

≤ n

(
n∑

k=1

|ck|+
n∑

k=1

|c′k|

)

= n

(
n∑

k=2

|ak + an−k+2

2
|+

n∑
k=2

|ak − an−k+2

2
|

)

≤ n

(
n∑

k=2

|ak|+
n∑

k=2

|an−k+2|

)

= 2n
n∑

k=2

|ak|

= 2n(d− 1).

Hence the result.

5 Equi-degree energy

Many authors have defined various types of graph energy. Inspired by the work of Color energy
by C. Adiga et al. [1], in this paper we introduce a new graph energy called equi-degree energy
of a graph G. We define the equi-degree adjacency matrix [eij ] , i, j = 1, 2, 3, . . . , n. Where,

eij =

{
1 if d(vi) = d(vj) for i 6= j,

0 otherwise.
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The graph GFd has many vertices with equal degree. We can observe that the equi-degree
matrix is a real symmetric matrix. In the next theorem we shall show that equi-degree eigenvalues
of GFd are all integers.

Theorem 5.1. The equi-degree eigenvalues of GFd graph are Fd−1 − Fd−5 − 1, 2Fd−5 − 1, . . .,
2F2 − 1, 1(3 times), −1(Fd + 2− d) times), and hence the equi-degree energy is given by

ε(EDE(GFd)) = 2(Fd + 2− d).

Proof. Let E = (eij)Fd×Fd where,

eij =

{
1 if d(vi) = d(vj) for i 6= j,

0 otherwise.

The rows of E − λI are as follows:
R1 = (e11, e12, . . . , e1Fd), where

e1j =


−λ if j = 1,
1 if j = Fd,

0 otherwise.

R2 = (e21, e22, . . . , e2Fd), where

e2j =


−λ if j = 2,
1 if j = Fd − 1,
0 otherwise.

R3 = (e31, e32, . . . , e3Fd), where

e3j =


−λ if j = 3,
1 if j = Fd − 2,
0 otherwise.

Let

Es = {Fs+1, Fs+2, . . . , Fs+1, Fd−Fs+1+1, Fd−Fs+1+2, . . . , Fd−Fs}, for (3 ≤ s ≤ d−4)

and
Ed−3 = {Fd−3 + 1, Fd−3 + 2, . . . , Fd − Fd−3}.

Observe that |Es| = 2Fs−1 for (3 ≤ s ≤ d− 4) and |Ed−3| = Fd−1 − Fd−5.
If m ∈ Es, (3 ≤ s ≤ d− 4), then
Rm = (em1, em2, . . . , emFd) where

emj =


−λ if j = m,

1 if j ∈ Es, j 6= m,

0 otherwise.

If m ∈ Ed−3 then Rm = (em1, em2, . . . , emFd) where

emj =


−λ if j = m,

1 if j ∈ Ed−3, j 6= m,

0 otherwise.

RFd−2 = (0, 0, 1, 0, 0, . . . , 0,−λ, 0, 0),
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RFd−1 = (0, 1, 0, 0, . . . , 0,−λ, 0),
and

RFd = (1, 0, 0, . . . , 0, 0,−λ).
Replacing

R1 by R1 +RFd , R2 by R2 +RFd−1, R3 by R3 +RFd−2,
RF2+1 by RF3+1 +RF3+2 + . . .+RF4 +RFd−F4+1 +RFd−F4+2 + . . .+RFd−F3 ,

...
RFd−4+1 by RFd−4+1 +RFd−4+2 + . . .+RFd−3 +RFd−Fd−3+1 + . . .+RFd−Fd−4 ,

RFd−3+1 by RFd−3+1 +RFd−3+2 + . . .+RFd−Fd−3 ,

and after some simplifications we get

|E − λI| = (1− λ)3(2F2 − 1− λ)(2F3 − 1− λ) . . . (2Fd−5 − 1− λ)(Fd−1 − Fd−5 − 1− λ)|F |

where F is Fd × Fd matrix whose rows are

R′1 = R1 with −λ replaced by 1
R′2 = R2 with −λ replaced by 1
R′3 = R3 with −λ replaced by 1

R′F3+1 = RF3+1 with −λ replaced by 1
R′F4+1 = RF4+1 with −λ replaced by 1

...
R′Fd−4+1 = RFd−4+1 with −λ replaced by 1
R′Fd−3+1 = RFd−3+1 with −λ replaced by 1

and

R′m = Rm if m 6= 1, 2, 3, F3 + 1, F4 + 1, . . . , Fd−3 + 1.

Perform the following row operations on F :

R′Fd → (−R′1) +R′Fd

R′Fd−1 → (−R′2) +R′Fd−1

R′Fd−2 → (−R′3) +R′Fd−2

R′k → (−R′Fs+1) +R′k, k ∈ Es, k 6= Fs + 1, (3 ≤ s ≤ d− 4)

R′Fd−3+2 → (−R′Fd−3+1) +R′Fd−3+2

...

R′Fd−Fd−3
→ (−R′Fd−3+1) +R′Fd−Fd−3

.

After some simplifications we obtain

|F | = (−1− λ)3+(2F2−1)+(2F3−1)+...+(2Fd−5−1)+(Fd−1−Fd−5−1)|C|

= (−1− λ)Fd+2−d|C|,

where C is an upper triangle matrix whose diagonal entries are 1. Hence |C| = 1. Thus equi-
degree specturm of GFd is(

Fd−1 − Fd−5 − 1, 2Fd−5 − 1, 2Fd−4 − 1, . . . , 2F2 − 1, 1, −1
1, 1, 1, . . . , 1, 3, Fd + 2− d

)
.

This completes the proof.
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