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Abstract. Image thresholding is the classical problem in the area of image processing. The
noise of the image usually assume to be Gaussian can be removed using threshold methods,
without disturbing the significant features of the image. One of the important features of the
image is its edge contour, which is well illustrated by the ability to recognize objects from the
drawing that only outlines edges. In this article, we introduced a novel threshold value used
to estimate the true image from its noisy counterpart that considerably avoids the loss of edge
contour. The standard of the image has been derived by peak signal to noise ratio (psnr) and
investigate with the established threshold parameters.

1 Introduction

De-noising of an image is the process of undoing noise from the image manipulated by the noise
simultaneously keeping the significant features of the image. The most important feature of the
image is its edge contour. Edge contours are vital visual clues and particularly important for im-
age understanding. The non-linear method is applied as proposed by Donoho and Johnstone[2]
and Donoho [3] to undo the noise. This method is set upon thresholding the wavelet coefficients
derived from Discrete Wavelet Transform (DWT) of the data. Wavelet thresholding rely on the
selection of threshold factor. Since the work of Donoho and Johnstone[2],[3]and [4] there has
been a fair amount of work on the choice of the threshold level([5],[7],[8]). A small threshold
value may yield the image with an edge contour close to the edge contour of the original image
and the resultant may be noisy. The largest threshold value gives a smooth image at the expense
of significant features of the image. In this paper, we are using Orthogonal DWT and we have
described an optimal threshold parameter that keeps the image features as much as possible and
improves the quality of the image.

2 Discrete wavelet transform

Given discrete set of values y = (y1, y2, . . . , yn)T , w =Wy is the DWT of y;W is the n×nDWT
matrix, rely on the choice of the wavelets. The resultant w = (c(0,0), d(0,0), · · · , d(J−1,2j−1))

T

is an empirical wavelet coefficient at level j and position k2−j for j = 1, 2, · · · , J − 1 and
k = 1, 2, · · · , 2j − 1. Since W is orthogonal matrix the inverse discrete wavelet transform
(IDWT) is given by y = WTw. In case of two dimension the data {yij , 1 ≤ i, j ≤ n} form a
square matrix called a data set. In image processing a matrix data set represent a digital image.
The two dimensional DWT can be computed by Mallats pyramid algorithm which applied many
one dimensional DWT (Duabechies 1992, Mallat 1989). The outcome of the transformation is
the diagonal details, horizontal details, vertical details and sub-band approximate coefficients.
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3 Wavelet thresholding

Suppose, an image {xij , 1 ≤ i, j ≤ n}, with N = n × n pixels manipulated by white Gaussian
noise. The noisy image is given by:

yij = xij + εij (3.1)

ε is the iid as N(0, σ2); noise has σ− standard deviation. Now, we have to find xij by undoing
noise, thus mean square error (mse) is minimum.
Here, non-linear estimation is given by

(i) 2-dimensional DWT is applied to noisy data yij and we get the sub-band coefficients. The
orthogonality of the transform assure that the noise is of the Gaussian nature.

(ii) Use of hard or soft threshold rule to obtain the detail coefficients. A particular threshold
λ > 0, have the soft threshold value

δs(w, λ) = Sign(w)(|w| − λ)I(|w| > λ) (3.2)

a “shrink or kill” rule. The hard threshold value is

δH(w, λ) = wI(|w| > λ) (3.3)

a “keep or kill” rule. The thresholded wavelet coefficient attained using the above threshold
rule δ(w, λ) from 3.2 and 3.3 we attain the selective reconstruction.

(iii) The IDWT from thresholded wavelet coefficients applied to rebuild the image to achieve
de-noised image x̂ij .

4 The selection of threshold

The selection of the threshold is important to succeed in the above procedure. Various research
activities have been undertaken on finding the threshold value and some of the threshold val-
ues are particularly defined for images. In this section, we discussed some of the established
thresholding techniques along with the proposed technique.

4.1 Visushrink

A thresholding technique obtained by using the universal threshold put forward by Donoho and
Johnstone [2] is called Visushrink and is presented by λuniv = σ̂

√
2logN ; N cardinality of the

pixels and σ̂ is the estimated standard deviation of the noise. The threshold value is quite large.
Therefore, produces an exceedingly smoothed estimate of the image. It is due to the universal
the threshold is obtained beneath the restriction having larger probability and the estimate must
be smooth as original signal.

4.2 Minimax estimation

Minimax estimation is the thresholding technique which uses the threshold parameter which rely
on the size of data N , given by λM = σ̂λ∗N ; λ∗N is the value of λ attains

Λ
∗
N = inf

λ
sup
d

{Rλ(d)/(N−1 +Ro(d))} (4.1)

with Rλ(d) = E[δλ(d̂)− d]2 and Ro(d) is the ideal risk obtained by oracle. This threshold value
obtained from Donoho and Johnstone [2] approaches the the universal threshold value for large
data and hence resulting to yield smoothed estimate of the image.
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4.3 Sure shrink

Sure shrink is the thresholding technique that uses the threshold obtained by Steins unbiased risk
(Sure)[4]. The level-dependent thresholds are obtained by the different level j of the wavelet
transformation an independent multivariate normal estimation problem. For fixed j, if {yjk}
is the noisy wavelet coefficient obtained by applying DWT to the noisy data. Steins unbiased
estimate of risk to ˆθj,k = δs(yjk, λ) allow an estimate of the risk to the given threshold value λ
and minimized λ offer a selection of the threshold for jth level.

4.4 Proposed estimate

As a try to preserve the edge features of the restored image, we put forward to threshold the
image considering the threshold value

λp = σ̂(
√

2J −
√
J/2) (4.2)

with N = 2J × 2J as the size of data. This threshold value is proposed based on the experi-
ments done on several test images applying soft threshold rule. Soft thresholding applied over
hard thresholding since it offers visually rich image where as the latter gives rough artifacts in
the retrieved image. Since the continuity of the soft threshold the algorithms can be made more
tractable [3]. The proposed threshold value which depends on the size of the data is asymptoti-
cally ideal and easy to use. Compared to the universal and minimax, this threshold value is low
and hence includes some important features in the estimated image. From the above estimation

processes, the noise standard deviation σ̂ is calculated by following equation σ̂ =
median(|Yij |)

0.6745
where Yij belongs to the subband in the first level of decomposition, which gives the diagonal
details of the image [4].

5 Results and discussion

To test the performance we oversee experiments on different Gray scale images of different
sizes like Lena(512× 512pixels), house(256× 256 pixels) and cameraman(128× 128 pixels) at
various noise levels σ = 10, 15, 20, 25 and 30 applying Daubechies least symmetric compactly
supported wavelets with eight vanishing moments at level three [1]. Here, outcomes are related
to sure, minimax and the universal threshold applying soft threshold rule given by equation 3.3.
The aimed trait of the restored image is given by peak signal to noise ratio

psnr = 10log10
2562

mse
. (5.1)

with mse is the mean square error of the original and the de-noised image of size N = n× n =
2J × 2J . The mse is calculated by applying the relation

mse =
1
N

n∑
i=1

n∑
j=1

[x(ij)− x̂(ij)]2. (5.2)

Table 1. compare the sure, universal, minimax and the proposed threshold in terms of psnr with
soft thresholding rule. The resultant gives the psnr of the proposed threshold value is significant
for large value of σ and hence yields a quality reconstruction of the image. Table 2 compare
mse between the edges of the estimated and the original image by above threshold values. For
various values of σ, the proposed threshold value provides far better performance compare to
other threshold parameters. Figure 1 exhibit the comparison of sure, universal, minimax and
proposed threshold values of the image house(256 × 256 pixels) at σ = 25 considering soft
threshold rule. Figure 2 gives the comparison of sure, minimax, universal and proposed threshold
value for the image Lena(512 × 512 pixels) at σ = 25 with soft threshold rule. The proposed
threshold value retains the edge features far better compare to minimax and universal threshold
values.

The above method is also applicable for rectangluar images of various sizes for different
noisy images, here we are using speckle noise. In general, the establishment of threshold values
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Table 1. psnr values for various noise level σ for the images of Lena, house and cameraman of
pixels 512× 512, 256× 256 and 128× 128 respectively as follows.

σ sure minimax universal proposed
10 32.9245 30.0161 28.9805 31.9988
15 30.2887 28.7022 27.8085 30.4680
20 28.2871 27.8163 27.0453 29.3558
25 26.6714 27.1629 26.4963 28.4835
30 25.3169 26.6507 26.0720 27.7699
10 32.7193 29.9687 28.7099 31.8314
15 30.1258 28.6096 27.4867 30.2671
20 28.1358 27.6846 26.6593 29.1214
25 26.5284 26.9731 26.0355 28.2200
30 25.1768 26.3954 25.5420 27.4688
10 30.9705 26.7469 25.0016 28.8998
15 28.6670 25.2444 23.6432 27.1929
20 26.7782 24.1849 22.1050 25.9721
25 25.3254 23.4215 22.7380 25.0500
30 24.1056 22.8037 21.6274 24.2863

Table 2. mse between the edge contours of the original and estimated images of Lena, house
and cameraman for various noise level σ respectively.

σ sure Minimax universal proposed
10 0.0170 0.0285 0.0313 0.0231
15 0.0220 0.0320 0.0339 0.0270
20 0.0266 0.0340 0.0355 0.0303
25 0.0306 0.0351 0.0361 0.0328
30 0.0346 0.0358 0.0367 0.0350
10 0.0145 0.0267 0.0309 0.0203
15 0.0187 0.0306 0.0347 0.0247
20 0.0224 0.0335 0.0386 0.0282
25 0.0257 0.0371 0.0398 0.0305
30 0.0298 0.0383 0.0410 0.0330
10 0.0129 0.0276 0.0356 0.0182
15 0.0177 0.0347 0.0410 0.0240
20 0.0204 0.0386 0.0453 0.0292
25 0.0245 0.0408 0.0502 0.0333
30 0.0275 0.0438 0.0519 0.0369
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Table 3. psnr values for various noise level σ for the boat image pixels 256× 512 as follows.
σ sure Minimax universal proposed
10 31.14 30.92 31.18 29.83
15 30.60 31.08 30.63 30.77
20 30.09 30.72 30.02 31.13
25 29.72 30.26 29.7 31.13
30 29.5 29.93 29.05 30.88

of existing methods depends on number of pixels N which can be given interms of J in the
following relation.

J =
logN

2log2
+
r

2
; 1 ≤ r < J

Table 3. compare the sure, universal, minimax and the proposed threshold in terms of psnr
with soft thresholding rule. The resultant gives the psnr of the proposed threshold value is
significant for large value of σ and hence yields a quality reconstruction of the image. Figure 3.
exhibit the comparison of sure, universal, minimax and proposed threshold values of the image
boat(256× 512 pixels) at σ = 25 considering soft threshold rule.

Figure 1. Images: (a) Original house (a) noisy image with σ = 25(c) de-noised using sure shrink
(d) using universal (e) using minimax (f) using proposed threshold with soft threshold rule.

6 Comments and Conclusion:

This article, provides a novel threshold value obtained to undo the noise from the noise-contaminated
image with the retention of edge features by the use of wavelets. This threshold value has been
applied for undoing the noise from different test images of different sizes and calculated the
peak signal-to-noise ratio of various values of noise level σ to interpret the performance of this
threshold value. By comparing the results we can analyze that the proposed threshold value gives
more improved values applied in visushrink and minimax estimation. We also measured themse
performance between the edges of original and estimated images and found very close to sure
shrink.
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Figure 2. (a) Original edge contour (b)noisy edge contour (c) Edge contour of de-noised image
with σ = 25 using sure shrink (d) Applying universal (e) Applying minimax (f) Applying pro-
posed threshold with soft threshold rule.

Figure 3. Images of boat with soft threshold rule.
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