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Abstract For the class of polynomials P of degree n having all their zeros in |z| ≤ k where
k ≤ 1, N. A. Rather et al. [8] prove that, for each p > 0 and for α ∈ C with |α| ≥ k,

n
(
|α| − k

){∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

DαP (eiθ)

∣∣∣∣∣
p

dθ

} 1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

. (0.1)

In this paper, we extend inequality (0.1) to the class of generalized polar derivative, defined as

Nγ
α

[
P
]
(z) =

n∑
k=1

γkP (z) + (α− z)Gγ
[
P
]
(z)

which is analogous respected to the polar derivative of a polynomial. Moreover, a numerical
example is presented to show obtained results are best possible.

1 Introduction

Let P denote the space of all algebraic polynomials of the form P (z) =
∑n
j=0 ajz

j of degree
n and let P ′(z) be its derivative, Pn denotes the collection of all monic polynomial of degree
n in P . Let Rn+ be the set of all n tuples γ = (γ1, γ2, . . . , γn) of positive real numbers with∑n
k=1 γk = n, the polynomial of degree n − 1, Gγ

[
P
]
(z) =

∑n
k=1 γk

∏n
j=1,j 6=k(z − zj) is

called generalized derivative [10] of P (z) ∈ Pn, where z1, z2, . . . , zn are the zeros of P (z). For
γ = (1, 1, . . . , 1), the generalized derivative Gγ

[
P
]
(z) reduces to ordinary derivative P ′(z).

The problem of the extremal properties of polynomials piqued the interest of famous chemist
Mendeleev in the second half of the nineteenth century, who was looking for the bound of the
derivative of a special type of polynomial. Paul Turán [11] was the first who estimated the
lower bound for the maximum modulus of derived polynomial in terms of maximum modulus
of polynomial. In fact he proved for polynomial P (z) of degree n, if P (z) has all its zeros in
|z| ≤ 1, then

nmax
|z|=1

∣∣P (z)∣∣ ≤ 2 max
|z|=1

∣∣P ′(z)∣∣. (1.1)

In the inequality (1.1), equality will be hold for Inequality P (z) = αzn+β where |α| = |β| 6= 0.
As an extension of (1.1), Malik [5] proved that, if P (z) is a polynomial of degree n having all
its zeros in |z| ≤ k where k ≤ 1, then

nmax
|z|=1

∣∣P (z)∣∣ ≤ (1 + k)max
|z|=1

∣∣P ′(z)∣∣. (1.2)

In the inequality (1.2), equality will be hold for P (z) = (z + k)n, where k ≤ 1. We know that
from the analysis that if P ∈ Pn then for each p > 0

lim
p→∞

{
1

2π

∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

= max
|z|=1
|P (z)|.



162 I. A. Wani1,∗, M. I. Mir2, I. Nazir2 and Ishfaq Dar3

In literature (see [1], [3], [6]) there exists several generalizations on Lp− type inequalities.
Malik [6] obtained a generalization of (1.1) in the sense that the left - hand side of (1.1) is
replaced by a factor involving the integral mean of |P (z)| on |z| = 1. In fact, he proved that, if
P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then for each p > 0

n

{∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣pdθ}

1
p

max
|z|=1

∣∣P ′(z)∣∣. (1.3)

The corresponding extension of (1.2), which is a generalization of (1.3), was obtained by Aziz[1]
who proved that, if P (z) is a polynomial of degree n having all its zeros in |z| ≤ k where k ≤ 1,
then for each p > 0

n

{∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

P ′ (eiθ)

∣∣∣∣∣
p

dθ

} 1
p

≤

{∫ 2π

0

∣∣∣k + eiθ
∣∣∣pdθ}

1
p

. (1.4)

The result is best possible and equality in above inequality holds for P (z) = (αz + βk)n where
|α| = |β|.

The polar derivative of a P (z) of degree n with respect to a point α ∈ C, is given by

DαP (z) = nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n− 1 and it generalizes the ordinary derivative in
the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

As an extension of (1.2) to the polar derivative, Aziz and Rather [2] proved that, if all the zeros
of P (z) lie in |z| ≤ k where k ≤ 1, then for α ∈ C with |α| ≥ k,

n(|α| − k)max
|z|=1

∣∣P (z)∣∣ ≤ (1 + k)max
|z|=1

∣∣DαP (z)
∣∣. (1.5)

As Aziz and Rather [2] extended inequality (1.2) to the polar derivative by similar way N.A.
Rather et al. [8] extended inequality (1.4) to the polar derivative, in fact they proved that if all
the zeros of P (z) lie in |z| ≤ k where k ≤ 1, then for α ∈ C with |α| ≥ k, and for each p > 0,

n
(
|α| − k

){∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

DαP (eiθ)

∣∣∣∣∣
p

dθ

} 1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

. (1.6)

The result is best possible and equality in above inequality holds for P (z) = (z − k)n.

Definition 1.1. Let Rn+ be the set of all n tuples γ = (γ1, γ2, . . . , γn) of positive real numbers
with

∑n
k=1 γk = n, define

Nγ
α

[
P
]
(z) =

n∑
k=1

γkP (z) + (α− z)Gγ
[
P
]
(z)

with γ ∈ Rn+ as the generalized polar derivative of P (z) ∈ Pn. For γ = (1, 1, . . . , 1), then
Nγ
α [P ](z) = DαP (z).

In this direction number of papers has been recently published (see [4], [9],[10] ).

In this paper, we extend the inequality (1.6) to the class of generalized polar derivative of a
polynomial. We begin by proving the following result,
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Theorem 1.2. If P (z) ∈ Pn is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for α ∈ C with |α| ≥ k, and for each p > 0

n
(
|α| − k

){∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

Nγ
αP (eiθ)

∣∣∣∣∣
p

dθ

} 1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

(1.7)

where γ ∈ Rn+.

Remark 1.3. For γ = (1, 1, . . . , 1) in inequality (1.7) we get inequality (1.6).

Using the fact that
∣∣Nγ

α

[
P
] (
eiθ
) ∣∣ ≤ max

|z|=1
|Nγ

α

[
P
] (
eiθ
)
|, 0 ≤ θ < 2π, in (1.7) we obtain

the following result

Corollary 1.4. If P (z) ∈ Pn is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for α ∈ C with |α| ≥ k, and for each p > 0

n
(
|α| − k

){∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

max
|z|=1

∣∣∣Nγ
α

[
P
] (
eiθ
) ∣∣∣ (1.8)

where γ ∈ Rn+.

Next, we obtain a generalization of above Corollary 1 in the sense that maximum of
∣∣∣Nγ

α

[
P
]
(z)
∣∣∣

on the boundary of |z| ≤ 1 on the right side of (1.8) is replaced by a factor involving integral
mean of

∣∣∣Nγ
α

[
P
]
(z)
∣∣∣ on the boundary of |z| ≤ 1. In fact, we prove

Theorem 1.5. If P (z) ∈ Pn is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for α ∈ C with |α| ≥ k, and for each p > 0, s > 1, t > 1, with s−1 + t−1 = 1,

n
(
|α| − k

){∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣psdθ}

1
ps
{∫ 2π

0

∣∣∣Nγ
αP
(
eiθ
) ∣∣∣ptdθ}

1
pt

(1.9)

where γ ∈ Rn+.

2 Computations and analysis

In this section, we present some examples which not only show validity of our results but also
show that obtained results are best possible.

Example 2.1. Let P (z) = z(z2 − 1), clearly all the zeros of P (z) in |z| ≤ 1. Now

Gγ [P ] (z) = γ1(z
2 − 1) + γ2z(z + 1) + γ3z(z − 1).

Taking different values of (γ1, γ2, γ3) we get different polynomials, in particular if we let (γ1, γ2, γ3) =

(2, 1/2, 1/2) such that
∑3
j=1 γj = 3, we have

Gγ [P ] (z) = 3z2 − 2.
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Also by the definition of generalized polar derivative, we have

Nγ
α [P ] (z) =

3∑
j=1

γjP (z) + (α− z)Gγ [P ] (z).

For α = 2, we have

Nγ
α [P ] (z) = 6z2 − z + 4.

Letting p→∞ in Theorem 1.2, for k = 1 the L.H.S and R.H.S of inequality (1.7) take the values
12/11 and 2 respectively in the similar manner the L.H.S and R.H.S take the value 12 and 22. In
both cases the above example shows that inequality (1.7) and inequality (1.9) are preserved.

Next, by the help of an example we show that inequality (1.7) and inequality (1.9) are best
possible.

Example 2.2. Let P (z) = z3 − z2 + z − 1, clearly all the zeros of P (z) lie in closed unit disk
|z| ≤ 1. Now

Gγ [P ] (z) = γ1(z
2 + 1) + γ2(z − 1)(z + i) + γ3(z − 1)(z − i).

Taking different values of (γ1, γ2, γ3) we get different polynomials, in particular if we let (γ1, γ2, γ3) =

(2, 1/2, 1/2) such that
∑3
j=1 γj = 3, we have

Gγ [P ] (z) = 3z2 − z + 2.

Also by the definition of generalized polar derivative, we have

Nγ
α [P ] (z) =

3∑
j=1

γjP (z) + (α− z)Gγ [P ] (z).

For α = 2, we have

Nγ
α [P ] (z) = 4z2 − z + 1.

Letting p → ∞ in Theorem 1.2, for k = 1 both L.H.S and R.H.S in inequality (1.7) take the
same value 2, in the similar manner both L.H.S and R.H.S in inequality (1.9) take the value 12.
Which shows that both inequality (1.7) and inequality (1.9) are sharp.

3 Lemmas

For the proof of main results, we need the following Lemmas.

Lemma 3.1. Every convex set containing all the zeros of P(z) also contains the zerosGγ [P ](z),
for all γ ∈ Rn+.

The Lemma 3.1 is due to N. A. Rather et al. [10].

Next, we need the following Lemma ( See [7, page 36]).

Lemma 3.2. Let S(z) and P (z) be two analytic functions in |z| ≤ 1 such that S(z) is subordi-
nation to the function P (z) and let P (z) be univalent in the same disk. then, for all p > 0

{∫ 2π

0

∣∣∣S (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

.
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Lemma 3.3. If P (z) ∈ Pn, has all its zeros in |z| ≤ k, k ≤ 1, and γ ∈ Rn+ with
n∑
j=1

γj = n,

then for |z| = 1

∣∣∣Gγ[Q](z)∣∣∣ ≤ k∣∣∣nQ(z)− zGγ[Q](z)∣∣∣ (3.1)

where Q(z) = znP
(
1/z
)
.

Proof of lemma 3.3. Since all the zeros of a polynomial P(z) lie in |z| ≤ k, where k ≤ 1, we
can write

P (z) =
n∏
j=1

(z − zj), where |zj | ≤ k, j = 1, 2, . . . , n.

Then, the polynomial F (z) = P (kz) has all its zeros in |z| ≤ 1, for γ ∈ Rn+. We have,

zGγ
[
F
]
(z)

F (z)
=

n∑
j=1

γjz

z − ζj
where ζj =

zj
k

and |ζj | ≤ 1, 1 ≤ k ≤ n. (3.2)

So that for the points eiθ, 0 ≤ θ < 2π, other than the zeros of F (z), we have

Re

{
eiθGγ

[
F
] (
eiθ
)

F (eiθ)

}
= Re

{
n∑
j=1

γje
iθ

eiθ − ζj

}

=
n∑
j=1

γjRe

{
eiθ

eiθ − ζj

}

≥ n

2
.

Which implies

Re

{
eiθGγ

[
F
] (
eiθ
)

nF (eiθ)

}
≥ 1

2
.

For the points eiθ, 0 ≤ θ < 2π, which are not the zeros of F (z), we have∣∣∣∣∣1− eiθGγ
[
F
] (
eiθ
)

nF (eiθ)

∣∣∣∣∣ ≤
∣∣∣∣∣eiθGγ

[
F
] (
eiθ
)

nF (eiθ)

∣∣∣∣∣
equivalently ∣∣∣nF (eiθ)− eiθGγ[F ] (eiθ) ∣∣∣ ≤ ∣∣∣Gγ[F ] (eiθ) ∣∣∣. (3.3)

For the eiθ, 0 ≤ θ < 2π, which are not the zeros of F (z). Since the inequality (3.3) is trivially
true for points eiθ, 0 ≤ θ < 2π, which are zeros of F (z), therefore, it follows that∣∣∣nF (z)− zGγ[F ](z)∣∣∣ ≤ ∣∣∣Gγ[F ](z)∣∣∣ for |z| = 1. (3.4)

Since F (z) = P (kz), it follows from (3.2)

Gγ
[
F
]
(z) = F (z)

n∑
j=1

γj
z − zj

k

= kP (kz)
n∑
j=1

γj
kz − zj

= kGγ
[
P
]
(kz).
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Replacing F (z) by P (kz) and Gγ
[
F
]
(z) by kGγ

[
P
]
(kz) in(3.4), we obtain∣∣∣nP (kz)− zkGγ[P ](kz)∣∣∣ ≤ k∣∣∣Gγ[P ](kz)∣∣∣ for |z| = 1. (3.5)

Also k ≤ 1, we take in particular z = eiθ

k , 0 ≤ θ < 2π in (3.5) to get∣∣∣nP (eiθ)− eiθGγ[P ](eiθ)∣∣∣ ≤ k∣∣∣Gγ[P ] (eiθ) ∣∣∣.
This shows that, ∣∣∣nP (z)− zGγ[P ](z)∣∣∣ ≤ k∣∣∣Gγ[P ](z)∣∣∣ for |z| = 1. (3.6)

Now,

nP (z)− zGγ
[
P
]
(z) =

n∑
j=1

γjP (z)− zGγ
[
P
]
(z)

= P (z)
n∑
j=1

(
γj −

zγj
z − zj

)

= −P (z)
n∑
j=1

(
γjzj
z − zj

)
. (3.7)

Also,

zn−1Gγ
[
Q
](

1/z
)
= −znQ

(
1/z
) n∑
j=1

(
γjzj
z − zj

)
.

= −P (z)
n∑
j=1

(
γjzj
z − zj

)
. (3.8)

Combining (3.7) and (3.8), for |z| = 1 we have∣∣∣Gγ[Q](z)∣∣∣ = ∣∣∣nP (z)− zGγ[P ](z)∣∣∣. (3.9)

Similarly, we get ∣∣∣Gγ[P ](z)∣∣∣ = ∣∣∣nQ(z)− zGγ[Q](z)∣∣∣. (3.10)

From (3.6), (3.9) and (3.10) we get for |z| = 1∣∣∣Gγ[Q](z)∣∣∣ = k
∣∣∣nQ(z)− zGγ[Q](z)∣∣∣.

This proves Lemma 3.3.

4 Proofs

Proof of Theorem 1.2. By the definition of generalized polar derivative and for every α ∈ C,
with |α| ≥ k, and

∑n
k=1 γk = n, we have for |z| = 1

∣∣∣Nγ
α

[
P
]
(z)
∣∣∣ = ∣∣∣ n∑

k=1

γkP (z) + (α− z)Gγ
[
P
]
(z)
∣∣∣
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=
∣∣∣nP (z) + (α− z)Gγ

[
P
]
(z)
∣∣∣

≥
∣∣α∣∣∣∣∣Gγ[P ](z)∣∣∣− ∣∣∣nP (z)− zGγ[P ](z)∣∣∣.

Using inequality (3.6) we obtain,∣∣∣Nγ
α

[
P
]
(z)
∣∣∣ ≥ ∣∣α∣∣∣∣∣Gγ[P ](z)∣∣∣− k∣∣∣Gγ[P ](z)∣∣∣

∣∣∣Nγ
α

[
P
]
(z)
∣∣∣ ≥ (|α| − k)∣∣∣Gγ[P ](z)∣∣∣. (4.1)

Since P (z) has all its zeros in |z| ≤ k, k ≤ 1, it follows by Lemma 3.1 that all the zeros of
Gγ
[
P
]
(z) also lie in |z| ≤ k, k ≤ 1. This shows that the polynomial

zn−1Gγ
[
P
](1
z

)
= nQ(z)− zGγ

[
Q
]
(z)

has all its zeros in |z| ≤ 1
k . Therefore, it follows from Lemma 3.3 that the function

A(z) =
zGγ

[
Q
]
(z)

k
(
nQ(z)− zGγ

[
Q
]
(z)
)

is analytic in |z| ≤ 1 and |A(z)| ≤ 1 for |z| = 1. Furthermore, A(0) = 0. Thus the function
1 + kA(z) is subordinate to the function 1 + kz in |z| ≤ 1. Hence by the application of Lemma
3.2, it follows for each p > 0{∫ 2π

0

∣∣∣1 + kA
(
eiθ
) ∣∣∣pdθ}

1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

. (4.2)

Now

1 + kA(z) =
nQ(z)(

nQ(z)− zGγ
[
Q
]
(z)
) .

Which gives with the help of inequality (3.10)

n
∣∣Q(z)∣∣ = ∣∣1 + kA(z)

∣∣∣∣nQ(z)− zGγ[Q](z)∣∣
=
∣∣1 + kA(z)

∣∣∣∣Gγ[P ](z)∣∣. (4.3)

Since |P (z)| = |Q(z)| for |z| = 1, therefore from (4.3), we get for |z| = 1

n
∣∣P (z)∣∣ = ∣∣1 + kA(z)

∣∣∣∣Gγ[P ](z)∣∣. (4.4)

Combining (4.1) and (4.4), we get for α > k and |z| = 1

n
(
|α| − k

)∣∣P (z)∣∣ ≤ ∣∣1 + kA(z)
∣∣∣∣∣Nγ

α

[
P
]
(z)
∣∣∣. (4.5)

From (4.2) and (4.5), we deduce for each p > 0,

np
(
|α| − k

)p ∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

Nγ
α

[
P
]
(eiθ)

∣∣∣∣∣
p

dθ ≤
∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ.

Which gives,

n
(
|α| − k

){∫ 2π

0

∣∣∣∣∣ P
(
eiθ
)

Nγ
α

[
P
]
(eiθ)

∣∣∣∣∣
p

dθ

} 1
p

≤

{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣pdθ}

1
p

.

This completes the proof of Theorem 1.2.
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Proof of Theorem 1.5. Proceeding as in Theorem A we obtain from (4.5) for each p > 0,

n
(
|α| − k

){∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣∣(1 + kA(eiθ)
)
Nγ
α

[
P
] (
eiθ
) ∣∣∣pdθ}

1
p

.

Using Holder’s inequality for s > 1, t > 1 with s−1 + t−1 = 1

n
(
|α| − k

){∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣1 + kA(eiθ)
∣∣psdθ}

1
ps
{∫ 2π

0

∣∣∣Nγ
αP
(
eiθ
) ∣∣∣ptdθ}

1
pt

.

Using inequality (4.2) with replacing p by ps, we get

n
(
|α| − k

){∫ 2π

0

∣∣∣P (eiθ) ∣∣∣pdθ}
1
p

≤

{∫ 2π

0

∣∣1 + keiθ
∣∣psdθ}

1
ps
{∫ 2π

0

∣∣∣Nγ
α

[
P
] (
eiθ
) ∣∣∣ptdθ}

1
pt

.

This completes the proof of Theorem 1.5.
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