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Abstract For two finitely generated groups with finite commutator subgroup G1 and G2,
homomorphisms between genera of groups G(G1) and G(G2) have been established in the liter-
ature, especially when G2 is some quotient group obtained from G1 or when G2 is some power
of G1. These groups Gi i = 1, 2 are called χ0-groups. For χ0-groups under a given finite group
F , we establish a homomorphism between the restricted genera. In the case, the homomorphism
is surjective, it provides a computational method of the restricted genus..

1 Introduction

The theory of π-localization of groups, where π is a family of primes, appears to have been first
discussed in [7, 8] by Mal’cev and Lazard. In their work emphasis was placed on the explicit
construction of the localization and properties of the localization Gπ of the nilpotent group G
were deduced from the construction, utilizing nilpotent group theory. Baumslag in [1] has given
a comprehensive treatment of the main properties of nilpotent groups as they relate to the prob-
lem of localization. He has explicitly shown in [2] how to constructGπ in the case of an arbitrary
nilpotent groupG and an arbitrary family of primes π. Thus extending the generality of Malcev’s
original construction. Bousfield-Kan [3] exploit this general Mal’cev construction in their study
of completion and localization.
In the 1970s, Hilton and Mislin became interested, through their work on the localization of
nilpotent spaces, in the localization of nilpotent groups. Mislin [10] defines the genus G(N) of
a finitely generated nilpotent group N to be the set of isomorphism classes of finitely generated
nilpotent groups M such that the localizations Mp and Np are isomorphic at every prime p. This
version of genus became known as the Mislin genus, and other very useful variations of this con-
cept came into being. In [6] Hilton and Mislin define an abelian group structure on the genus set
G(N) of a finitely generated nilpotent group N with finite commutator subgroup. For nilpotent
groups which belong to class K (of semidirect products of the form T o Zk, where T is a finite
abelian group and k is a positive integer), many computations of the genus groups appear in the
literature.
The concept of cancellation is closely related to those of genus and localization of groups. When
localizing non-nilpotent groups, it may happen that the kernel of the localizing homomorphism
is bigger than what we would require. So, for a non-nilpotent finitely generated group G with
finite commutator subgroup, rather than considering localization, the idea of the genus is gener-
alized through non-cancellation. For a group G, the non-cancellation set, denoted by χ(G), is
the set of isomorphism classes of groups H such that G×Z ∼= H ×Z. For a nilpotent X0-group
H it was shown by Warfield [14] that χ(H) = G(H), where G(H) is the Mislin genus of H . In
O’Sullivan’s paper [11, theorem 4.2] there are further equivalent definitions for the set χ(G). It
is proved in [11] that for two X0-groups H and G, H ×Z ∼= G×Z if and only if for every finite
set π of primes, we have Hπ

∼= Gπ (the π-localizations are isomorphic). Thus for a X0-group H ,
the set χ(H) coincides with the restricted genus Γf (H) of H .
Aspects of localization as in groups and related categories have been studied in a unified way in
a categorical setting, see [12] for instance. In [9], Mba and Witbooi introduced a category GrpF
of groups under a finite group F . An object of GrpF is a group homomorphism h : F → G, and
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is denoted by (G, h). They defined a group structure on the restricted genus set Γf (h) = χ(h) of
such object. We will χ(G, h) for the notation of this restricted genus. This genus group coincides
with the non-cancellation group χ(G) of the underlying group G, in the case that F is the trivial
group.

Constructing a map that preserves algebraic structure is a natural exercise when dealing with ob-
jects having interesting algebraic structure, and presents computations advantages. For example,
for a semidirect product H = Zm oω Z, the authors in [5] showed that there is a well-defined
surjective homomorphism Γ : χ(H) → χ(Hr) given by [K] → [K × Hr−1] where K is a
group such that K × Z ∼= H × Z and r is a natural number. Thus, in order to compute the
group χ(Hr) one needs only to compute the kernel of the homomorphism Γ. For a fixed mor-
phism h : F → G, the restricted genus χ(G, h)1 is the set of isomorphism classes of morphisms
F → H , which are π-equivalent to h at every finite set of primes π. For a well-defined integer
n depending on G, in [9] an epimorphism ζ : (Z/n)∗/ ± 1 → χ(G, h) is established and it is
shown that there exist natural epimorphisms χ(G, h) → χ(G/h(F )) (provided h(F ) is normal
in G) and χ(G, h) → χ(G, h ◦ i)) (provided i : F0 → F is a morphism), which are compatible
with the various involved maps ζ.
Having such homomorphisms is not always given. In [9], computation methods of χ(G, h) in
the special case G is a semidirect product T oω Zk are used in a very particular example to
provide a concrete computation of χ(G, h). It is used to show that there doesn’t exist any natural
morphism χ(G)→ χ(G/h(F )) under χ(G, h).
In this paper, we focus on the class X0 of all finitely generated groups with finite commuta-
tor subgroup. Given two such groups G1 and G2 for which n1 = n(G1) and n2 = n(G2) are
relatively prime, we aim at establishing a homomorphism between localization genera of such
groups under a given finite group F .
The remainder of this paper is organized as follows:
Section 2 presents some preliminaries and notations. In Section 3, we establish a homomor-
phism χ(G1, h) → χ(G2, h) where (n1, n2) = 1 and provide the conditions under which it
is an epimorphism. Under this condition, it follows from the first Isomorphism Theorem that
χ(G1, h1)/Kerϕ ∼= χ(G2, h2). This gives a computational method to obtain χ(Gi, hi) from
χ(G1, h1) when n1 and ni are relatively prime.

2 Preliminaries and Notation

Let us fix a finite group F (and throughout this chapter F will denote some finite group). Let
GrpF be the category of groups under F . Here we mean that the objects of GrpF are group
homomorphisms ϕ : F → G. Given another object ϕ1 : F → G1, a morphism in GrpF
corresponds to a group homomorphism α : G→ G1 such that α ◦ ϕ = ϕ1.
For a set of primes π, let us regard the π-localization of an object ϕ : F → G as being the object
ϕπ : F → Gπ. Then localization is an endofunctor of GrpF . Let XF be the full subcategory of
X0-groups under F . Thus we can define the restricted genus Γf (ϕ) as the set of all isomorphism
classes [ψ] of objects ψ ∈ XF such that for every finite set π of primes, we have ψπ isomorphic
to ϕπ. If F is the trivial group, then XF can be identified with the class X0 of groups. In line
with [15] and in analogy with X0-groups we shall write Γf (ϕ) = χ(ϕ).
For a specified homomorphism β : E → F , there is a functor β∗ : GrpF → GrpE . Henceforth
we shall also specify the codomain when referring to an object ϕ : F → G of XF , and denote
the object by (G,ϕ).
For any X0-group G, the torsion elements form a characteristic subgroup of G, which we shall
denote by TG.

Remark 2.1. (a) Recall from [15, Section 2] how we assign to a X0-group G a natural number
n(G) : Let n1 be the exponent of TG, let n2 be the exponent of the group Aut(TG), and let n3
be the exponent of the torsion subgroup of the centre of G. Now we take n(G) = n1n2n3. Then
n = n(G) has the property that the subgroup G(n) = 〈gn : g ∈ G〉 of G belongs to the centre of
G and G/G(n) is a finite group.

1For the special case F is trivial (F = ∗), χ(G, ∗ → G) = χ(G)
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(b) Let π = {p : p is a prime and p|n(G)}. Then the short exact sequence
1→ G(n) → G→ G/G(n) → 1
determines G as an extension of a π′-torsion-free finitely generated abelian group G(n) by a
π-torsion group G/G(n). From [4, Proposition 3.1], it follows that the π-localization homomor-
phism G→ Gπ is injective.

(c) In [15] it is shown that χ(G) is a group and there is an epimorphism
ζ : Z∗n/± 1→ χ(G).

(d) Throughout the rest of Section 2, G will denote an infinite X0-group, n = n(G), TG a torsion
subgroup of G, F a finite group and h : F → G a homomorphism.

We note that [15, Theorem 4.3] can be formulated in a stronger form.

Proposition 2.2. Let G be a X0-group and let n = n(G). Let H and L be subgroups of finite
index in G. If the index [G : H] of H in G is relatively prime to n and [G : L] ≡ ±[G : H] mod
n, then there is an isomorphism φ : L→ H such that φ(x) = x whenever x ∈ TG.

Proof. A proof of Proposition 2.2 can be obtained from the proof of [15, Theorem 4.3],
noting that the latter proof starts off with the inclusion map of TG into G and we consistently
work under the inclusions of TG into H , L and G.
Note that if X ≤ G and TG ⊆ X , then h induces a homomorphism hX : F → X . We use this
notation henceforth. 2

Proposition 2.3. [9, Theorem 2.3.] Let (L, l) be an object representing a member of χ(G, h).
Then there exist a subgroup J of G with [G : J ] finite and [G : J ] relatively prime to n, such that
in GrpF the object F → J is isomorphic to (L, l).

Proof. Suppose that (L, l) is an object representing a member of χ(G, h).
Let π be the set consisting of all the prime divisors of n and all the prime divisors of |TG|. Then
there is an isomorphism α : Lπ → Gπ [(Lπ, l′) → (Gπ, h′)] such that the following diagram is
commutative

F
l //

h

��

L // Lπ

α

��
G // Gπ

We observe that Gπ contains an isomorphic copy of TG and every torsion element of Gπ is
contained in this subset, which we shall denote by TG.
Now TG is normal in Gπ and Gπ/TG is a π-local torsion-free abelian group.
Let η : Gπ → Gπ/TG be the canonical epimorphism.
We now set out to find a subgroup M of Gπ which has the following properties :

(1) M ⊇ =(L) ∪ =(G),

(2) [M : =(G)] ≡ 1 modn.

First we choose M0 = 〈=(G) ∪ =(L)〉 < Gπ.
Then r = [M0 : G] < ∞ and r is relatively prime to n. Choose r′ such that (r′, n) = 1 and
r′r ≡ 1 modn.
Let M1 = =[M0 → Gπ/TG] = ηM0. Then M1 is finitely generated and torsion-free. Take
any Z-basis δ1, · · · , δk for M1. Then since Zkπ is π-local and (r′, q) = 1 ∀q ∈ π, we can find
δ0 ∈ Gπ/TG such that r′δ0 = δ1.
Then {δ0, δ2, δ3, · · · , δk} is linearly independent.
Let M2 = 〈δ0, δ2, δ3, · · · , δk〉 and take M = η−1(M2).
It follows that [M : M0] = r′ and therefore [M : G] = [M : M0] · [M0 : G] = r′r ≡ 1 modn.
Then by Theorem 2.2, (M,h′) is isomorphic to (G, h) (here h′ is h followed by the inclusion
G → M ). Furthermore we have a morphism β : (L, l) → (M,h′) such that β : L → M is a
monomorphism. The theorem follows. 2
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Notation Fix any m ∈ N. Let X(m) = {u ∈ N| (u,m) = 1}. Now consider any G ∈ X0 and
let n = n(G). Let Y (G, h) be the set of all u ∈ X(n) for which there exists a subgroup J of G
with [G : J ] = u and such that the object (J, hJ) represents a member of χ(G, h). Here hJ is the
induced homomorphism obtained from h by restriction of the codomain. For each u ∈ Y (G, h),
let us choose a subgroup Gu of G such that TG ⊆ Gu and [G : Gu] = u. Let hu : F → Gu
be the induced homomorphism defined by hu : x 7→ h(x). Now let us denote the isomorphism
class of the object hu of XF by [Gu, hu]. Then we obtain a function ξ : Y (G, h)→ χ(G, h). Let
Y ∗(G, h) denote the image of Y (G, h) in Z∗n.

Proposition 2.4. [9, Theorem 2.5.]

(a) Y ∗(G, h) is a subgroup of Z∗n.

(b) If ξ is a function of the type defined in 2, then ξ induces a (well-defined) function
ζ : Y ∗(G, h)/± 1→ χ(G, h).

(c) The fibre ζ−1[G, h] of ζ over [G, h] is a subgroup of Y ∗(G, h)/± 1.

(d) For any [K, k] ∈ χ(G, h), ζ−1[K, k] is a coset of ζ−1[G, h].

Proof. (a) Since 1 ∈ Y ∗(G, h), the subset in non-empty. It suffices to prove multiplicative
closure. Now given any u, v ∈ Y (G, h), choose a subgroup Gu. We obtain a subgroup of the
form Guv by taking any subgroup K of Gu such that (K,hK) represents a member of χ(Gu, hu)
and with [Gu : K] = v. This proves (a).
(b) This follows from Theorem 2.2
(c) We first prove that ζ−1(G, h) is closed with respect to inversion. Pick any u ∈ X(n) such
that u ∈ ζ−1(G, h), and let v ∈ X(n) be such that uv ≡ ±1 mod n. Let K and L be subgroups
of indices u and v in G. Since (K,hK) ∼= (G, h) there is an isomorphism α : G → K such that
α(x) = x for each x ∈ h(F ).
Let α(L) = J . Now we note that (L, hL) ∼= (J, hJ). On the other hand,
[G : J ] = [G : K] · [K : J ] = u · [G : L] = uv ≡ ±1 mod m,
and thus by Theorem 2.2, we have (J, hJ) ∼= (G, h). Thus (L, hL) ∼= (G, h) and it follows that
v ∈ ζ−1[G, h]. So we have proved that ζ−1(G, h) is closed with respect to inversion. It is easy to
prove that ζ−1(G, h) is multiplicatively closed.
(d) Let u, v ∈ X(n). Suppose that ζ(v) = [G, h], and let K < G be such that [G : K] = u. Now
we prove that ζ(uv) = [K,hK ]. Since ζ(v) = [G, h], there is an embedding α : G → G such
that α(x) = x for each x ∈ h(F ), and such that [G : α(G)] = v.
Let L = α(K). Then [L, hL] = ζ(uv) because
[G : L] = [G : α(G)] · [α(G) : α(K)] = vu. Moreover, [L, hL] = [K,hK ]. Thus vζ−1[G, h] ⊂
ζ−1[K,hK ]. The inclusion vζ−1[G, h] ⊃ ζ−1[K,hK ] can be proved in a similar manner. This
completes the proof of (c). 2

Remark 2.5. Suppose that h : F → G is a group homomorphism and
h(F ) ≤ K ≤ G. If h(F ) � G and h(F ) < K < G, then h(F ) �K. In this case, the quotient
group K/h(F ) is defined and we shall denote it by K̃.

3 Homomorphisms between localization genera

Let G1 and G2 be X0- groups and let h1 : F → G1 and h2 : F → G2 be fixed morphisms for a
given finite group F .
Consider the non-cancellation groups χ(G1, h1) and χ(G2, h2). Let n = n(G) be as defined
above. In the following, we assume that n1 = n(G1) and n2 = n(G2) are relatively prime. We
have the following proposition which is a consequence of Euclid’s Lemma.

Proposition 3.1. Given two integers n, m such that (n,m) = 1, it follows that for any u, k ∈ N,
(nu,mk) = 1, that is any powers of n and m are also relatively prime.
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Notation Let m ∈ N and X(m) = {u ∈ N : (u,m) = 1}. Let Gi be a X0-group and
ni = n(Gi). Let Y (Gi, hi) be the set of all ui ∈ X(ni) for which there exist a subgroup Ji of
Gi with [Gi : Ji] = ui and such that (Ji, hJi) represents a member of χ(Gi, hi), and hJi is the
induced homomorphism obtained from hi by restricting the codomain. Let Y ∗(Gi, hi) be the
image of Y (Gi, hi) in Z∗n, i ∈ {1, 2}.

Definition 3.2. For x ∈ R, two functions f and g can be associated to x such that x = f(x) +
g(x), where f is the floor function defined by f(x) = x (It is a function that returns the largest
integer less than or equal to x) and g known as the fraction part of x is given by g(x) = x (mod 1).

Lemma 3.3. Let x be the floor function. Then: x+y ≤ x+ y The equality holds: x+y = x+ y
if and only if: x mod 1 + y mod 1 < 1

Proof. From the definition of the modulo operation, we have that: x = x+ (x mod 1), from
which we obtain: x+ y = x+ (x mod 1) + y + (y mod 1) = x+ y + (x mod 1) + (y mod 1).
Hence the inequality. The equality holds if and only if: (x mod 1) + (y mod 1) = 0. That is, if
and only if: x mod 1 + y mod 1 < 1 2

Remark 3.4. Note that the description of ui given in Notation 3 guarantees that ui is always
positive. We state the following result which is a consequence of Proposition 3.1.

Proposition 3.5. For each u1 ∈ Y (G1, h1), let u2 ∈ Y (G2, h2) be such that u2 = n
ln(u1)
1 . Then

the association u1 → u2 defines a mapping γ12 : Y (G1, h1)→ Y (G2, h2) such that
γ12(u1) = n

ln(u1)
1 with the property that for w in the domain of γ12,

γ12(u1w) =

{
n
ln(u1w)
1 , if ln(u1) mod 1 + ln(w) mod 1 < 1;
n
ln(u1w)−1
1 , otherwise.

and such that we have the following diagram

Y (G1, h1)
γ12 //

γ1

��

Y (G2, h2)

γ2

��
Y ∗(G1, h1)/± 1

α
// Y ∗(G2, h2)/± 1

and α ◦ γ1 = γ2 ◦ γ12

Proof. The existence and well-definedness of γ12 follows directly from the proof of Proposi-
tion 3.1. 2

Proposition 3.6. Suppose that we have groups A,B and C together with a homomorphism β :
A→ C and a surjective group homomorphism γ : A→ B. If α : B → C is a function (between
sets) such that α ◦ γ = β, then α is a homomorphism. Moreover, if β is surjective, then α is also
surjective.

Remark 3.7. Consider the following diagram:

Y (G1, h1)
γ12 //

γ1

��

Y (G2, h2)

γ2

��
Y ∗(G1, h1)/± 1

α
//

θ

��

Y ∗(G2, h2)/± 1

γ

��
χ(G1, h1)

ϕ
// χ(G2, h2)
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Notice that if ui 6= ±1, ui ∈ Y (Gi, hi), and since the units of Z∗ni
are relatively prime, we

have that γi(ui) = ui. Therefore (α ◦ γ1)(u1) = α(u1) and (γ2 ◦ γ12)(u1) = γ2(γ12(u1)) =

γ2(n
ln(u1)
1 ) = n

ln(u1)
1 . This implies that α ◦ γ1 = γ ◦ γ12, that is the diagram is commutative. we

can therefore conclude that the map α can be defined as α : u 7→ n
ln(u)
1 .

Now we state and proof our main result.

Theorem 3.8. Let α : Y ∗(G1, h1)/ ± 1 → Y ∗(G2, h2)/ ± 1 be as defined above. Then we have
the following:

(i) α is a well-defined homomorphism for which we have the following diagram, with α ◦ γ1 =
γ2 ◦ γ12

Y (G1, h1)
γ12 //

γ1

��

Y (G2, h2)

γ2

��
Y ∗(G1, h1)/± 1

α
// Y ∗(G2, h2)/± 1

(ii) α is the homomorphism such that there exist a unique homomorphism ϕ : χ(G1, h1) →
χ(G2, h2) such that the following diagram is commutative.

Y ∗(G1, h1)/± 1
α

//

θ

��

Y ∗(G2, h2)/± 1

γ

��
χ(G1, h1)

ϕ
// χ(G2, h2)

Proof.

(i) We first prove that α is well-defined.
Let u1 and u2 be in the domain of α such that u1 = u2. Then α(u1) = n

ln(u1)
1 = n

ln(u2)
1 =

α(u2). Next we show that α is a homomorphism, that is , for any u1, u2 in the domain of α,
α(u1u2) = α(u1)α(u2).
Case 1: ln(u1) mod 1 + ln(u2) mod 1 < 1. α(u1u2) = n

ln(u1u2)
1 = n

ln(u1)+ln(u2)
1 =

n
ln(u1)+ln(u2)
1 = n

ln(u1)
1 .n

ln(u2)
1 = α(u1)α(u2). Hence α is a homomorphism.

Case 2: ln(u1) mod 1 + ln(u2) mod 1 ≥ 1
α(u1u2) = n

ln(u1u2)−1
1 = n

ln(u1)+ln(u2)−1
1 = n

(ln(u1)+ln(u2)+1)−1
1 =nln(u1)

1 ·nln(u2)
1 = α(u1)α(u2).

Hence α is a homomorphism.

(ii) Let u ∈ Y ∗(G1, h1)/±1. Then, θ(u) = [Ju, hu] such that [G : Ju] = u and α(u) = n
ln(u)
1 ∈

Y ∗(G2, h2)

γ(n
ln(u)
1 ) = [J

n
ln(u)
1

, h
n

ln(u)
1

] such that [G : J
n

ln(u)
1

] = n
ln(u)
1 .

Therefore ϕ : χ(G1, h1)→ χ(G2, h2) is such that ϕ([Ju, hu]) = [J
n

ln(u)
1

, h
n

ln(u)
1

]

Thus (ϕ ◦ θ)(u) = ϕ(θ(u)) = ϕ([Ju, hu]) = [J
n

ln(u)
1

, h
n

ln(u)
1

] and (γ ◦ α)(u) = γ(α(u)) =

γ(n
ln(u)
1 ) = [J

n
ln(u)
1

, h
n

ln(u)
1

] Lastly, we prove that ϕ is a homomorphism. Consider the fol-
lowing diagram which is the top half of the above diagram.

Y ∗(G1, h1)/± 1
θ //

ϕ◦θ=β
&&

χ(G1, h1)

ϕ

��
χ(G2, h2)
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since ϕ ◦ θ = β, it follows from Proposition 3.6 that ϕ is a homomorphism.

2

Remark 3.9. Given the following diagram,

Y ∗(G1, h1)/± 1
θ //

ϕ◦θ=β
&&

χ(G1, h1)

ϕ

��
χ(G2, h2)

it follows from Proposition 3.6 that if β is surjective then ϕ is surjective. Hence, from the first
Isomorphism Theorem, χ(G1, h1)/Kerϕ ∼= χ(G2, h2). This gives a computational method to
obtain χ(G2, h2) from χ(G1, h1) when n1 and n2 are relatively prime.
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