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Abstract The rings considered in this article are commutative with identity 1 6= 0. In this
paper, we introduce and study commutative ring with Artinian spectrum, that is commutative
ring with descending chain condition on radical ideals. A characterization via prime ideals of
such commutative ring is given. As part of the study, we introduce a topology τc on SpecR for
which the open subsets are exactly the Zariski closed subsets. For instance, it is shown that for a
commutative ring R with Artinian spectrum, (SpecR, τc) is a spectral space if and only if R has
Noetherian spectrum.

1 Introduction

Throughout this paper, all rings are commutative with unit 1 6= 0.
Recall that a commutative ringR is said to have Noetherian spectrum if it satisfies the ascend-

ing chain condition on radical ideals. Many authors studied commutative ring with Noetherian
spectrum. It is well known that a commutative ring R has Noetherian spectrum if and only if
R satisfies the ascending chain condition on prime ideals and each ideal has only finitely many
prime ideals minimal over it. This is a characterization of rings with Noetherian spectrum via
chain of prime ideals. Motivated by this notion, we study its dual notion by introducing the
notion of ring with Artinian spectrum.

A commutative ring R is said to have Artinian spectrum if it satisfies the descending chain
condition on radical ideals. This is equivalent to the condition that SpecR with its Zariski topol-
ogy satisfies the ascending chain condition (respectively, descending chain condition ) on closed
subsets (respectively, open subsets). Note that if R is an Artinian ring then it has Artinian spec-
trum and the converse is false, as in example 4.9. In this paper, we study rings with Artinian
spectrum. A characterization via chain of prime ideals is given, precisely a commutative ring
R has Artinian spectrum if and only if R satisfies descending chain condition for prime ideals
and all antichains of prime ideals are finite. In particular ring with Artinian spectrum has FC
property (i.e. every ideal of R has a finite number of minimal prime divisors). On the other
hand, if R is a commutative ring with Artinian spectrum, then the intersection of any collection
of a Zariski open subsets of SpecR is a Zariski open. This property leads us to introduce a new
topology τc on SpecR for which a subset is open if and only if it is Zariski closed. Finally, we
study the spectral property of SpecR equipped with the new topology τc.

2 Artinian topological space

In this section, we briefly discuss some facts and results in the topological setting.

Definition 2.1. A topological space X is called Artinian if it satisfies the ascending chain condi-
tion for closed subsets; for any sequence F1 ⊆ F2 ⊆ . . . of closed subsets Fi there is an integer
N such that FN = FN+1 = . . . .

Remark 2.2. A topological space is Artinian if and only if one of the following conditions hold.

(i) X satisfies the descending chain condition for open subsets.

(ii) Any nonempty collection of closed subsets has a maximal element.
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(iii) Any nonempty collection of open subsets has a minimal element.

Proposition 2.3. Every subspace of an Artinian space is Artinian.

Proof. Let Y be a subspace of an Artinian space X . Let Y1 ⊆ Y1 ⊆ . . . be an ascending chain
of closed subsets of Y . Write Yi = Y ∩ Fi with Fi closed subset of X . For i > 0, consider the
closed subset F ′i = ∪ij=1Fj and it is easy to see that F ′i ∩ Y = Yi. We have an ascending chain
of closed subsets

F ′1 ⊆ F ′2 ⊆ F ′3 ⊆ . . .

This chain stabilizes by assumption, so F ′N = F ′N+1 = . . . for some N ∈ N∗. Hence YN =
YN+1 = . . ..

Proposition 2.4. Let X be an Artinian space. Any antichain of irreducible closed subsets is
finite.

Proof. Assume thatX has an infinite antichain of irreducible closed subsets. Consider an infinite
sequence Fn, n ∈ N of elements of this antichain. For n ∈ N, set Zn = ∪ni=1Fi. Since Z1 ⊆
Z2 ⊆ . . . is an ascending chain of closed subsets. This chain stabilizes by assumption, so ZN =
ZN+1 = . . . for some N . It follows that FN+1 ⊆ F1 ∪ . . . ∪ FN . Since FN+1 is irreducible it
must be contained in one of the Fi with 1 ≤ i ≤ N , a contradiction.

Corollary 2.5. Let X be an Artinian space.

(i) X has finitely many closed points.

(ii) X has finitely many irreducible components.

Proof. (1) A closed point is an irreducible closed subset, so the set of closed points is an an-
tichain, hence its is finite.

(2) The set of irreducible components is an antichain, so finite.

Proposition 2.6. Let X be an Artinian space. Then X has finitely many connected components,
in particular the connected components are opens.

Proof. Assume the converse. Let Cn, n ∈ N be an infinite sequence of connected components.
Consider the ascending chain of closed subsets Z1 ⊆ Z2 ⊆ . . . where Zn = C1 ∪ . . . ∪ Cn. This
chain stabilizes, so there is an integer N such ZN = ZN+1 = . . ., so CN+1 ⊆ C1 ∪ . . . ∪ CN

which is a contradiction.

3 Rings with Artinian spectrum

We start this section with definition and basic properties of rings with Artinian spectrum.

Definition 3.1. Let R be a commutative ring. We say that R has Artinian spectrum if SpecR
endowed with the Zariski topology is an Artinian space.

Since there is a one to one order reversing correspondence between closed subsets of SpecR
and radical ideals of R, the commutative ring R has Artinian spectrum if and only if it satisfies
the descending chain condition for radical ideals. It is easy to see that an Artinian ring has
Artinian spectrum, but the converse is not true. A discrete valuation ring V is not Artinian and
has Artinian spectrum since SpecV is finite.

Remark 3.2. Let R be a commutative ring. As in the topological setting, we have the following
characterization: R has Artinian spectrum if and only if any collection of radical ideals has a
minimal element.

Proposition 3.3. Let R be a commutative ring with Artinian spectrum.

(i) If I is an ideal of R, then R/I has Artinian spectrum.

(ii) If S is a multiplicative subset of R, then S−1R has Artinian spectrum.
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(iii) R is semi-local, that is, has a finitely many maximal ideals.

(iv) All antichains of prime ideals are finite.

(v) R has the FC property (each ideal has only finitely many prime ideals minimal over it).

Proof. (1) SpecR/I is a closed subset of SpecR, so it is an Artinian space. Thus R/I has
Artinian spectrum.

(2) SpecS−1R is homeomorphic to a subset (endowed with its induced topology) of SpecR,
so it is an Artinian space.

(3) Artinian space has finitely many closed points and the closed points of SpecR are the
maximal ideals of R.

(4) This is a consequence to the fact that an antichain of prime ideals of R correspond to an
antichain of closed irreducible subsets of SpecR.

(5) Let I be an ideal of R. The set of all prime ideals minimal over I is an antichain, so
finite.

Proposition 3.4. Let R be a commutative ring with Artinian spectrum and k be an integer. Then
R has finitely many prime ideals of height less or equal to k.

Proof. Follows from the following remark. For i ≤ k, the collection of prime ideals of height i
is an antichain, so finite.

Corollary 3.5. Let R be a commutative ring with finite Krull dimension. Then R has Artinian
spectrum if and only if it has finitely many prime ideals.

We begin with proving the following lemma in order to characterize rings with Artinian
spectrum via chains of prime ideals.

Lemma 3.6. Let R be a commutative ring. Assume that R satisfies descending chain condition
for prime ideals and all antichains of prime ideals are finite. Then the following statements hold.

(i) For every prime ideals P ( Q, there is a prime ideal Q′ such that P ( Q′ ⊆ Q and
ht(Q′/P ) = 1.

(ii) For a non-maximal ideal P , there is finitely many prime ideals Q containing P such that
ht(Q/P ) = 1.

(iii) R has FC.

(iv) If I is a radical ideal, then there are finitely many radical ideals J containing strictly I ,
such that every radical ideal J ′ containing strictly I contain one of those J .

Proof. (1) Suppose the contrary. In this cases ht(Q/P ) > 1, so there exists a prime ideal Q1
such that P ( Q1 ( Q. By assumption ht(Q1/P ) > 1, there exists a prime ideal Q2 such that
P ( Q2 ( Q1, we do this many times, we construct a strictly descending chain of prime ideals,
a contradiction.
(2) The collection of prime ideals Q containing P such that ht(Q/P ) = 1 is an antichain, hence
finite.
(3) Let I be an ideal of R. The collection of minimal prime ideals over I is an antichain, so
finite.
(4) Let I be a radical ideal ofR. LetQ1, . . . , Qs be the minimal prime ideals over I , in particular
I = Q1 ∩ . . . ∩Qs. For 1 ≤ i ≤ s, set Hi := {P ∈ V (Qi) / ht(P/Qi) = 1} and H := ∪si=1Hi.
Consider C the set of radical ideals of the form (∩P∈SP ) ∩ (∩P∈AP ) where S is a strictly
subset of {Q1, . . . , Qs} and A is a non empty subset of H . It is easy to see that C is finite since
{Q1, . . . , Qs} and H are finite. Let S be a strictly subset of {Q1, . . . , Qs} and A a non empty
subset of H . Since every element P of A contain an ideal Qj , we have I ⊆ ∩P∈AP , on the other
hand, it is easy to see that I ⊆ ∩P∈SP . So I ⊆ (∩P∈SP ) ∩ (∩P∈AP ). There is j such Qj is not
is S, so Qj is not in S ∪A, thus I 6= (∩P∈SP )∩ (∩P∈AP ). It follows that I is strictly contained
in every elements of C. Now let J be a radical ideal containing strictly I . There is 1 ≤ i0 ≤ s
such that Qi0 is not a minimal ideal of J . Denote D the set of minimal prime ideals over J , and
write D = (D ∩ {Q1, . . . , Qs}) ∪ (D \ {Q1, . . . , Qs}) = S ∪ A′ where S = D ∩ {Q1, . . . , Qs}
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and A′ = D \ {Q1, . . . , Qs}. Note that J = ∩P∈DP = (∩P∈SP ) ∩ (∩P∈A′P ) . Since Qi0 is not
in D, S is strictly contained in {Q1, . . . , Qs}. Let P be an element of A′, then I ⊆ P , so there is
a prime ideal Qj such that Qj ⊆ P , and in fact this inclusion is strict. It follows that there exists
a prime ideal P ′ such that Qj ( P ′ ⊆ P with ht(P ′/Qj) = 1. Thus, for each prime ideal P in
A′ there exists a prime ideal P ′ in H such that P ′ ⊆ P and if we denote A the set of those prime
ideals, we get, ∩P ′∈AP

′ ⊆ ∩P∈A′P , hence (∩P∈SP ) ∩ (∩P∈AP ) ⊆ J .

Theorem 3.7. Let R be a commutative ring. Then R has Artinian spectrum if and only if R
satisfies descending chain condition for prime ideals and all antichains of prime ideals are finite.

Proof. Assume that R satisfies descending chain condition for prime ideals and all antichains
of prime ideals are finite. Let . . . ⊆ I2 ⊆ I1 be a descending chain of radical ideals and set
I = ∩n≥1In. If there is an integer N such that IN = I then the chain stabilize. Now assume that
for all n, I ( In. Let J1, . . . , Jm be a radical ideals containing strictly I such that every radical
ideal containing strictly I contain one Ji. For 1 ≤ i ≤ m, consider Ni = {n ≥ 1/ Ji ⊆ In}.
It is easy to see that ∪mi=1Ni = N∗, so one of the sets Ni is infinite, say Ni0 . Now, write
Ni0 = {nk /k ≥ 1} with nk < nk+1. Then Ji0 ⊆ ∩kInk

= I ( Ji0 , a contradiction. The
converse is immediate from Proposition 3.3 and the fact that prime ideal is radical.

Theorem 3.8. Let R be a commutative ring. Then R has Artinian spectrum if and only if any
non empty set of prime ideals has a minimal element and its set of minimal elements if finite.

Proof. Since prime ideals are radical, every non empty set of prime ideals has a minimal element.
The set of minimal elements is an antichain hence finite. Conversely, let Pn be a descending
chain of prime ideals. The set of all prime ideals Pn has a minimal element, say PN . Then
PN = PN+1 = . . .. All elements of an antichain are minimal, so all antichains are finite.

Corollary 3.9. Let R be a commutative ring with Artinian spectrum. If P is a prime ideal of R
and not the only maximal ideal, then ∩Q6⊆PQ 6⊆ P .

Proof. Let P be a prime ideal of R which is not the only maximal ideal. Let X be the set of all
prime ideals Q such that Q 6⊆ P . X is a non empty subset of prime ideals, so it has a minimal
elements. The collection of minimal elements of X is an antichain, hence finite, say Q1, . . . , Qr.
Clearly ∩Q6⊆PQ = Q1 ∩ . . . ∩Qr 6⊆ P since for all i, Qi is not contained in P .

The previous corollary is the avoidance-type property relative to the intersection, that is, for
a commutative ring with Artinian spectrum, if Pi is any family of prime ideals, then for every
prime ideal P , ∩iP ⊆ P implies that Pi ⊆ P for some i.

Now, we close this section with the following corollary regarding the topological aspect of
minimal prime ideals.

Corollary 3.10. Let R be a commutative ring with Artinian spectrum. Every generic point of
SpecR is open.

Proof. Let R be a commutative ring with Artinian spectrum and P be a minimal prime ideal of
R. Since ∩Q6⊆PQ 6⊆ P , there exists f ∈ ∩Q6⊆PQ such that f 6∈ P , so {P} = SpecR − V (f) is
open.

4 Spectral property for SpeccR

We start this section with the following result in order to define a new topology on SpecR.
For a prime ideal P , we denote OP the set OP := {Q ∈ SpecR / Q ⊆ P}.

Proposition 4.1. Let R be a commutative ring with Artinian spectrum and X = SpecR.

(i) Let P ∈ X . Then OP is an open subset of X .

(ii) If U is an open subset of X containing P , then OP ⊆ U .

(iii) Any intersection of open subsets of X is open.
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Proof. (1) If P is the only maximal ideal of R then OP = X is open. For else, let P1, . . . , Pr be
the sets of minimal prime ideals over ∩Q6⊆PQ. Note that P1 ∩ . . . ∩ Pr = ∩Q6⊆PQ 6⊆ P , so each
ideal Pi is not contained in P . Thus X \OP = V (P1 ∩ . . . ∩ Pr). In fact, let Q ∈ X \OP , then
Q 6⊆ P , so P1 ∩ . . . ∩ Pr ⊆ Q, thus Q ∈ V (P1 ∩ . . . ∩ Pr). Conversely, let Q ∈ V (P1 ∩ . . . , Pr),
so P1 ∩ . . . ∩ Pr ⊆ Q, this implies that Pi ⊆ Q for some i. Hence Q 6⊆ P since Pi 6⊆ P .
(2) Let U = X \ V (I) be an open subset of X containing P . If Q ⊆ P then I 6⊆ Q, so Q ∈ U .
(3) Let (Ut)t∈T be a collection of open subsets of X . If ∩t∈TUt is empty, then it is open. If
∩t∈TUt is not empty and P ∈ ∩t∈TUt, then for every t ∈ T , P ∈ Ut, so OP ⊆ Ut. Thus
OP ⊆ ∩t∈TUt.

Remark 4.2. Let R be a commutative ring with Artinian spectrum and P ∈ SpecR. Since
∩Q6⊆PQ 6⊆ P , there exists f ∈ ∩Q6⊆PQ such that f 6∈ P . We get a morphism i : Rf → RP ,
a/fn 7→ i(a/fn) = a/fn. Then i is an isomorphism. In particular, SpecRP and SpecRf are
homoemorphic.

Proof. If a/fn = 0 in RP then there exists s 6∈ P such that sa = 0. If Q′ is a prime ideal
containing s then Q′ 6⊆ P , so ∩Q6⊆PQ ⊆ Q′. Thus, f ∈ Q′. It follows that f ∈

√
(s). Hence

fm = bs for some m ∈ N and b ∈ R. As a consequence fma = bsa = 0, so i is injective.
Let a/s ∈ RP , since s 6∈ P , as in the previous steep, there exists m ∈ N and b ∈ R such that
fm = bs, so a/s = (ba)/(bs) = i(ba/fm).

Let R be a commutative ring with Artinian spectrum. By the previous result any union
of closed subsets of X is a closed subset of X , so there exists a unique topology τc on X
whose open subsets are the the Zariski closed subsets of X . We denote SpeccR to indicate
that SpecR endowed with this topology, and SpeczR to indicate that SpecR endowed with its
Zariski topology.

Proposition 4.3. Let R be a commutative ring with Artinian spectrum. Let P ∈ SpecR.

(i) {P}
c
= OP where {P}

c
is the closer of P in SpeccR.

(ii) P is a closed point of SpeccR if and only if it is a generic point of SpeczR.

Proof. (1) Clearly OP is a closed subset of SpeccR containing P , and if U is any closed subset
of SpeccR containing P , then U is a Zariski open subset containing P . Thus Op ⊆ U . It follows
that {P} = OP .
(2) P is a closed point in SpeccR if and only if {P} = OP if and only if P is a minimal prime
ideal of R.

In the following Theorem, we describe the irreducible closed subsets of SpeccR.

Proposition 4.4. Let R be a commutative ring with Artinian spectrum and U be a closed subset
of SpeccR.

(i) If U is a Zariski quasi-compact open. Then U is an irreducible closed subset of SpeccR if
and only if U = OP for some prime P .

(ii) The irreducible components of SpeccR are OM with M maximal ideal of R.

Proof. (1) We have U = ∪P∈UOP , since U is quasi-compact, it follows that U = OP1∪. . .∪OPr

with P1, . . . , Pr ∈ U . But U is irreducible, which implies that U = OPi
form some 1 ≤ i ≤ r.

The converse is immediate from the fact that OP is the closer of P in SpeccR.
(2) Let M1, . . . ,Ms be the maximal ideals of R. It is easy to see that SpecR = OM1 ∪ . . .∪OMs

.
Let F be an irreducible component of SpeccR, then F = ∪si=1OMi ∩ F , as F is irreducible we
get F = OMi

∩ F for some i, that is F ⊆ OMi
, by maximality it follows that F = OMi

. Let
1 ≤ j ≤ s, since OMj is an irreducible closed subset there is an irreducible component OMi such
that OMj

⊆ OMi
, in particular Mj ∈ OMi

, so Mj ⊆ Mi, by maximality we get Mj =Mi. Thus
OMj

= OMi
is an irreducible component.

Definition 4.5. A topological space is called sober if every irreducible closed subset has a unique
generic point.
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Remark 4.6. Let X be a sober space and let x 6= y in X . Since {x} 6= {y} we have x 6∈ {y} or
y 6∈ {x}. So sober space is a T0 space.

Definition 4.7. A topological space X is spectral if:

(i) X is quasi-compact,

(ii) X has a basis of sets which are quasi-compact and open,

(iii) The quasi-compact open sets of X are closed under finite intersections,

(iv) X is sober.

Proposition 4.8. Let R be a commutative ring with Artinian spectrum.

(i) SpeccR is a Noetherian space, in particular it is quasi-compact.

(ii) SpeccR has a basis of sets which are quasi-compact and open.

(iii) The quasi-compact open sets of SpeccR are closed under finite intersections.

Proof. (1) An descending chain of closed subsets of SpeccR is a descending chain of open
subsets of SpeczR. The result follows from the fact that SpeczR is an Artinian space.
(2) Since SpeccR is Noetherian every open subset is quasi-compact.
(3) Finite intersection of a quasi-compact opens is open so quasi-compact.

Next, for commutative R with Artinian spectrum, we characterize when SpeccR is a spectral
space. We star by an example which illustrate that fact that SpeccR is not necessarily sober.

Example 4.9. Let V be a valuation ring with prime ideals 0 = P0 ( P1 ( . . . ( Pn (
Pn+1 . . . ( M , where M is the maximal ideal and no prime ideal is contained strictly between
Pi and Pi+1. For the construction of a such valuation ring see [9] (exercise 3.3.26). Then V has
Artinian spectrum and SpeccV is not sober.

Proof. Clearly, every antichain has one element, so finite. Let Qm, m ∈ N, be a descending
chain of prime ideals. If for all m, Qm =M then the chain is stationary. So we can assume that
there exists m0 ∈ N such that Qm0 6= M . In this case Qm0 = PN form some N ∈ N. It is easy
to see that Qm ∈ {P0, . . . , PN} for all m ≥ m0. Thus the chain stabilize. Let U = {Pn / n ∈
N} = SpecV \ {M}. Then U is an irreducible closed subset of SpeccV . For every prime ideal
P , U 6= {P}

c
, so U dose not have generic point.

Remark 4.10. Let V as in the previous example. Then V has Artinian spectrum and SpecV is
not a Noetherian spectrum.

Theorem 4.11. Let R be a commutative ring with Artinian spectrum. The following statements
are equivalent:

(i) SpeccR is a spectral space

(ii) R has Noetherian spectrum.

Proof. 1. ⇒ 2. Assume that the sets of a non quasi-compact Zariski opens of SpeczR is not
empty, so it has a minimal element, say U ′ . Let U1, U2 be a Zariski opens such that U ′ = U1∪U2.
Since U ′ is not quasi-compact, U1 or U2 is not quasi-compact. It follows by minimality that
U1 = U ′ or U2 = U ′. Thus U ′ is an irreducible closed subset of SpeccR. Let P be a generic
point of U ′, then U ′ = OP , a contradiction with the fact thatOP is a quasi-compact Zariski open.
2.⇒ 1. Follows from Proposition 4.4.

Theorem 4.12. Let R be a commutative ring with Artinian spectrum. The following statements
are equivalent.

(i) SpeccR is a spectral space.

(ii) R has finite Krull dimension.
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Proof. 1. ⇒ 2. For n ∈ N, set Dn = {P ∈ SpecR /htP ≤ n} and D = ∪n∈NDn. For n ∈ N
and P ∈ Dn, it is easy to see that OP ⊆ Dn, so Dn is a Zariski open. Since SpeccR is spectral,
D is a quasi-compact open. Thus D = Dr for some r ∈ N. Set F = SpecR \D. We will show
that F = ∅. So assume that F is not empty. Since R has Artinian spectrum, F has a minimal
element, say, Q. Let Q0 ( . . . Qs−1 ( Qs = Q be a chain of prime ideals. By minimality of
Q, Qs−1 ∈ D. So s − 1 ≤ r, that is s ≤ r + 1. It follows that htQ ≤ r + 1, thus Q ∈ D, a
contradiction. As a consequence SpecR = D = Dr, hence dimA ≤ r.
2.⇒ 1. If R has finite Krull dimension, then R has finitely many prime ideals, so it has Noethe-
rian spectrum. Thus SpeccR is spectral.

Remark 4.13. If R is a commutative ring with Artinian spectrum, by the Corollary 3.5 we have
SpeccR is spectral if and only if SpecR is finite.

In [8], Hochster showed that a space is spectral if and only if it is homeomorphicto the prime
spectrum SpecR of some commutative ringR with identity (endowed with the Zariski topology).
According to this result, we close this section with the following corollary.

Corollary 4.14. Let R be a commutative ring with Artinian spectrum. The following statements
are equivalent.

(i) SpeccR is a spectral space.

(ii) There is a commutative ringR′ with notherian spectrum such that SpeccR is homeomorphic
to SpeczR

′.
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