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Abstract. In [21], Jhilal and Mahdou defined a commutative unital ring R to
be an (n, d)-perfect ring, if every n-presented module with flat dimension at most
d, has projective dimension at most d, where n and d are nonnegative integers. In
this paper, we examine the transfer of the (n, d)-perfect property to amalgamated
rings in order to present illustrative examples of the commutative rings exhibiting
this property.

1 Introduction

All rings considered below are assumed to be commutative with nonzero identity;
all modules, ring homomorphisms, and inclusions of rings are assumed to be uni-
tal. We devote this opening paragraph to some definitions and a review of some
standard reference documents. Let R be a ring and let M be an R-module. We use
pdR(M) and fdR(M) to denote, respectively, the classical projective and flat di-
mensions of M . gl.dim(R), is the classical global dimension of R and w.gl.dimR
the weak (or flat) global dimension of a ring R. The weak global dimension is the
measure of the flatness of modules over R.

For a nonnegative integer n, an R-module M is called n-presented if there is an
exact sequence of R-modules:

Fn → Fn−1 → . . . F1 → F0 →M → 0

where each Fi is a finitely generated free R-module. In particular, 0-presented and
1-presented R-modules are, respectively, finitely generated and finitely presented
R-module. Consider the λ-dimension of M :

λR(M) = sup {n ≥ 0 : M is n− presented R−module}

If M is not finitely generated we set λR(M) = −1.
In 1994, Costa [7] introduced a doubly filtered set of classes of rings in order to

categorize the structure of non-Noetherian rings: for non-negative integers n and
d, we say that a ring R is an (n, d)-ring if pdR(E) ≤ d for each n-presented R-
module E. An integral domain with this property will be called an (n, d)-domain.
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For example, the (n, 0)-domains are the fields, the (0, 1)-domains are the Dedekind
domains, and the (1, 1)-domains are the Prüfer domains [7].

A ring R is perfect if every flat R-module is a projective R-module. The pi-
oneering work on perfect rings were done by Bass [4] and most of the principal
characterizations of perfect rings are contained in Theorem P from that paper.

In 2005, Enochs, Jenda, and López-Romos extended the notion of perfect rings
to n-perfect rings, such that a ring is called n-perfect if every flat module has a
projective dimension less or equal to n [17].

In 2009, Mahdou and Jhilal defined a commutative unital ringR to be an (n, d)-
perfect ring, if every n-presented module with flat dimension at most d, has pro-
jective dimension at most d, where n and d are nonnegative integers (see [21]). For
every n > d, R is an (n, d)-perfect ring and if R is an (n, d)-perfect ring, then R
is an (n′, d)-perfect ring for every n′ ≥ n. It is well known that if a flat R-module
M is finitely presented, or finitely generated with R either a semilocal ring or an
integral domain, then M is projective [16, Theorem 2]. Thus, if R is a domain or a
semilocal ring, then R is an (n, n)-perfect ring for every n ≥ 0 (see [21]). (n, d)-
rings, perfect rings, and rings with global dimension at most d are (n, d)-perfect. If
R is a Noetherian ring, then R is an (n, d)-perfect ring for every n ≥ 0 and d ≥ 0,
and if R is a coherent ring, then R is an (n, d)-perfect ring for every n ≥ 1 and
d ≥ 0 [21, Proposition 2.3].

In 2010, Jhilal and Mahdou defined a commutative unital ring R to be strongly
n-perfect if any R-module of flat dimension less or equal than n has a projective
dimension less or equal to n [20]. It is trivial to remark that every strongly n-
perfect ring is an n-perfect ring and note that if n = 0 then the strongly 0-perfect
rings are the perfect rings. Strongly d-perfect rings are (n, d)-perfect.

A ring is called an S-ring if every finitely generated flat R-module is projective
(see [26]). The notion of (n, d)-perfect rings is in some way a generalization of the
notion of S-rings. Then R is an S-ring if and only if R is an (0, 0)-perfect ring.

Let n be a nonnegative integer. A ring R is said to be an A(n)− ring if given
any exact sequence 0 → M → E1 → . . . → En of finitely generated R-modules
with M flat and Ei free for each i, then M is projective (see [8, page 139]). A
ring R is an A(n)- ring if and only if R is an (n, n)-perfect ring [21, Theorem 3.2].
Noetherian rings areA(n)-rings for every n ≥ 0 and coherent rings areA(n)- rings
for every n ≥ 1.

Let A be a ring, E be an A-module, and R := A ∝ E be the set of pairs (a, e)
with pairwise addition and multiplication given by (a, e)(b, f) = (ab, af + be).
R is called the trivial ring extension of A by E (also called the idealization of E
over A). Considerable work, part of it summarized in Glaz [18] and Huckaba [19],
has been concerned with trivial ring extensions. These have proven to be useful in
solving many open problems and conjectures for various contexts in (commutative
and noncommutative) ring theory. See for instance [18, 19, 24, 23, 26].

In 2006, M. D’Anna and M. Fontana [12] introduced a new construction, called
amalgamated duplication of a ring A along an A−submodule E of Q(A) (the total
ring of fractions of A) such that E2 ⊆ E. When E2 = {0}, this construction coin-
cides with the trivial ring extension of A by E. Motivations and more applications
of the amalgamated duplication A ./ E of A along an A−submodule E of Q(A)
are discussed in more details, especially in the particular case where E is an ideal
of A, in recent papers, for instance, see [13, 10, 9, 11, 12].

In 2010, D’Anna, Finocchiaro, and Fontana [10] extended the notion of amal-
gamated duplication construction A ./ I of a ring A along an ideal I of A to the
general context of ring homomorphism extensions as follows: Let A and B be
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two rings with identity elements, J be an ideal of B and let f : A → B be a
ring homomorphism. In this setting, we consider the following subring of A× B;
A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J} called the amalgamation of A and
B along J with respect to f . Moreover, other classical constructions (such as the
A+XB[X], A+XB[[X]], and the D +M constructions) can be studied as par-
ticular cases of the amalgamation [10, Examples 2.5 & 2.6] and other classical
constructions such as Nagata’s idealization and the CPI extensions (in the sense
of Boisen and Sheldon [5]) strictly related to it (see [10, Example 2.7 & Remark
2.8]).

In this paper, we examine the transfer of the (n, d)-perfect property to amal-
gamated rings in order to present illustrative examples of the commutative rings
exhibiting this property.

2 Transfer of the (n, d)-perfect property

The main result (Theorem 2.1) examines the property of (n, d)-perfect that the
amalgamation algebra A ./f J might inherit from the ring A for some classes of
ideals J and homomorphisms f , and hence generates new families of (0, 1)-perfect
rings and (1, 0)-perfect rings which are not (0, 0)-perfect rings, and new examples
of (1, 1)-perfect domains which are not (0, 1)-perfect domains.

Theorem 2.1. Let f : A→ B be a ring homomorphism and J be a proper ideal of
B. Then:

(i) If A ./f J is an (n, d)-perfect ring, then A is an (n, d)-perfect ring.

(ii) Assume that f−1(J) and J are pure ideals of A and f(A) + J respectively
and λA(f−1(J)) ≥ n− 1. If A ./f J is an (n, d)-perfect ring, then f(A) + J
is an (n, d)-perfect ring.

(iii) a. If A and f(A) + J are S-rings, then so is A ./f J .

b. Assume that f−1(J) and J are pure ideals of A and f(A) + J respec-
tively. Then:

i. IfA and f(A)+J are (n, d)-perfect rings, thenA ./f J is an (n, d)-
perfect ring (in particular, If A and f(A) + J are A(n)-rings, then
so is A ./f J).

ii. Assume that λA(f−1(J)) ≥ n − 1. Then A ./f J is an (n, d)-
perfect ring if and only if A and f(A) + J are (n, d)-perfect rings
(in particular,A ./f J is anA(n)-ring if and only ifA and f(A)+J
are A(n)-rings).

The proof of Theorem 2.1 draws on the following results.

Lemma 2.2. Let f : A → B be a ring homomorphism and J be an ideal of B.
Assume that f−1(J) and J are pure ideals of A and f(A) + J respectively. Let M
be an (A ./f J)-module. Then:

(i) λA./fJ(M) ≥ n if and only if λA(M⊗A./fJA) ≥ n and λ(f(A)+J)(M⊗A./fJ

(f(A) + J)) ≥ n.

(ii) fdA./fJ(M) ≤ n if and only if fdA(M⊗A./fJA) ≤ n and fd(f(A)+J)(M⊗A./fJ

(f(A) + J)) ≤ n.
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(iii) pdA./fJ(M) ≤ n if and only if pdA(M⊗A./fJA) ≤ n and pd(f(A)+J)(M⊗A./fJ

(f(A) + J)) ≤ n.

Proof. The result follows from [21, Lemma 2.12 & Lemma 2.13 & Lemma 4.3]
since φ : A ./f J ↪→ A× (f(A) + J) is an injective flat ring homomorphism, and
{0} × J is a pure ideal of A ./f J by [1, Lemma 2.2].

Lemma 2.3. Let f : A → B be a ring homomorphism and J be an ideal of B.
Assume that f−1(J) and J are pure ideals of A and f(A) + J respectively. Then:

(i) (a) λA./fJ({0} × J) ≥ n if and only if λ(f(A)+J)(J) ≥ n.

(b) pdA./fJ({0} × J) ≤ n if and only if pd(f(A)+J)(J) ≤ n.

(c) fdA./fJ({0} × J) ≤ n if and only if fd(f(A)+J)(J) ≤ n.

(ii) (a) λA./fJ(f
−1(J)× {0}) ≥ n if and only if λA(f−1(J)) ≥ n.

(b) pdA./fJ(f
−1(J)× {0}) ≤ n if and only if pdA(f−1(J)) ≤ n.

(c) fdA./fJ(f
−1(J)× {0}) ≤ n if and only if fdA(f−1(J)) ≤ n.

Proof. By [1, Lemma 2.2], A and f(A) + J are flat (A ./f J)-modules. So,

(i) ({0} × J)⊗A./fJ A ∼= ({0} × J)A ∼= 0 and ({0} × J)⊗A./fJ (f(A) + J) ∼=
({0} × J)(f(A) + J) ∼= J , so the result is deduced by Lemma 2.2.

(ii) (f−1(J) × {0}) ⊗A./fJ (f(A) + J) ∼= (f−1(J) × {0})(f(A) + J) ∼= 0 and
(f−1(J) × {0}) ⊗A./fJ A ∼= (f−1(J) × {0})A ∼= f−1(J), so the result is
deduced by Lemma 2.2.

Proof of Theorem 2.1
(i) Assume that A ./f J is an (n, d)-perfect ring. Since A ./f J is a A./fJ

{0}×J (∼= A)-
flat module and A is a module retract of A ./f J , then A is an (n, d)-perfect ring
by [22, Theorem 2.1].
(ii) Assume that A ./f J is an (n, d)-perfect ring, f−1(J) and J are pure ideals
of A and f(A) + J respectively, and λA(f−1(J)) ≥ n − 1. Then by [1, Lemma
2.2], f−1(J)×{0} is a pure ideal of A ./f J and by Lemma 2.3, λA./fJ(f

−1(J)×
{0}) ≥ n− 1. Therefore, f(A) + J ∼= A./fJ

f−1(J)×{0} is an (n, d)-perfect ring by [21,
Lemma 4.2].
(iii)(a) The result follows immediately from [21, Corollary 3.3] and [21, Theorem
2.11] since φ : A ./f J ↪→ A× (f(A) + J) is an injective ring homomorphism.
(b) Assume that f−1(J) and J are pure ideals of A and f(A) + J respectively.
(b)(i) Assume that A and f(A) + J are (n, d)-perfect rings, and let M be an
(A ./f J)-module such that λA./fJ(M) ≥ n and fdA./fJ(M) ≤ d. Then by
Lemma 2.2, λA(M ⊗A./fJ A) ≥ n and λ(f(A)+J)(M ⊗A./fJ (f(A) + J)) ≥ n
also, fdA(M ⊗A./fJ A) ≤ d and fd(f(A)+J)(M ⊗A./fJ (f(A) + J)) ≤ d. Thus,
pdA(M ⊗A./fJ A) ≤ d since A is an (n, d)-perfect ring and pd(f(A)+J)(M ⊗A./fJ

(f(A)+J)) ≤ d since f(A)+J is an (n, d)-perfect ring. Therefore pdA./fJ(M) ≤
d by Lemma 2.2. So, A ./f J is an (n, d)-perfect ring.
(b)(ii) Assume that A and f(A) + J are (n, d)-perfect rings. Then A ./f J is an
(n, d)-perfect ring by (iii)(b)(i). Conversely, assume that A ./f J is an (n, d)-
perfect ring. Then A is an (n, d)-perfect ring by (i), and f(A) + J is an (n, d)-
perfect ring by (ii).
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The Corollary below follows immediately from Theorem 2.1 which examines
the case of the amalgamated duplication.

Corollary 2.4. Let A be a ring and I be an ideal of A.

(i) If A ./ I is an (n, d)-perfect ring then so is A.

(ii) Assume that I is a pure ideal of A. Then A ./ I is an (n, d)-perfect ring if
and only if A is an (n, d)-perfect ring.

This result allows us to generate a new class of (0, 1)-perfect rings and (1, 0)-
perfect rings which are not (0, 0)-perfect rings.

Example 2.5. Let A be a hereditary Von Neumann regular ring that is a non-
semisimple ring (for example, we can consider [7, Example 2.7]). Then A ./ I
is a (0, 1)-perfect ring and (1, 0)-perfect ring which is not a (0, 0)-perfect ring for
all ideals I of A.

Proof. Let I be an ideal ofA. Then I is a pure ideal ofA sinceA is a Von Neumann
regular ring. So by Corollary 2.4, A ./ I is a (0, 1)-perfect and a (1, 0)-perfect ring
since A is a (0, 1)-perfect and a (1, 0)-perfect ring. But A ./ I is not a (0, 0)-
perfect ring. Otherwise, every finitely generated (A ./ I)-module is projective
since A ./ I is a Von Neumann regular ring by [6, Theorem 2.1] which implies
that A ./ I is a semisimple ring. This is absurd since A ./ I is a non-semisimple
by [6, Corollary 2.3].

The following result generates a new class of (1, 1)-perfect domains which are
not (0, 1)-perfect domains.

Example 2.6. Let f : A → B be a ring homomorphism and J be an ideal of B.
Assume that f(A)+J is a Prüfer domain and f−1(J) = {0} and A or f(A)+J is
not a Noetherian ring. Then A ./f J is a (1, 1)-perfect domain and (1, 0)-perfect
domain which is not a (0, 1)-perfect domain.

Proof. A ./f J is an (n, n)-perfect domain for every n ≥ 0. So it is in particular
an (1, 0)-perfect and (1, 1)-perfect domain. We show that A ./f J is not a (0, 1)-
perfect domain. By [10, Proposition 5.6], A ./f J is not a Noetherian ring. Let K
be a not finitely generated ideal of A ./f J , then K is not a projective ideal since
A ./f J is a domain. Since A ./f J is a Prüfer domain, then w.g.dim(A ./f J) ≤
1, so K is a flat ideal of (A ./f J). Therefore A./fJ

K is a 0-presented (A ./f J)-
module and fd(A./fJ)(

A./fJ
K ) ≤ 1 but pd(A./fJ)(

A./fJ
K ) ≥ 2, as desired.

The following Propositions generate a new class of non-Noetherian (n, d)-
perfect rings and a new class of non-semisimple (n, d)-perfect rings.

Proposition 2.7. Let f : A → B be a ring homomorphism and J be an ideal
of B such that J and f−1(J) are finitely generated ideals of f(A) + J and A
respectively. Assume that A and f(A) + J are coherent rings and A or f(A) + J
is a not a Noetherian ring. Then is a non-Noetherian (n, d)-perfect ring for every
n ≥ 1 and d ≥ 0.

Proof. The result follows immediately from [3, Theorem 2.2], [21, Proposition
2.3], and [10, Proposition 5.6 ].
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Example 2.8. (Z+XQ[X]) ./ XQ[X] is a non-Noetherian (n, d)-perfect ring for
every n ≥ 1 and d ≥ 0, where Z is the ring of integers, and Q is the field of rational
numbers.

Proof. The result follows immediately from Proposition 2.7 since Z + XQ[X] is
a non-Noetherian coherent ring by [18, Corollary 5.2.5 & Corollary 5.2.9].

Example 2.9. Let (A,M) be any local non-Noetherian ring (for exampleK[(Xn)n∈N? ]),
and let I be an ideal of A. Then R := A ./ I is a non-Notherian (n, d)-perfect ring
for every n ≥ d. (In particular, R is an A(n)-ring for every integer n.)

Proposition 2.10. Let f : A → B be a ring homomorphism and J be an ideal of
B. Assume that A is a Noetherian ring, A or f(A) + J is a non-semisimple, and
at least one of the following conditions holds:

(i) f(A) + J is a Noetherian ring.

(ii) J is a finitely generated A-module (with the structure naturally induced by
f ).

(iii) J is a Noetherian A-module (with the structure naturally induced by f ).

(iv) f is a finite homomorphism.

Then A ./f J is a non-semisimple (n, d)-perfect ring for every n ≥ 0 and d ≥ 0.

Proof. Let n ≥ 0 and d ≥ 0, by [10, Proposition 5.6 & 5.7] and [21, Proposition
2.3], A ./f J is an (n, d)-perfect ring. Now, assume that A ./f J is a semisimple
ring then so is f(A) + J ∼= A./fJ

f−1(J)×{0} , which is absurd.

Example 2.11. Let f : Z→ Z/nZ be the canonical surjection, where Z is the ring
of integers and n > 1. Then Z ./f (kZ/nZ) is a non-semisimple (n, d)-perfect
ring for every n, d ≥ 0 and k/n.

Now, we present a class of (n, d)-perfect rings which are non-coherent.

Example 2.12. Let A be a domain that is not a field, K = qf(A), and let R :=
(A ∝ K) ./ (0 ∝ A) . Then R is a non-coherent (n, d)-perfect ring for every
n > d.

Proof. The result follows immediately from [23, Theorem 2.8] and [3, Corollary
2.8].

Now, we exhibit classes of (n, d)-perfect rings that are not (n, d)-rings, and
classes of (n, d)-perfect rings that are not d-perfect (so, not strongly d-perfect
rings).

Proposition 2.13. Let A be a ring such that gl.dim(A) > d, where d is a positive
integer. Then:

(i) A is an (n, d)-perfect ring for any integer n > d that is not a (0, d)-ring.

(ii) Assume that A is a Noetherian ring. Then A is an (n, d)-perfect ring that is
not an (n, d)-ring for any integer n ≥ 0. In particular, A is an A(d)-ring that
is not a (d, d)-ring.

Proof. (i) The result follows immediately from [7, Theorm 1.3].
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(ii) The result follows immediately from [7, Theorm 1.3] and [21, Proposition
2.3].

Example 2.14. Let Z be the ring of integers. Then Z[X1, . . . , Xm] is an (n, d)-
perfect ring that is not an (n, d)-ring for any integers n ≥ 0 and m ≥ d. In
particular, A is an A(m)-ring that is not an (m,m)-ring.

Example 2.15. (i) Let R be a non-Prüfer domain. Then R is an (n, 1)-perfect
domain for any integers n ≥ 1 that is not an (1, 1)-domain.

(ii) Let R be a domain that is not a field. Then R is an (n, d)-perfect domain for
any integers n ≥ d that is not an (n, 0)-domain for any integers n.

Proof. The result follows immediately from [7, Theorm 1.3].

Example 2.16. Let A be a Von Neumann regular ring which is a non-semisimple
(e.g., the infinite direct product of fields), I be an ideal of A, and let PA : A ./ I →
A be a ring epimorphism. Consider R := (A ./ I) ./PA (I × 0). Then:

(i) R is a Von Neumann regular ring that is a non-semisimple.

(ii) R is an (n, d)-perfect ring which is not perfect for any integer n > d. In
particular, R is an (n, 0)-perfect ring which is not a 0-perfect for any integer
n > 0.

(iii) R is (1, 0)-perfect ring that is not a (0, 0)-perfect ring.

Proof. (i) The result follows immediately from [6, Theorem 2.1 & Corollary
2.3].

(ii) Assume that R is a perfect ring. Then every R-module is projective since R is
a Von Neumann regular ring according to (1), this would contradict the fact
that R is a non-semisimple ring.

(iii) Assume that R is a (0, 0)-perfect ring. Then every finitely generated R-
module is projective since R is a Von Neumann regular ring, which contra-
dicts the fact that R is a non-semisimple ring.

Example 2.17. Let R be a non-Noetherian Prüfer domain. Then R is an (0, 0)-
perfect domain which is not a 0-perfect domain (i.e., not a perfect domain).

Proof. Since R is a domain then, R is (0, 0)-perfect ring, and since R is a non-
Noetherian ring, then, there exists I; a not finitely generated ideal of R which is
not projective since R is a domain. However, I is a flat ideal of R. Therefore R is
not a 0-perfect domain.
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