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Abstract Let R be an associative ring with identity. Ring R is considered clean if each
element is the sum of an idempotent element and a unit element. A clean ring is generalized to
an r-clean ring by generalizing the unit elements to regular. A ring R is said to be r-clean if each
element is the sum of an idempotent element and a regular element. We introduce the notion
of the r-clean ideal, a natural generalization of the clean ideal. Furthermore, we present some
properties of the r-clean ideal and offer several sufficient and necessary conditions for a clean
ideal to be r-clean.

1 Introduction

Let R be an associative ring with identity. According to [1], the element a ∈ R is said to be
clean if it is the sum of an idempotent element and a unit element. Then, the ring R is said to
be clean if each element is clean. Referring to [2], an element r ∈ R is considered regular if
there is an element s ∈ R such that it satisfies r = rsr. We know that each unit element in R is
regular. By generalizing the unit element to a regular element, [3] generalizes the definition of a
clean element to an r-clean element. An element a ∈ R is said to be r-clean if it is the sum of
an idempotent element and a regular element of R. Therefore, a ring R is called an r-clean ring
if each element is r-clean. Thus, the r-clean ring is the generalization of the clean ring.

On the other hand, the set of all r-clean elements does not necessarily form an ideal. For
example, if given a ring Z then the set of all r-clean elements in Z is K = {−1, 0, 1, 2}. Notice
that K is not ideal in Z. This phenomenon is the background to the emergence of the definition
of the r-clean ideal. This article defines the r-clean ideal, a generalization of the clean ideal
introduced by [4]. In addition, some properties of the r-clean ideal are presented. At the end of
this article, we present several sufficient and necessary conditions for a clean ideal to form an
r-clean ideal.

Throughout this article, R is an associative ring with identity unless stated otherwise. Fur-
thermore, Id(R) is the set of all idempotent elements in R, Reg(R) is the set of all regular
elements in R, U(R) is the set of all unit elements in R, and Λ is the index set.

2 Definition of r-Clean Ideals

We begin with the definition of r-clean ideal as follows.

Definition 2.1. An ideal I of R is called an r-clean ideal if every element of I is a sum of an
idempotent and a regular element of R.

Every ideal of r-clean rings is clean. However, non r-clean rings contain some r-clean ideals.

Example 2.2. Let R1 be an R-clean ring and R2, not an r-clean ring. Set R = R1 × R2. Then,
R is not an r-clean ring. Set an ideal P = R1 × {0R2} of R. We can show that P is an
r-clean ideal of R. Given any (x, 0R2) ∈ P . Then, x1 ∈ R1. Since R1 is an r-clean ring,
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we have an idempotent element e ∈ R1 and a regular element a ∈ R1 such that x = e + a.
Hence, (x, 0R2) = (e+ a, 0R2) = (e, 0R2) + (a, 0R2). Clearly, (e, 0R2) is an idempotent element
of R. Moreover, since a ∈ Reg(R1), there exist d ∈ R such that a = ada. So, we obtain
(a, 0R2) = (ada, 0R2) = (a, 0R2)(d, 0R2)(a, 0R2), for an (d, 0R2) ∈ R. So, (a, 0R2) ∈ Reg(R).
Thus, (x, 0R2) is an r-clean element of R. Therefore, P is an r-clean ideal of R.

Example 2.3. Let {Ii}i∈Λ be the family of ideals of R and R an r-clean ring. Then,

(i)
⋂
i∈Λ

Ii is an r-clean ideal of R.

(ii)
∑
i∈Λ

Ii is an r-clean ideal of R.

Example 2.4. Let R and S be rings, and f : R→ S is the ring homomorphism. If R is an r-clean
ring, then

(i) Ker(f) is an r-clean ideal of R.

(ii) f−1(S) is an r-clean ideal of R.

3 Some Properties of r-Clean Ideals

In this section, we present some properties of r-clean ideals. The first property shows that the
infinite intersection of the r-clean ideals is an r-clean ideal.

Proposition 3.1. Let {Ii}i∈Λ be the family of ideals of R and Ii an r-clean ideal for each i ∈ Λ.
Then,

⋂
i∈Λ

Ii is an r-clean ideal of R.

Proof. Since {Ii}i∈Λ is a family of ideals of R, it is clear that
⋂
i∈Λ

Ii is an ideal of R. Let

a ∈
⋂
i∈Λ

Ii. Then, a ∈ Ii for each i ∈ Λ. Since Ii is r-clean for each i ∈ Λ, we have a = e + r

with e ∈ Id(R) and r ∈ Reg(R). Hence, a is an r-clean element of
⋂
i∈Λ

Ii. Thus,
⋂
i∈Λ

Ii is an

r-clean ideal of R.

Next, we show that the homomorphic image of the r-clean ideal is also r-clean.

Proposition 3.2. Let R and S be rings, f : R → S is the ring epimorphism, and P an r-clean
ideal of R. Then, f(P ) is an r-clean ideal of S.

Proof. Since P is an ideal of R and f is a ring epimorphism, f(P ) is an ideal of S. Let y ∈ f(P ).
There exists x ∈ P such that y = f(x). As P is an r-clean ideal, we have x = e + r with
e ∈ Id(R) and r ∈ Reg(R). Then,

y = f(x) = f(e+ r) = f(e) + f(r).

It is clear that f(e) ∈ Id(S). Since r ∈ Reg(R), r = rtr for an t ∈ R. So, we obtain
f(r) = f(rtr) = f(r)f(t)f(r), for an f(t) ∈ S. Thus, we get f(r) ∈ Reg(S). Which implies
that y is an r-clean element of f(P ), so f(P ) is an r-clean ideal of S.

Referring to Proposition 3.2, the following presents the sufficient condition for an ideal factor
to be r-clean.

Proposition 3.3. Let N be an ideal of R, P an ideal of R containing N , and f : R → R/N is
the ring epimorphism. If P is an r-clean ideal of R, then P/N is an r-clean ideal of R/N .

Proof. Assume that f : R→ R/N is a ring epimorphism, and P is an r-clean ideal of R. Refer-
ring to Proposition 3.2, we have f(P ) is an r-clean ideal of R/N . Since f is a ring epimorphism,
we obtain f(P ) = P/N . Thus, P/N is an r-clean ideal of R/N .

The converse of Proposition 3.3 is not necessarily true, as the following example shows.
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Example 3.4. Let f : Z → Z6 be a ring epimorphism with f(a) = a mod 6, for every a ∈ Z.
Let H = {0̄, 2̄, 4̄} is an r-clean ideal of Z6. Clearly, f(2Z) = H . But, 2Z is not an r-clean ideal
of Z.

According to [5], in the following, we give the sufficient condition for an element of ring R
to form a regular element.

Lemma 3.5. Let a ∈ R, and y ∈ R satisfy a−aya is a regular element of R. Then, a is a regular
element of R.

Furthermore, [5] defines an ideal I of R as a regular ideal if every element of it is a regular
element of R.

Let I be an ideal ring R. Then, according to [6], we say that idempotents lift modulo I if for
each x ∈ R such that x−x2 ∈ I , there exists an idempotent e ∈ R such that e−x ∈ I . Moreover,
the converse of Proposition 3.3 will hold if we give the following sufficient conditions.

Proposition 3.6. Let P and I be ideals of R satisfies I ⊆ P , I a regular ideal of R, and suppose
that idempotents can be lifted modulo I . If P/I is an r-clean ideal of R/I , then P is an r-clean
ideal of R.

Proof. Assume that P/I is an r-clean ideal of R/I . So, for every a ∈ P we have a + I is an
r-clean element of R/I . There exist e + I ∈ Id(R/I) such that (a − e) + I ∈ Reg(R/I). It
means that there is x ∈ R such that it satisfies ((a− e) + I)(x+ I)((a− e) + I) = (a− e) + I .
From here, we get (a − e) − (a − e)x(a − e) ∈ I . Since I is a regular ideal, then according to
Lemma 3.5, we get a− e ∈ Reg(R). Since idempotents can be lifted modulo I , we may assume
that e is an idempotent of R. Thus, a is an r-clean element of R, which implies P is an r-clean
ideal of R.

Next, we give a sufficient and necessary condition for the infinite direct product of ideals to
form an r-clean ideal.

Proposition 3.7. Let Ri be a ring, and Pi an ideal of Ri, for each i ∈ Λ. The ideal
∏
i∈Λ

Pi is an

r-clean ideal of
∏
i∈Λ

Ri if and only if Pi is an r-clean ideal of Ri for each i ∈ Λ.

Proof. Let any i ∈ Λ and assume that

f :
∏
i∈Λ

Ri → Ri

(ri)i∈Λ 7→ ri,

for each (ri)i∈Λ ∈
∏
i∈Λ

Ri, is a ring epimorphism. Since
∏
i∈Λ

Pi is an r-clean ideal of
∏

i∈Λ
Ri,

referring to Proposition 3.2 we have f(
∏
i∈Λ

Pi) = Pi is an r-clean ideal of Ri. Thus, Pi is an

r-clean ideal of Ri, for each i ∈ Λ. Conversely, let (xi)i∈Λ ∈
∏
i∈Λ

Pi. Since Pi is an r-clean ideal

of Ri for each i ∈ Λ, we obtain xi = ei+ri with ei ∈ Id(Ri) and ri ∈ Reg(Ri), for every i ∈ Λ.
As a result, we obtain

(xi)i∈Λ = (ei + ri)i∈Λ = (ei)i∈Λ + (ri)i∈Λ.

Since ei ∈ Id(Ri) for each i ∈ Λ, we have eiei = ei. So,

(eiei)i∈Λ = (ei)i∈Λ(ei)i∈Λ = (ei)i∈Λ.

Thus, (ei)i∈Λ ∈ Id(
∏
i∈Λ

Ri). Moreover, since ri ∈ Reg(Ri) for each i ∈ Λ, we get ri = risiri

for an si ∈ Ri, for every i ∈ Λ. Hence, we get

(ri)i∈Λ = (risiri)i∈Λ = (ri)i∈Λ(si)i∈Λ(ri)i∈Λ,

for an (ri)i∈Λ ∈
∏
i∈Λ

Ri. Thus, (ri)i∈Λ ∈ Reg(
∏
i∈Λ

Ri). Therefore, we get (xi)i∈Λ is an r-clean

element of
∏
i∈Λ

Ri. This shows that
∏
i∈Λ

Pi is an r-clean ideal of
∏
i∈Λ

Ri.
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Recall that an ideal I of R is an exchange ideal provided that for any x ∈ I , there exists an
idempotent e ∈ I such that e−x ∈ R(x−x2). Moreover, an Abelian ring is a ring in which each
idempotent element is central. According to [8], the Abelian ring R is r-clean if and only if R
exchange ring. Using this property, we give the necessary and sufficient conditions for an ideal
to form an r-clean ideal.

Proposition 3.8. Let R be an Abelian ring and I an ideal of R. Then, I is an r-clean ideal if and
only if I is an exchange ideal.

Proposition 3.9. Let I be an ideal of R. Then, I is an r-clean ideal if and only if each x ∈ I can
be written as x = r − e where r ∈ Reg(R) and e ∈ Id(R).

Proof. Let x ∈ I . We have −x ∈ I and satisfy −x = e+ r, where e ∈ Id(R) and r ∈ Reg(R).
So, we get x = (−r) − e with e ∈ Id(R) and −r ∈ Reg(R). Conversely, let x ∈ I . Then,
−x ∈ I . According to the hypothesis, −x = r − e with r ∈ Reg(R) and e ∈ Id(R) is obtained.
Consequently, x = (−r) + e with −r ∈ Reg(R) and e ∈ Id(R). This implies x is an r-clean
element of R, so I is an r-clean ideal of R.

Let I be an ideal of ring R and e a central idempotent element of R. Then, we can form a
ring eRe. In the following, we give the necessary condition for an ideal I of R to be an r-clean
ideal.

Proposition 3.10. Let I be an r-clean ideal of R, and e a central idempotent of R. Then, eIe is
an r-clean ideal of eRe.

Proof. Let the function f : R → eRe with f(r) = ere for each r ∈ R. Then, f is a ring
epimorphism. Since I is an r-clean ideal of R, referring to Proposition 3.2 we obtain eIe is also
an r-clean ideal of eRe.

Next, we provide the necessary conditions for the ideal (1R − e)I(1R − e) to be an r-clean
ideal of (1R − e)R(1R − e).

Proposition 3.11. Let I be an ideal of ring R, e a central idempotent element of R, eIe an r-
clean ideal of eRe, and (1R − e)I(1R − e) an r-clean ideal of (1R − e)R(1R − e). Then, I is an
r-clean ideal of R.

Proof. Let ē = 1R − e. By using Pierce Decomposition, we get

R = eRe⊕ eRē⊕ ēRe⊕ ēRē

and
I = eIe⊕ eIē⊕ ēIe⊕ ēIē.

Since e is a central idempotent element, We obtain

R = eRe⊕ ēRē ∼=

[
eRe 0R

0R ēRē

]

and

I = eIe⊕ ēIē ∼=

[
eIe 0R

0R ēIē

]
.

Let A ∈ I with A =

[
a 0R

0R b

]
, where a ∈ eIe and b ∈ ēIē. Since eIe is an r-clean ideal of

eRe and ēIē is an r-clean ideal of ēRē, we have a = r1+e1 and b = r2+e2 with r1 ∈ Reg(eRe),
r2 ∈ Reg(ēRē), e1 ∈ Id(eRe), and e2 ∈ Id(ēRē). As a result, we get

A =

[
a 0R

0R b

]
=

[
r1 + e1 0R

0R r2 + e2

]
=

[
r1 0R

0R r2

]
+

[
e1 0R

0R e2

]
.



ON r-CLEAN IDEALS 221

As r1 ∈ Reg(eRe) and r2 ∈ Reg(ēRē), there exists y1 ∈ eRe and y2 ∈ ēRē such that r1 = r1y1r1
and r2 = r2y2r2. So, we obtain[

r1 0R

0R r2

][
y1 0R

0R y2

][
r1 0R

0R r2

]
=

[
r1y1r1 0R

0R r2y2r2

]
=

[
r1 0R

0R r2

]
.

Thus,

[
r1 0R

0R r2

]
∈ Reg(R). Clearly,

[
e1 0R

0R e2

]
∈ Id(R). Hence, A is an r-clean ideal of

I , so I is an r-clean ideal of R.

In the following, we generalize the Proposition 3.11.

Proposition 3.12. Let I be an ideal of ring R, and e1, e2, · · · , en orthogonal central idempotents
of R with e1+e2+ · · ·+en = 1R. Then, eiIei is an r-clean ideal of eiRei for each i = 1, 2, · · ·n
if and only if I is an r-clean ideal of R.

Proof. One direction allows from Proposisi 3.11 by induction. Conversely, let I be an r-clean
ideal of R and e1, e2, · · · , en orthogonal central idempotents of R with e1 + e2 + · · ·+ en = 1R.
Consider that

I =
n⊕

i=1

eiIei ∼=


e1Ie1 0R · · · 0R

0R e2Ie2 · · · 0R

: :
. . . :

0R 0R · · · enIen

 .

Let any i ∈ {1, 2, · · · , n} and we form a function f : I → eiIei. We have f a ring epimorphism.
Since I is an r-clean ideal of R, we have eiIei also an r-clean ideal of eiRei. Thus, eiIei is an
r-clean ideal of eiRei for each i = 1, 2, · · · , n.

Let T =

[
R 0
M S

]
be the lower triangular matrix ring and K =

[
I 0
M J

]
ideal of T .

Next, we provide necessary conditions for the ideal K =

[
I 0
M J

]
to be r-clean.

Proposition 3.13. Let R and S be rings, M an (R,S)-bimodule, I an ideal of R, J an ideal of S,

and T =

[
R 0
M S

]
the lower triangular matrix ring. If K =

[
I 0
M J

]
is an r-clean ideal

of T , then I is an r-clean ideal of R and J is an r-clean ideal of S.

Proof. Let K =

[
I 0
M J

]
is an r-clean ideal of T . Let

[
a 0
m b

]
∈ K. Since K is an r-clean

ideal, then [
a 0
m b

]
=

[
f1 0
f2 f3

]
+

[
r1 0
r2 r3

]
,

with

[
f1 0
f2 f3

]
∈ Id(T ) and

[
r1 0
r2 r3

]
∈ Reg(T ). So, a = f1 + r1 dan b = f3 + r3. Since[

r1 0
r2 r3

]
∈ Reg(T ), there exists

[
y1 0
y2 y3

]
∈ T such that

[
r1 0
r2 r3

]
=

[
r1 0
r2 r3

][
r1 0
r2 r3

][
y1 0
y2 y3

]
[

r1 0
r2 r3

]
=

[
r1y1r1 0

r2y1r1 + r3y2r1 + r3y3r2 r3y3r3

]
.
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Hence, r1 ∈ Reg(R) and r3 ∈ Reg(S). Moreover, since

[
f1 0
f2 f3

]
∈ Id(T ), we obatin

[
f1 0
f2 f3

][
f1 0
f2 f3

]
=

[
f1 0
f2 f3

]
[

f2
1 0

f2f1 + f3f2 f2
3

]
=

[
f1 0
f2 f3

]
.

So we get f1 ∈ Id(R) and f3 ∈ Id(S). Hence, a is an r-clean element of R and b is an r-clean
element of S. Thus, I is an r-clean ideal of R and J is an r-clean ideal of S.

Next, the following is given the converse of Proposition 3.13.

Proposition 3.14. Let R and S be rings, M an (R,S)-bimodule, I an ideal of R, J an ideal of S,

T =

[
R 0
M S

]
the lower triangular matrix ring, and K =

[
I 0
M J

]
an ideal of T . Assume

that one of the following conditions holds:

(i) I and J are clean.

(ii) one of the ideals I and J is clean and the other one is r-clean.

Then, the ideal K of T is r-clean.

Proof. Referring to [7], it is clear that if I and J are clean, then K is clean. So it is r-clean. On

the other hand, let I be r-clean and let J be clean. Then for every A =

[
x 0
m y

]
∈ K, we have

x = e1 + r dan y = e2 +u for e1, e2 ∈ Id(R), r ∈ Reg(R), and u ∈ U(R). Assume that r = rpr

for some p ∈ R. Let A = E +W where E =

[
e1 0
0 e2

]
and W =

[
r 0
m u

]
. It is clear that

E ∈ Id(T ) and we have the equality

[
r 0
m u

]
=

[
r 0
m u

][
p 0

−u−1mp u−1

][
r 0
m u

]
.

This condition implies that W is a regular element if T . Hence, A is an r-clean element of K.
Thus, K is r-clean.

According to [4], we know that if I is a clean ideal of R, then Mn(I) is a clean ideal of
Mn(R). So, using this property, we give the sufficient condition for Mn(I) to be an r-clean ideal
of Mn(R).

Proposition 3.15. Let I be a clean ideal of R. Then, Mn(I) is an r-clean ideal of Mn(R).

Proof. Let I be a clean ideal of R. Referring to [4], we have Mn(I) is a clean ideal of Mn(R).
Thus, Mn(I) is an r-clean ideal of Mn(R).

We have stated earlier that the r-clean ideal is a generalization of the clean ideal. Thus, every
clean ideal is an r-clean ideal, but the converse is not necessarily true. In the following, we give
several sufficient conditions for an r-clean ideal to be clean.

Proposition 3.16. Let I be a non-zero ideal of ring R. Then, if I is an r-clean ideal of R and 0R

and 1R are the only idempotents in R, then I is a clean ideal of R.

Proof. Let I be an r-clean ideal of R. Let x ∈ I . We have x = e + r for an e ∈ Id(R) and
r ∈ Reg(R). If r = 0R, then x = e = (2e− 1R)(1R− e). Clearly, 1R− e ∈ Id(R). Considering
(2e − 1R)(2e − 1R) = 1R, so we get 2e − 1R ∈ U(R). Thus, x is a clean element of R. But if
r 6= 0R, then there exists y ∈ R such that r = ryr. As a result, we get ry ∈ Id(R). Since 0R and
1R are the only idempotents in R, we have ry = 0R or ry = 1R. If ry = 0R, then r = ryr = 0R

is a contradiction. Therefore, ry = 1R. Similarly, yr = 1R. Thus, r ∈ U(R). Hence, x is a clean
element of R, so I is a clean ideal of R.
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Furthermore, let R be an Abelian ring. According to [8], if a ∈ R is a clean element of R and
e ∈ Id(R), then

(i) ae is a clean element of R.

(ii) If −a is a clean element of R, then a+ e is also a clean element of R.

Using the properties above, we give sufficient and necessary conditions for an ideal to be an
r-clean ideal.

Proposition 3.17. Let R be an Abelian ring. The ideal I of R is an r-clean ideal if and only if I
is a clean ideal of R.

Proof. Let I be an r-clean ideal of R. Let x ∈ I . Then, x = e + r with e ∈ Id(R) and
r ∈ Reg(R). Since r ∈ Reg(R), there exists y ∈ R such that r = ryr. Clearly, ry, yr ∈ Id(R).
Assume e′ = ry, so

(re′ + (1R − e′))(ye′ + (1R − e′)) = re′ye′ + re′(1R − e′) + (1R − e′)ye′

+(1R − e′)(1R − e′)

= rye′ + 0R + 0R + (1R − e′)

= e′ + 1R − e′

= 1R.

Next, since R is an Abelian ring, we get

(ye′ + (1R − e′))(re′ + (1R − e′)) = ye′re′ + ye′(1R − e′) + (1R − e′)re′

+(1R − e′)(1R − e′)

= yre′ + 1R − e′

= e′yr + 1R − e′

= ry(yr) + 1R − e′

= r(yr)y + 1R − e′

= (ry)2 + 1R − e′

= e′2 + 1R − e′

= e′ + 1R − e′

= 1R.

Thus, re′ + (1R − e′) ∈ U(R). Furthermore, note that u = re′ + (1R − e′). So, we have
e′u = e′re′+ 0R = e′re′ = ryr = r. Now, assume f = 1R− e′. Then, f ∈ Id(R). Consider the
equation r + f = e′u+ f . So, we get −r = f + (−(e′u+ f)). Next, note that

u = re′ + (1R − e′)

= re′ + f

= (e′u)e′ + f

= e′u+ f ∈ U(R).

As a result, we have −(e′u+ f) ∈ U(R). Hence, −r is a clean element of R. Thus, r+ e = x is
a clean element of R, so I is a clean ideal of R. Conversely, it is clear and needs no proof.

Proposition 3.18. Let R be a ring with no zero divisors and I an ideal of R. Then, I is an r-clean
ideal if and only if I is a clean ideal of R.

Proof. Let I be an r-clean ideal of R. Let x ∈ I . Then, x = e + r with e ∈ Id(R) and
r ∈ Reg(R). There exists y ∈ R such that r = ryr. If r = 0R, then x = e = (2e−1R)+(1R−e).
Clearly, 1R − e ∈ Id(R) and (2e − 1R) ∈ U(R). So, x is a clean element of R. However, if
r 6= 0R, since R contains no zero divisor elements, from equation r = ryr, we get r−ryr = 0R.
So, yr = 1R. Similarly, ry = 1R. Hence, r ∈ U(R). Thus, x is a clean element of R, so I is a
clean ideal of R. Conversely, it is clear and needs no proof.
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Based on [8], a ring is said to be reduced if it has no (non-zero) nilpotent elements. These
rings are Abelian. So we have the following property.

Proposition 3.19. Let R be a reduced ring and I an ideal of R. Then, I is r-clean if and only if
I is clean.
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