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Abstract: In this paper we introduce, for a Banach space, a new notions of besselian paires
and of besselian Schauder frames and we extend, to Schauder frames, the notions of shrinking
and boundedly complete Schauder basis. Our aim is to study the relations which exist between
these notions and the links these notions have with the Banach space structure. Among the
multiple results that we obtain, we prove that a paire F is besselian if and only if its dual paire
F∗ is a besselian paire of its topological dualE∗, we generalize to besselian Schauder frames, the
well-known James’s theorem which characterizes reflexive Banach spaces by means of shrinking
and boundedly complete Schauder basis, and finally we prove that a Banach space E which
has a besselian Schauder frame is reflexive if and only if the space E and E∗ are both weakly
sequentially complete.

1 Introduction

In 1946, Gabor [8] performed a new method for the signal reconstruction from elementary sig-
nals. In 1952, Duffin and Schaeffer [6] developped, in the field of nonharmonic series, a similar
tool and introduced frame theory for Hilbert spaces. For more than thirty years, the results of
Duffin and Schaeffer has not received from the mathematical community, the interest they de-
serve, until the publication of the work of Higgins and Young [21] where the authors studied
frames in abstract Hilbert spaces. In 1986, the work of Daubechies, Grossmann and Meyer [5]
gave to frame theory the momentum it lacked and allowed it to be widely studied. This con-
tributed, among other things, to the wider developpement of wavelet theory. The concept of
atomic decompositions was introduced, in 1988, by Feichtinger and Gröchenig [7], in order to
extend the definition of frames from the seting of Hilbert spaces to that of general separable
Banach spaces. In 1991, Gröchenig [9], presented a generalisation of the notions of atomic de-
composition and of synthesis operator and introduced the definition of Banach frames. In 2001,
Aldroubi, Sun and Tang [1] introduced the concepts of p-frames. In 2003, Christensen and Sto-
eva [4] extended the definition of p-frames, by replacing the sequence spaceLp by a more general
scalar sequence space Xd. By getting rid of the sequence spaces Xd in the definition of atomic
decompositions, Cassaza, Han, Larson in 1999 [3] and in 2000 Han and Larson [12], generalized
the notion of atomic decompositions by introducing the new notion of Schauder frames. One of
the peculiarities of Schauder frames is that they constitute a natural extension of the concept of
Schauder basis.

The growing interest in Schauder frames has led us to contribute to the generalization to
Schauder frames of the properties and results specific to Schauder bases. Indeed In this paper
we introduce, for a Banach space, a new notions of besselian paires and of besselian Schauder
frames and we extend, to Schauder frames, the notions of shrinking and boundedly complete
Schauder basis. Our aim is to study the relations which exist between these notions and the links
these notions have with the Banach space structure. Among the multiple results that we obtain,
we prove that a paire F is besselian if and only if its dual paire F∗ is a besselian paire of E∗,
we generalize to besselian Schauder frames, the well-known James [10],[11, page 62] theorem
which characterizes reflexive Banach spaces by means of shrinking and boundedly complete
Schauder basis, and finally we prove that a Banach space E which has a besselian Schauder
frame is reflexive if and only if the space E and its topological dual E∗ are both weakly sequen-
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tially complete.
For all the material on Banach spaces, one can refer to [17], [11], [13], [14], [22]. In the

sequel (E, ‖·‖E) is a given separable Banach space, ((an, b∗n))n∈N∗a paire of E and p ∈ ]1,+∞[

is a given constant and we set p∗ =
p

p− 1
. Finally we will index all the series by N∗.

2 Main definitions, principal notations and useful remarks

Let (X, ‖.‖X) be a Banach space on K ∈ {R,C} and X∗, X∗∗and X∗∗∗ respectively its first,
second and third topological duals.

(i) We denote by BX the closed unit ball of X :

BX := {x ∈ X : ‖x‖X ≤ 1}

(ii) We denote by l1(K) the K-vector space of sequences λ := (λn)n∈N∗ such that λn ∈ K for
each n ∈ N∗ and

∑+∞
n=1 |λn| < +∞. It is a classical result that l1(K) is a Banach space for

the norm :
‖.‖l1(K) : l1(K) → R+

(λn)n∈N∗ 7→
+∞∑
n=1
|λn|

(iii) We denote, for each n ∈ N∗, by en the element of l1 (K) defined by the relation en :=
(δk,n)k∈N∗ , where δk,n = 1 if k = n and δk,n = 0 if k 6= n.

(iv) We denote, for each n ∈ N∗, by u∗n the element of
(
l1 (K)

)∗ defined, for each λ :=
(λk)k∈N∗ ∈ l1 (K) by the relation u∗n (λ) := λn.

(v) We denote by l∞(K) the K-vector space of sequences λ := (λn)n∈N∗ such that λn ∈ K
for each n ∈ N∗ and supn∈N∗ (|λn|) < +∞. It is a classical result that l∞(K) is a Banach
space for the norm :

‖.‖l∞(K) : l∞ (K) → R+

(µn)n∈N∗ 7→ sup
n∈N∗

(|µn|)

(vi) We denote by Ψ the mapping :

Ψ : l∞ (K) →
(
l1 (K)

)∗
µ := (µn)n∈N∗ 7→ Ψ (µ)

where :

Ψ (µ)
(
(λn)n∈N∗

)
:=

+∞∑
n=1

µnλn

It is well-known that Ψ is an isometric isomorphism from l∞ (K) onto l1 (K) [17, page 85,
example 1.10.3] .

(vii) A mapping ω : X → R+ is said to be countably subadditive [17, page 42, definition 1.6.2]

if ω
(

+∞∑
n=1

zn

)
≤

+∞∑
n=1

ω (zn) for each convergent series
∑
zn in X.

(viii) Given a Banach space (Y, ‖.‖Y ) and a real number α > 0. A linear mapping ϕ : X → Y is
said to be an α-isometry [16] if the following condition holds for each x ∈ X :

(1− α) ‖x‖X ≤ ‖ϕ (x)‖Y ≤ (1 + α) ‖x‖X
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(ix) We denot by JX the canonical linear mapping :

JX : X → X∗∗

x 7→ JX(x)

defined for each x ∈ X and x∗ ∈ X∗ by the formula JX(x)(x∗) = x∗ (x). It is well-known
[17, page 98, proposition 1.11.3] that the linear mapping JX is an isometry from X into
X∗∗.

(x) We denote by PX the mapping :

PX : X∗∗∗ → X∗

u∗∗∗ 7→ u∗∗∗ ◦ JX
It is well-known [2] that the mapping PX is a continuous linear mapping from X∗∗∗ onto
X∗.

(xi) Let (xn)n∈N∗ be a sequence of elements of X. The series
∑
xn of X is said to be weakly

unconditionally convergent [22, pages 58-59] if the series
∑
|x∗ (xn)| is convergent for

each x∗ ∈ X∗.
(xii) The Banach space X is said to be weakly sequentially complete [17, page 218, definition

2.5.23] [11, pages 37-38] if for each sequence (xn)n∈N∗ of X such that lim
n→+∞

x∗(xn) exists

for every x∗ ∈ X∗, there exists x ∈ X such that lim
n→+∞

x∗(xn) = x∗(x) for every x∗ ∈ X∗.

(xiii) The Banach space X is a Schur space [17, page 220, definition 2.5.25] [11, page 37, defi-
nition 2.3.4] [20] if it satisfies the following condition : Whenever (xn)n∈N∗ a sequence of
X and x ∈ X such that lim

n→+∞
x∗(xn) = x∗(x) for every x∗ ∈ X∗, then lim

n→+∞
xn = x.

(xiv) A sequence X := ((xn, y∗n))n∈N∗ ⊂ X ×X∗ is called a paire of X .

(xv) The sequence X∗ := ((y∗n, JX (xn)))n∈N∗ ⊂ X∗ ×X∗∗ is called the dual paire of the paire
X.

(xvi) The paire X is called a Schauder frame (resp. unconditional Schauder frame ) of X if for
all x ∈ X , the series

∑
y∗n (x)xn is convergent (resp. unconditionally convergent) in X to

x.

(xvii) The paire X is said to be a besselian paire of X if there exists a constant A > 0 such that :
+∞∑
n=1

|y∗n (x)| |x∗ (xn)| ≤ A ‖x‖X ‖x
∗‖X∗

for each x ∈ X and x∗ ∈ X∗.
(xviii) The paire X is said to be a besselian Schauder frame of X if it is both a besselian paire and

a Schauder frame of X .

(xix) A Schauder frame X of X is said to be shrinking if the series
∑

x∗ (xn) y∗n is convergent
for every x∗ ∈ X∗.

(xx) A Schauder frame X of X is said to be boundedly complete if the series
∑
x∗∗ (y∗n)xn is

convergent in X for every x∗∗ ∈ X∗∗.
(xxi) We denote by Φp the following mapping :

Φp : Lp∗ ([0, 1]) → (Lp ([0, 1]))
∗

f 7→ Φp(f)

defined for each f ∈ Lp∗ ([0, 1]) and g ∈ Lp ([0, 1]) by the formula

Φp(f)(g) =

1∫
0

fgdx

It is well known [17, page 85, example 1.10.2] that the mapping Φp is an isometric isomor-
phism from Lp∗ ([0, 1]) onto (Lp ([0, 1]))

∗.
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(xxii) We consider the Haar system (hn)n∈N∗ of Lp ([0, 1]) defined as follows [17, pages:359-
361]. Let h1 be 1 on [0, 1[ and 0 at 1. When n ≥ 2, we define hn by letting m be the
positive integer such that 2m−1 < n ≤ 2m, then let

hn(t) =


1 if t ∈

[ 2n−2
2m − 1, 2n−1

2m − 1
[

−1 if t ∈
[ 2n−1

2m − 1, 2n
2m − 1

[
0 else

We denote by h (p) the paire ((hn,Φp (hn)))n∈N∗ of Lp ([0, 1]) and by h (p)
∗ the dual paire

of the paire h (p) , that is h (p)∗ :=
((

Φp (hn) , JLp([0,1]) (hn) ,
))

n∈N∗ .

Remark 2.1. For each λ = (λn)n∈N∗ ∈ l1 (K) , it is clear that the series
∑
u∗n (λ) en is conver-

gent and that we have :

λ =
+∞∑
n=1

u∗n (λ) en

On the other hand let us given λ = (λn)n∈N∗ ∈ l1 (K) and ξ∗ ∈
(
l1 (K)

)∗
. We set µ :=

Ψ−1 (ξ∗) ∈ l∞ (K). Hence ξ∗ = Ψ (µ) and we have :

+∞∑
n=1

|u∗n (λ)| |ξ∗ (en)| =
+∞∑
n=1

|λn| |µn|

≤

(
+∞∑
n=1

|λn|

)
sup
n∈N∗

|µn|

≤ ‖λ‖l1(K) ‖µ‖l∞(K)

≤ ‖λ‖l1(K) ‖ξ
∗‖(l1(K))∗

It follows that ((en, u∗n))n∈N∗ is a besselian Schauder frame of l1 (K).

Remark 2.2. Assume that the paire X and its dual X∗ are a Schauder frames of X and X∗

respectively. Then X will be a shrinking Schauder frame of X.

Proof. Since X∗ is a Schauder frame of X∗ it follows that the series
∑
JX (xn) (x∗) y∗n =∑

x∗ (xn) y∗n is convergent for each x∗ ∈ X∗. Consequently X is a shrinking Schauder frame of
X.

Remark 2.3. For a besselian paire X of X , the quantity

LX := sup
(u,u∗)∈BX×BX∗

(
+∞∑
n=1

|y∗n (u)| |u∗ (xn)|

)

is finite and for each x ∈ X and x∗ ∈ X∗, the following inequality holds

+∞∑
n=1

|y∗n (x)| |x∗ (xn)| ≤ LX ‖x‖X ‖x
∗‖X∗

In the sequel F := ((an, b∗n))n∈N∗ is a fixed paire of a Banach space E.

3 Fundamental results

Theorem 3.1. The paire F of E is a besselian paire of E if and only if its dual paire F∗ is a
besselian paire of E∗. In this case we have LF = LF∗ .

Proof. Assume that F is a besselian paire of E. Let x∗ ∈ E∗, x∗∗ ∈ E∗∗. We set for each n ∈
N∗: U = span(x∗∗) and Vn = span(b∗1 , ..., b

∗
n). It is clear that U and Vn are finite dimensional

subspaces of E∗∗ and E∗ respectively.
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According to the principle of local reflexivity [16, Theorem.2], we can find for each α > 0 an
α-isometry Tn : U −→ E such that :{

b∗j (Tn(x
∗∗)) = x∗∗(b∗j ), j ∈ {1, ...n}

‖Tn(x∗∗)‖E ≤ (1 + α) ‖x∗∗‖E∗∗

It follows that :
n∑

j=1

∣∣x∗∗(b∗j )∣∣ |JE(aj) (x∗)| = n∑
j=1

∣∣b∗j (Tn(x∗∗))∣∣ |x∗(aj)|
≤ LF ‖Tn(x∗∗)‖E ‖x

∗‖E∗
≤ (1 + α)LF ‖x∗∗‖E∗∗ ‖x

∗‖E∗

Consequently, we have
+∞∑
j=1

∣∣x∗∗(b∗j )∣∣ |JE(aj) (x∗)| ≤ (1 + α)LF ‖x∗∗‖E∗∗ ‖x
∗‖E∗

for each α > 0, x∗∗ ∈ E∗∗ and x∗ ∈ E∗. Hence :
+∞∑
j=1

∣∣x∗∗(b∗j )∣∣ |JE(aj) (x∗)| ≤ LF ‖x∗∗‖E∗∗ ‖x∗‖E∗
for each x∗∗ ∈ E∗∗ and x∗ ∈ E∗. Consequently F∗ is a besselian paire of E∗and we have
LF∗ ≤ LF .

Assume now that F∗ is a besselian paire of E∗. Let (x, x∗) ∈ E × E∗, then we have :

+∞∑
j=1

∣∣b∗j (x)∣∣ |x∗(aj)| = +∞∑
j=1

∣∣JE(x)(b∗j )∣∣ |JE (aj) (x
∗)|

≤ LF∗ ‖JE(x)‖E∗∗ ‖x
∗‖E∗

≤ LF∗ ‖x‖E ‖y
∗‖E∗

Hence F is a besselian paire of E
and we have LF ≤ LF∗ .

We conclude that :
(i) F is a besselian paire of E if and only F∗ is a besselian paire of E∗.
(ii) If F is a besselian paire of E then we will have LF∗ ≤ LF and LF ≤ LF∗ , hence

LF = LF∗ .
The proof of the theorem is then complete.

Proposition 3.2. (i) We assume thatE is weakly sequentially complete and thatF is a besselian
paire of E. Then for each x ∈ E, the series

∑
b∗n (x) an is unconditionally convergent.

(ii) We assume that E∗ is weakly sequentially complete and that F is a besselian paire of E.
Then for each x∗ ∈ E∗, the series

∑
x∗ (an) b∗n is unconditionally convergent.

Proof. (i) Since F is a besselian paire of E, it follows that we have for each x ∈ E and
x∗ ∈ E∗ :

+∞∑
n=1

|x∗ (b∗n (x) an)| =
+∞∑
n=1

|b∗n (x)| |x∗ (an)|

≤ LF ‖x‖E ‖x
∗‖E∗

< +∞

Hence the series
∑
b∗n (x) an is weakly unconditionally convergent. Hence, since E is

weakly sequentially complete, it follows, thanks to Orlicz’s theorem [18]; [22, theorem of
page 66], , that the series

∑
b∗n (x) an is unconditionally convergent.
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(ii) Since F is a besselian paire of E, it follows, thanks to the theorem 3.1, that the paire F∗ is
a besselian paire of E∗. Hence we have for each x∗ ∈ E∗ and x∗∗ ∈ E∗∗ :

+∞∑
n=1

|x∗∗ (x∗ (an) b∗n)| =
+∞∑
n=1

|x∗ (an)| |x∗∗ (b∗n)|

≤ LF∗ ‖x∗‖E∗ ‖x
∗∗‖E∗∗

< +∞

Hence for each x∗ ∈ E∗, the series
∑
x∗ (an) b∗n is weakly unconditionally convergent.

Hence since E∗ is weakly sequentially complete it follows thanks to Orlicz’s theorem [18];
[22, theorem of page 66] that the series

∑
x∗ (an) b∗n is, for each x∗ ∈ E∗, unconditionally

convergent.
The proof of the proposition is then complete.

Proposition 3.3. (i) We assume that E is weakly sequentially complete and that the paire F∗
is a besselian Schauder frame of E∗. Then the paire F is a besselian Schauder frame of E.

(ii) We assume that the dual space E∗ is weakly sequentially complete and that the paire F is
a besselian Schauder frame of E. Then the paire F∗ is a besselian Schauder frame of E∗.

Proof. (i) Since E is weakly sequentially complete and that F∗ is a besselian Schauder frame
of E∗ it follows, from the theorem 3.1 and the proposition 3.2, that F is a besselian paire
of E and that the series

∑
b∗n(x)an is unconditionally convergent for each x ∈ E. Let us

then consider the mapping:

S : E → E

x 7→
+∞∑
n=1

b∗n (x) an

Then we have for each x∗ ∈ E∗ and x ∈ E :

x∗ (S(x)) =
+∞∑
n=1

x∗ (an) b
∗
n(x)

= JE (x)

(
+∞∑
n=1

x∗ (an) b
∗
n

)
= JE (x) (x∗)

= x∗ (x)

Consequently, S(x) = x , x ∈ E. So F is a besselian Schauder frame of E.

(ii) Since E∗ is weakly sequentially complete it follows, from the theorem (3.1) and the propo-
sition 3.2, that F∗ is a besselian paire of E∗ and that the series

∑
JE(an)(x∗)b∗n is uncon-

ditionally convergent for each x∗ ∈ E∗. Let us then consider the mapping :

T : E∗ → E∗

x∗ 7→
+∞∑
n=1

JE (an) (x∗) b∗n

Then we have for each x∗ ∈ E∗ and x ∈ E:

T (x∗)(x) =
+∞∑
n=1

x∗ (an) b
∗
n(x)

= JE (x)

(
+∞∑
n=1

JE(an) (x
∗) b∗n

)
= JE (x) (x∗)

= x∗ (x)
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Consequently we have, for each x∗ ∈ E∗, T (x∗) = x∗. So F∗ is a besselian Schauder
frame of E∗.

The proof of the proposition is then complete.

Proposition 3.4. (i) Assume that E∗ is weakly sequentially complete and that F is a besselian
Schauder frame of E. Then F is shrinking.

(ii) Assume that E is weakly sequentially complete and that F is a besselian Schauder frame
of E. Then F is boundedly complete.

Proof. (i) Since E∗ is weakly sequentially complete and F is a besselian Schauder frame of
E, it follows from the proposition 3.2 that the series

∑
x∗ (an) b∗n is, for each x∗ ∈ E∗,

unconditionally convergent of E. Hence F is a shrinking Schauder frame in E∗.

(ii) Since F is a besselian paire of E it follows, thanks to theorem 3.1, that F∗ is a besselian
paire of E∗. It follows that we have for each x∗ ∈ E∗ and x∗∗ ∈ E∗∗:

+∞∑
n=1

|x∗ (x∗∗ (b∗n) an)| =
+∞∑
n=1

|x∗ (an)| |x∗∗ (b∗n)|

≤ LF∗ ‖x∗‖E∗ ‖x
∗∗‖E∗∗

< +∞

It follows that the series
∑
x∗∗ (b∗n) an is, for each x∗∗ ∈ E∗∗, weakly unconditionally

convergent. Hence since E is weakly sequentially complete it follows, thanks to Orlicz’s
theorem [18], [22, theorem of page 66] that the series

∑
x∗∗ (b∗n) an is unconditionally

convergent for each x∗∗ ∈ E∗∗. Consequently F is a boundedly complete Schauder frame
of E.

The proof of the proposition is then complete.

Proposition 3.5. Assume that F is a Schauder frame of E. Then F is shrinking if and only if F∗
is a Schauder frame of E∗.

Proof. Assume that F = ((an, b∗n))n∈N∗ is shrinking. For each x∗ ∈ E∗ and m ∈ N∗ we have∥∥∥∥∥x∗ −
m∑

n=1

JE(an) (x
∗) b∗n

∥∥∥∥∥
E∗

= sup
x∈BE

∣∣∣∣∣x∗(x)−
m∑

n=1

x∗(an)b
∗
n(x)

∣∣∣∣∣
= sup

x∈BE

∣∣∣∣∣x∗
(

+∞∑
n=1

b∗n(x)an

)
− x∗

(
m∑

n=1

b∗n(x)an)

)∣∣∣∣∣
= sup

x∈BE

∣∣∣∣∣x∗
(

+∞∑
n=m+1

b∗n(x)an

)∣∣∣∣∣
= sup

x∈BE

∣∣∣∣∣
(

+∞∑
n=m+1

x∗(an)b
∗
n

)
(x)

∣∣∣∣∣
=

∥∥∥∥∥
+∞∑

n=m+1

x∗(an)b
∗
n

∥∥∥∥∥
E∗

It follows that the series
∑
JE(an) (x∗) b∗n is convergent to x∗. Consequently, F∗ is a Schauder

frame of E∗.
Assume now that F∗ is a Schauder frame of E∗. Then for each x∗ ∈ E∗, the series∑
JE(an) (x∗) b∗n =

∑
x∗(an)b∗n is convergent to x∗. Hence F is a shrinking Schauder frame

of E.
The proof of the proposition is then achieved.
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Theorem 3.6. F is a besselian paire of E if and only if the following condition holds for each
x∗ ∈ E∗ and x∗∗ ∈ E∗∗ :

+∞∑
n=1

|x∗∗ (b∗n)| |x∗ (an)| < +∞ (3.1)

Proof. Since F is a besselian paire of E, it follows thanks to the theorem 3.1, that the paire F∗
is a besselian paire of E∗. Hence the follwing inequality holds for each x∗ ∈ E∗ and x∗∗ ∈ E∗∗ :

+∞∑
n=1

|x∗∗ (b∗n)| |x∗ (an)| =
+∞∑
n=1

|x∗∗ (b∗n)| |JE (an) (x
∗)|

≤ LF∗ ‖x∗∗‖E∗∗ ‖x
∗‖E∗

Consequently the condition (3.1) holds for each x∗ ∈ E∗ and x∗∗ ∈ E∗∗.
Assume now that the condition (3.1) holds for each x∗ ∈ E∗ and x∗∗ ∈ E∗∗. It follows that

the series
∑
JE(x) (b∗n)x

∗ (an) =
∑
x∗ (b∗n (x) an) and

∑
x∗∗ (x∗ (an) b∗n) are unconditionally

convergent for all x ∈ E, x∗ ∈ E∗ and x∗∗ ∈ E∗∗. Consequently, there exists [22, proposition 4,
page 59 ] for each x ∈ E and x∗ ∈ E∗ a constants Cx, Dx∗ > 0 depending respectively on x and
x∗ such that :

+∞∑
n=1

|b∗n(x)| |x∗(an)| ≤ Cx ‖x∗‖E∗ , x
∗ ∈ E∗ (3.2)

+∞∑
n=1

|x∗∗(b∗n)| |x∗(an)| ≤ Dx∗ ‖x∗∗‖E∗∗ (3.3)

It follows from the inequality (3.3) that :

+∞∑
n=1

|JE(x)(b∗n)| |y∗(an)| ≤ Dy∗ ‖JE(x)‖E∗∗ , x ∈ E, y
∗ ∈ E∗

that is :
+∞∑
n=1

|b∗n(x)| |y∗(an)| ≤ Dy∗ ‖x‖E , x ∈ E, y
∗ ∈ E∗ (3.4)

The inequalities (3.2) and (3.4) entail that the following mappings :

f : E → R+

x 7→ sup
u∗∈BE∗

(
+∞∑
n=1
|b∗n(x)| |u∗(an)|

)

g : E∗ → R+

y∗ 7→ sup
u∈BE

(
+∞∑
n=1
|b∗n(u)| |y∗(an)|

)
are well-defined. We prove by direct computations that f and g are seminorms on E and E∗
respectively and that we have for every x ∈ E and x∗ ∈ E∗:

+∞∑
n=1
|b∗n(x)| |x∗(an)| ≤ f(x) ‖x∗‖E∗

+∞∑
n=1
|b∗n(x)| |x∗(an)| ≤ g(x∗) ‖x‖E

Let us prove now that f and g are both countably subadditive. Indeed, let
∑
vk be a convergent
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series in the Banach space E. Then we have for each x∗ ∈ E∗:
+∞∑
n=1

∣∣∣∣∣b∗n
(

+∞∑
k=1

vk

)∣∣∣∣∣ |x∗(an)| ≤
+∞∑
n=1

(
+∞∑
k=1

|b∗n(vk)| |x∗(an)|

)

≤
+∞∑
k=1

(
+∞∑
n=1

|b∗n(vk)| |x∗(an)|

)

≤

(
+∞∑
k=1

f(vk)

)
‖x∗‖E∗

It follows that :

f

(
+∞∑
k=1

vk

)
≤

+∞∑
k=1

f(vk)

Hence f is countably subadditive. We prove similarly that g is countably subadditive. Thanks to
Zabreı̆ko’s lemma [23], [17, lemma 1.6.3., page 42], that f (resp. g) is continuous on E (resp.
E∗).
We consider now the mapping :

U : E × E∗ → l1(K)

(x, x∗) 7→ (b∗n(x)x
∗(an))n∈N∗

It is clear that U is well-defined since the numerical series
∑
|b∗n(x)| |y∗(an)| is convergent for

each x ∈ E and x∗ ∈ E∗. Furthermore U is bilinear. Let us show that U is continuous. Indeed,
let x ∈ E and x∗ ∈ E∗ and (xk, x∗k)k∈N∗ be a sequence in E×E∗ which is convergent to (x, x∗).
We have for every k ∈ N∗ :

‖U((x, x∗))− U((xk, x∗k))‖l1(K) =
+∞∑
n=1

|b∗n(x)x∗(an)− b∗n(xk)x∗k(an)|

=
+∞∑
n=1

|b∗n(x− xk)x∗(an)− b∗n(xk)(x∗k − x∗)(an)|

≤
∞∑
n=1

|b∗n(x− xk)| |x∗(an)|+
∞∑
k=0

|b∗n(xk)| |(x∗k − x∗)(an)|

≤ f(x− xk) ‖x∗‖E∗ + g(x∗k − x∗) ‖xk‖E
But f is continuous on E and g is continuous on E∗. It follows that :

lim
k→+∞

f(x− xk) = lim
k→+∞

g(xk − x∗) = 0

Consequently :
lim

k→+∞
‖U((x, x∗))− U((xk, x∗k))‖l1(K) = 0

Hence the bilinear mapping U : E × E∗ −→ l1(K) is continuous. It follows that there exists a
constant C > 0 such that :

+∞∑
n=1

|b∗n(x)| |x∗(an)| ≤ C ‖x‖E ‖x
∗‖E∗

for every x ∈ E and x∗ ∈ E∗. It follows that F is a besselian paire of E.
Hence the proof of the theorem is then complete.

Remark 3.7. Using the definition of weakly unconditionally convergent series in a Banach, the
theorem 3.6 can be rephrased as : F is a besselian paire of E if and only if for each x∗ ∈ E∗ the
series

∑
x∗ (an) b∗n is weakly unconditionally convergent.

Relying on the theorem 3.6, we obtain a new proof of theorem 3.1 which do not use the
principle of local reflexivity.
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Proof. (i) Assume that F is a besselian paire. Then, thanks to the theorem 3.6, the following
condition holds for each x∗∗ ∈ E∗∗ and x∗∗∗ ∈ E∗∗∗ :

+∞∑
n=1

|x∗∗ (b∗n)| |x∗∗∗ (JE (an))| =
+∞∑
n=1

|PE (x∗∗∗) (an)| |x∗∗ (b∗n)|

< +∞

It follows, thanks to the theorem 3.6, that F∗ is a besselian paire of E∗.

(ii) Assume now that F∗ is a besselian paire of E∗. Let x∗ ∈ E∗ and x∗∗ ∈ E∗∗. Then there
exists y∗∗∗ ∈ E∗∗∗ such that x∗ = PE (y∗∗∗). It follows, by virtue of the theorem 3.6, that :

+∞∑
n=1

|y∗∗ (b∗n)| |x∗ (an)| =
+∞∑
n=1

|y∗∗ (b∗n)| |PE (y∗∗∗) (an)|

=
+∞∑
n=1

|y∗∗ (b∗n)| |y∗∗∗ (JE (an))|

< +∞

Consequently F is a besselian paire.
The new proof of theorem 3.1 is then complete.

Proposition 3.8. Assume thatF∗ is an unconditional Schauder frame ofE∗, thenF is a besselian
paire of E.

Proof. The assumption on F∗ entails that the series
∑
JE (an) (x∗)b∗n =

∑
x∗ (an) b∗n is weakly

unconditionally convergent for each x∗ ∈ E∗. Consequently, thanks to the remark 3.7, F is a
besselian paire of E.

Proposition 3.9. The paire h (p) is a besselian Schauder frame of Lp ([0, 1]) .

Proof. Since (Φp (hn))n∈N∗) is a Schauder basis of (Lp ([0, 1]))
∗ which is isometrically isomor-

phic to Lp∗ ([0, 1]) [19], [15], it follows that the paire h (p)
∗
=
((

Φp (hn) , JLp(0,1) (hn)
))

n∈N∗
is an unconditionally Schauder frame of (Lp(0, 1))

∗. Hence according to the proposition 3.4 as
rephrased in the remark 3.7, the paire h (p) is a besselian Schauder frame of Lp ([0, 1]) .

The following result is a generalisation to the well known James’s theorem [10] which char-
acterizes reflexive Banach spaces.

Theorem 3.10. Assume that F is a besselian Schauder frame of E. Then E is reflexive if and
only if F is shrinking and boundedly complete.

Proof. Assume that E is reflexive. Then E∗ is also reflexive [17, Corollary 1.11.17 page 104].
Consequently,E andE∗ are weakly sequentially complete Banach spaces. SinceF is a besselian
paire of E, it follows, thanks to the theorem 3.1, that F∗ is a besselian paire of E∗. It follows
from proposition 3.4, that F is shrinking and boundedly complete.
Assume now that F is shrinking and boundedly complete. Let be given x∗∗ ∈ E∗∗. Since F is
boundedly complete then the series

∑
x∗∗ (b∗n) an convergent to an element x in E, that is:

x =
+∞∑
n=1

x∗∗(b∗n)an

But F is shrinking. Hence, thanks to the proposition 3.5, F∗ is a Schauder frame of E∗. It
follows that :

y∗ =
+∞∑
n=1

y∗(an)b
∗
n, y

∗ ∈ E∗
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Consequently, we have for each x∗ ∈ E∗:

JE(x)(x
∗) = x∗(x)

=
+∞∑
n=1

x∗(an)x
∗∗ (b∗n)

= x∗∗

(
+∞∑
n=1

x∗(an)b
∗
n

)
= x∗∗(x∗)

It follows that x∗∗ = JE(x). Thus JE is surjective. Consequently E is reflexive.

The proof of the theorem is then complete.

Theorem 3.11. Assume that F is a besselian Schauder frame of E. Then E is reflexive if and
only if the spaces E and E∗ are both weakly sequentially complete.

Proof. Assume that E is reflexive. Then E and E∗ are both reflexive. Hence E and E∗ are both
weakly sequentially complete.
Assume now that E and E∗ are both weakly sequentially complete. Since F is a besselian
Schauder frame of E, it follows, according to the proposition 3.4, that F is a besselian Schauder
frame of E which is shrinking and boundedly complete. Consequently the theorem 3.10 entails
that the Banach space E is reflexive.

The proof of the theorem is then complete.

Corollary 3.12. Assume that E is an infinitely dimensional Schur space which has a besselian
Schauder frame. Then the dual space E∗ is not weakly sequentially complete.

Proof. Since E is an infinitely dimensional Schur space, then E is not reflexive [11, corollary
2.3.8 page 37]. But it is also assumed that E has a besselian Schauder frame. Consequently E∗
is not weakly sequentially complete.

Corollary 3.13. The Banach space l∞ (K) is not weakly sequentially complete.

Proof. It is well-known that the space l1 (K) is a Schur space [17, example 2.5.24 pages 218-
220], [11, page 37, theorem 2.3.6 ], [20] which is infinite dimensional and for which the paire
((en, u∗n))n∈N∗ is a besselian Schauder frame as proved in the remark 2.1. Hence the dual space(
l1 (K)

)∗ is not weakly sequentially complete. But since
(
l1 (K)

)∗ is isometrically isomorphic
to the Banach space l∞ (K) , it follows that the Banach space l∞ (K) is not weakly sequentially
complete.
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