
Palestine Journal of Mathematics

Vol. 12(2)(2023) , 237–245 © Palestine Polytechnic University-PPU 2023

HYPERBOLIC FRACTIONAL DIFFERENTIAL OPERATOR

Iyad Alhribat and Amer Abu Hasheesh

Communicated by Thabet Abdeljawad

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Keywords and phrases: Fractional derivative, conformable derivative, fractional differential equations, hyperbolic frac-
tional derivative, hyperbolic fractional integral.

We would like to thank the referee(s) for valuable comments and suggestions on the manuscript.

Abstract
In this paper, we introduce a new definition of fractional derivative by using the limit ap-

proach and based on hyperbolic functions for α ∈ (0, 1] which obeys classical properties includ-
ing linearity, product rule and many fractional versions of other properties and results,such as
Rolle’s theorem, and the mean value theorem. Further, if α = 1, the definition coincides with
the classical definition of first derivative. We give some applications to fractional differential
equations.

1 Introduction

Actually, fractional calculus is a part of real analysis that studies all the topics assuming ar-
bitrary real powers α of the differential operator; so, in the present situation researchers are
showing more interest to work in the field of fractional calculus as a generalization of the ordi-
nary calculus;which is one of our main targets in this work, besides its various applications in
physics ,bioengineering,see [16],and [18] and recently a climate change model has been studied
et al.[10].

For the many years, many definitions of fractional derivative have been introduced by various
researchers,The most known are the Riemann Liouville definition and the Caputo definition, see
[12],and [11],for some applications refer to [13],[15],and [14].To mention some:

(i) Riemann-Liouville definition. For α ∈ [n− 1, n), the α-derivative of f is

Dα
t0
(f)(t) =

1
Γ(n− α)

dn

dtn

∫ t

t0

f(x)

(t− x)α−n+1 dx.

(ii) Caputo definition. For α ∈ [n− 1, n), the α-derivative of f is

Dα
t0
(f)(t) =

1
Γ(n− α)

∫ t

t0

f (n)(x)

(t− x)α−n+1 dx.

However, the following are some of the setbacks of one definition or the other:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 (Dα

a (1) = 0 for the Caputo
derivative), if α is not a natural number,

(ii) All fractional derivatives do not satisfy the known formula of the derivative of the product
of two functions: Dα

a (fg) = f (Dα
a g) + g (Dα

a f),

(iii) All fractional derivatives do not satisfy the known formula of the derivative of the quotient
of two functions: Dα

a

(
f
g

)
= g(Dαa f)−f(D

α
a g)

g2 ,

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g) = f (α)(g(t))g(α)(t),

(v) All fractional derivatives do not satisfy: DαDβ(f) = Dα+β(f), in general.
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Khalil et al.[1] has introduced a new derivative called the conformable fractional derivative
of f of orderα ∈ (0, 1] and is defined by

Tαf(t) = lim
h→0

f
(
t+ ht1−α

)
− f(t)

h
,

which is a natural extension and almost satisfies all the classical properties of the usual first
derivative.

T. Abdeljawad has a long history and an important contribution in this field ,for instance et
al.[2] ,[3],and [17],and other articles,they have developed and implemented the fundamentals
of the analytic theory of the conformable fractional calculus and studied different topics and
applications in the general fractional calculus.Recently,they have combined fuzzy calculus,and
conformable calculus to introduce the fuzzy conformable calculus et al. [4].

Ajay Dixit, Amit Ujlayan in [5] and [6] have introduced a U-D fractional derivative as a
convex combination of the function and its first derivative, where (Dαf) (t) = (1 − α)f(t) +
αf ′(t) for α ∈ (0, 1], they have studied the main results of this operator.

Many types of fractional differential equations are studied and solved with respect to the
conformable fractional differential operator,and other fractional operators ,for instance,refer to
[7], [8],and[9].

Our new definition of fractional derivative is also an extension of the usual first derivative, we
use the limit approach definition and is associated with the hyperbolic function y = cosh((1 −
α)t), α ∈ (0, 1]; so, we can work on hyperbolic functions which is a rich area of identities
and nice properties that facilitates our computations, especially in solving fractional differential
equations.

This paper is organized as follows: In section 2,we first present our new Hyperbolic frac-
tional derivative, its main properties including linearity, product rule, quotient rule, power rule,
chain rule,also we have discussed some important theorems based on our hyperbolic fractional
derivative such as Rolle’s theorem, and the mean value theorem .In section 3, we establish anti-
derivative corresponding to the proposed derivative (Hyperbolic fractional integral),and so,as
an application, we solve some well known fractional deferential equations based on our new
fractional differential operator.

2 Hyperbolic Fractional Derivative

Definition 2.1. Given a function f : [0,∞) → R, and α ∈ (0, 1], the hyperbolic fractional
derivative of order α is defined by

(Dαf) (t) = lim
h→0

f(t+ h cosh(1− α)t)− f(t)
h

, for all t > 0, α ∈ (0, 1].

We will, sometimes, write f (α) for (Dαf) (t), to denote the hyperbolic fractional derivatives of
f of order α. In addition, if the Hyperbolic fractional derivative of f of order α exists, then we
simply say f is α-differentiable.

If f is hyperbolic α-differentiable in the interval (0, a) for a > 0 and α ∈ (0, 1] such that
limt→0+ (D

αf) (t) exists, then (Dαf) (0) = limt→0+ (D
αf) (t).

In the case of the conformable fractional derivative proposed in [1],we have two important
remarks that are considered as the main motivation for our definition:

Remark 2.2. A function could be α - differentiable at a point but not differentiable, for exam-
ple, take f(t) = 2

√
t, T 1

2
(f)(0) = limt→0+ T 1

2
(f)(t) = 1 where T 1

2
(f)(t) = 1 for t > 0. But

T1(f)(0) does not exist. While for our definition, hyperbolic α-differentiable implies differen-
tiable which is an advantage of our derivative.

Remark 2.3. If f and Tαf(t) are differentiable, we have

d

dt
Tαf(t) = (1− α)t−α d

dt
f(t) + t1−α

d2

dt2
f(t).

Therefore,this expression tends to infinity when t is very small, but this brings regularities in
several mathematical problems especially when one seeks to bounded Tαf(t).
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Now, we present the main properties and results concern to our new fractional derivative.

Theorem 2.4. If a function f : [0,∞) → R is hyperbolic α-differentiable at t0 > 0, then f is
continuous at t0.

Proof. Since f (t0 + h cosh(1− α)t0)− f (t0) = f(t0+h cosh(1−α)t0)−f(t0)
h · h, then

lim
h→0

f (t0 + h cosh(1− α)t0)− f (t0) = lim
h→0

f (t0 + h cosh(1− α)t0)− f (t0)
h

· lim
h→0

h.

Let ε = h cosh ((1− α)t0), then

lim
h→0

f (t0 + h cosh(1− α)t0)− f (t0) ,

= cosh ((1− α)t0) lim
ε→0

f (t0 + ε)− f (t0)
ε

· lim
h→0

h,

= cosh ((1− α)t0) f ′ (t0) · 0 = 0.

Which implies limε→0 f (t0 + ε) = f (t0),hence f is continuous at t0.

Theorem 2.5. Let f, g be hyperbolic α-differentiable at a point t > 0, then for 0 < α ≤ 1

(i) Dα(af + bg) = a (Dαf) + b (Dαg) for all a, b ∈ R,

(ii) Dα (tp) = p cosh((1− α)t)tp−1 for all p ∈ R,

(iii) Dα(λ) = 0 for all constant function f(t) = λ,

(iv) Dα(fg) = f (Dαg) + g (Dαf),

(v) Dα
(
f
g

)
= g(Dαf)−f(Dαg)

g2 ,

(vi) Dα(f ◦ g)(t) = f ′(g(t))Dα(g)(t),

(vii) In addition, if f is differentiable, then (Dαf) (t) = cosh((1− α)t)f ′(t).

Proof. In fact, we need only to prove (vii) and (iv), since the other rules are direct consequences.
(vii):

(Dαf) (t) = lim
h→0

f(t+ h cosh(1− α)t)− f(t)
h

.

Let ε = h cosh((1− α)t). Therefore

(Dαf) (t) = cosh((1− α)t) lim
ε→0

f(t+ ε)− f(t)
ε

,

= cosh((1− α)t)f ′(t).
(iv):

(Dαfg) (t) = lim
h→0

f(t+ h cosh(1− α)t)g(t+ h cosh(1− α)t)− f(t)g(t)
h

,

= limh→0
f(t+h cosh(1−α)t)g(t+h cosh(1−α)t)−f(t)g(t+h cosh(1−α)t)+f(t)g(t+h cosh(1−α)t)−f(t)g(t)

h ,

= lim
h→0

f(t+ h cosh(1− α)t)− f(t)
h

g(t+h cosh(1−α)t)+f(t) lim
h→0

g(t+ h cosh(1− α)t)− g(t)
h

,

= (Dαf) (t) lim
h→0

g(t+ h cosh(1− α)t) + f(t) (Dαg) (t).

Since g is continuous at t, then limh→0 g(t+ h cosh(1− α)t) = g(t),hence

Dα(fg) = f (Dαg) + g (Dαf) .
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Example 2.6. It is worth noting the following hyperbolic fractional derivatives of certain func-
tions for α ∈ (0, 1].

(i) Dα(sinh(1− α)t) = (1− α) cosh2((1− α)t),

(ii) Dα(tanh(1− α)t) = (1− α) sech((1− α)t),

(iii) Dα(2 cosh(1− α)t) = (1− α) sinh(2(1− α)t),

(iv) Dα(2 tan−1
(
e(1−α)t

)
) = 1− α.

We generalize the definition of hyperbolic fractional derivative for α ∈ (n, n+ 1], n ∈ N.

Definition 2.7. Let α ∈ (n, n + 1], for some n ∈ N, and f is n-differentiable at t > 0, then the
hyperbolic α− fractional derivative is defined by:

(Dαf) (t) = lim
h→0

f (n)(t+ h cosh(1− α)t)− f (n)(t)
h

if the limit exists.

Remark 2.8. As a direct consequence of this definition, we can show that

(Dαf) (t) = cosh(((n+ 1)− α)t)f (n+1),

where α ∈ (n, n+ 1] and f is (n+ 1)- differentiable at t > 0.

The previous definitions of fractional derivative Riemann–Liouville and Caputo do not enable
us to study the analysis of α− differentiable functions. However, our definition makes it possible
to prove basic analysis theorems such as Rolle’s theorem and the mean value theorem.

Theorem 2.9. Rolle’s theorem for hyperbolic fractional differentiable functions.
Let a > 0 and f : [0,∞)→ R be a given function that satisfies

(i) f is continuous on [a, b],

(ii) f is α-differentiable for some α ∈ (0, 1],

(iii) f(a) = f(b).

Then there exists c ∈ (a, b), such that f (α)(c) = 0.

Proof. Suppose f is continuous on [a, b], and f(a) = f(b), then there is a local extreme point
c ∈ (a, b). Without loss of generality, assume c is a point of local minimum. So,

(Dαf) (c) = lim
h→0+

f(c+ h cosh(1− α)c)− f(c)
h

= lim
h→0−

f(c+ h cosh(1− α)c)− f(c)
h

.

But, the first limit is nonnegative, and the second limit is nonpositive. Hence (Dαf) (c) = 0.

Theorem 2.10. Mean value theorem for hyperbolic fractional differentiable functions.
Let a > 0 and f : [0,∞)→ R, be a given function that satisfies

(i) f is continuous on [a, b],

(ii) f is α-differentiable for some α ∈ (0, 1].

Then there exists c ∈ (a, b), such that

(Dαf) (c) =
f(b)− f(a)

2
1−α

[
tan−1

(
e(1−α)b

)
− tan−1

(
e(1−α)a

)] .
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Proof. Consider the function: g(x) = f(x)− f(a)−

f(b)− f(a)
2

1−α
[
tan−1

(
e(1−α)b

)
− tan−1

(
e(1−α)a

)] [ 2
1− α

tan−1
(
e(1−α)x

)
− 2

1− α
tan−1

(
e(1−α)a

)]
.

Then,
g(a) = g(b) = 0,

hence by Rolle’s theorem, there exists c ∈ (a, b), such that

g(α)(c) = 0.

Using the fact

Dα

(
2 tan−1

(
e(1−α)x

)
1− α

)
= 1,

we get

(Dαf) (c) =
f(b)− f(a)

2
1−α

[
tan−1

(
e(1−α)b

)
− tan−1

(
e(1−α)a

)] .
In order to work on the calculus of the hyperbolic fractional derivative, we need to define a

corresponding antiderivative.

3 Hyperbolic Fractional Integral and applications

We introduce the hyperbolic α-fractional integral as follows:

Definition 3.1. Let α ∈ (0, 1] and a ≥ 0, let f be a function defined on (a, t], then the hyperbolic
α− fractional integral of f is defined by:

Iaα(f)(t) =

∫ t

a

sech((1− α)s)f(s)ds

Example 3.2. Evaluate the following hyperbolic fractional integrals.

(i) I1
1
2

(
cosh

( 1
2 t
))

=
∫ t

1 1ds = t− 1.

(ii) I0
1
2
(1) =

∫ t
0 sech

( 1
2s
)
ds = 4 tan−1

(
e

1
2 t
)
− π.

Remark 3.3. Since sech((1 − α)s) is continuous and bounded,then if f(s) is continuous and
bounded on (a, t],then Iaα(f)(t) =

∫ t
a

sech((1 − α)s)f(s)ds is convergent;which is an extra
advantage to the hyperbolic fractional integral.

The following result shows the inverse property of the hyperbolic fractional operator.

Theorem 3.4. If f : [0,∞)→ R is any continuous function in the domain of Iα and 0 < α ≤ 1.
then, for t > a, we have Dα

a (I
a
αf(t)) = f(t).

Proof. Since f is continuous on, then Iaαf(t) is clearly differentiable.
Hence, Dα

a (I
a
αf(t)) = cosh((1− α)t) ddt (I

a
αf(t)),

= cosh((1− α)t) d
dt

∫ t

a

sech((1− α)s)f(s)ds,

= cosh((1− α)t) sech((1− α)t)f(t),
= f(t).
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As an application, we solve certain well known fractional differential equations with respect
to our hyperbolic differential operator with α ∈ (0, 1].

Definition 3.5. The general form of the linear hyperbolic fractional differential equation of order
α is given by:

y(α) + p(x)y = f(x), (3.1)

where p(x) and f(x) are α-differentiable functions.

Clearly equation (3.1)is equivalent to

cosh((1− α)x)y′ + p(x)y = f(x). (3.2)

If we Divide equation (3.2) by cosh((1− α)x), we get

y′ + p(x) sech((1− α)x)y = f(x) sech((1− α)x). (3.3)

Now, equation (3.3) is a first order linear ordinary differential equation that has the general
solution

y =
1

µ(x)
(Iα(f(x)µ(x)) ,

where µ(x) is the integrating factor given by:

µ(x) = eI
α(p(x)).

Example 3.6. Solve the hyperbolic fractional differential equation
y(α) + (1− α) sinh((1− α)x)y = 1.

Solution. This equation is transformed to the linear equation

y′ + (1− α) tanh((1− α)x)y = sech((1− α)x).

We compute the integrating factor

µ(x) = e
∫
(1−α) tanh((1−α)x)dx = eln(cosh((1−α)x) = cosh((1− α)x).

Hence, the general solution is given by

y = sech((1− α)x)
∫

1dx = sech((1− α)x)(x+ c),

= x sech((1− α)x) + c sech((1− α)x).

Definition 3.7. The general form of the Bernoulli hyperbolic fractional differential equation of
order α is given by:

y(α) + p(x)y = f(x)yn, n 6= 0, 1. (3.4)

where p(x) and f(x) are α-differentiable functions.

To solve equation (3.4), we use the substitution z = y1−n that reduce it to linear
hyperbolic fractional differential equation

z(α) + (1− n)p(x)z = (1− n)f(x), (3.5)

that has a general solution

y = [
1

µ(x)
(Iα((1− n)f(x)µ(x))]

1
1−n ,

where the integrating factor

µ(x) = eI
α((1−n)p(x)).
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Example 3.8. Solve the hyperbolic fractional differential equation

y(α) + (1− α) sech((1− α)x)y = (1− α)sech((1− α)x)
y

.

Solution. The substitution z = y2 reduces the equation into linear hyperbolic fractional differ-
ential equation

z(α) + 2(1− α) sech((1− α)x)z = 2(1− α) sech((1− α)x).
We compute the integrating factor

µ(x) = eI
α(2(1−α) sech((1−α)x) = e

∫
2(1−α) sech2((1−α)x)dx = e2 tanh((1−α)x),

hence, the general solution is given by

y =

(
e−2 tanh((1−α)x)

(
Iα
(

2(1− α)e2 tanh((1−α)x) sech((1− α)x)
)) 1

2
,

=

(
e−2 tanh((1−α)x)

(∫ (
2(1− α)e2 tanh((1−α)x) sech2((1− α)x)

)) 1
2

,

=
(
e−2 tanh((1−α)x)

(
e2 tanh((1−α)x) + c

)) 1
2
=
√

1 + ce−2 tanh((1−α)x).

Definition 3.9. The general form of the Riccati hyperbolic fractional differential equation of
order α is given by:

y(α) = h(x) + k(x)y + u(x)y2, (3.6)

where h(x), k(x), and u(x) are α-differentiable functions.

To solve equation (3.6).If a specific solution y1 is known, then the general solution, which
comes in the form of y = y1 + z, where z is the general solution to the following Bernoulli
hyperbolic fractional differential equation

z(α) + (−k(x)− 2u(x)y1) z = u(x)z2. (3.7)

Example 3.10. Find the general solution of the hyperbolic fractional differential equation

y(α) =

(
−2x4 + x2y + y2

) (
e(1−α)x + e(α−1)x

)
2x3 ,

given that y1 = −x2 is a solution.

Solution. We can simplify the equation to get

y(α) =

(
−2x4 + x2y + y2

)
x3 cosh((1− α)x) = cosh((1− α)x)

(
−2x+ x−1y + x−3y2) ,

which is Riccati equation. To solve it, we solve first the corresponding Bernoulli equation
(3.7).After doing all the simplifications, we get

z(α) +
(
x−1 cosh((1− α)x)

)
z = x−3 cosh((1− α)x)z2,

that has a general solution

z =
(
x(Iα(−x−4 cosh((1− α)x)

)−1
=

(
x(
x−3

3
+ c

)−1

=
3x2

1 + 3cx3 ,

so the general solution for Riccati equation is

y = y1 + z = −x2 +
3x2

1 + 3cx3 =
2x2 − 3cx5

1 + 3cx3 .

Finally,we present some graphical comparison between the conformable fractional derivative
vs the hyperbolic fractional derivative for two functions with different values of α.
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Figure(1)

Figure(2)

Figure(1) represents the graphs of f(x) = x
3
2 ,and its conformable fractional derivative vs. its

hyperbolic fractional derivative with α = 0.1 .
Figure(2) represents the graphs of f(x) =

√
x− x2,and its conformable fractional derivative

vs. its hyperbolic fractional derivative with α = 0.5.
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