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Abstract The Solovay–Kitaev theorem is of fundamental importance in fault–tolerant quan-
tum computing in the circuit–gate framework which is based on the Heisenberg–Born interpre-
tation of quantum mechanics. Considering the C*–algebra approach to quantum mechanics,
we explore some aspects of the question whether a generalized version of this theorem can be
established in a C*–algebra setting.

1 Introduction

According to the circuit–gate framework of quantum computing, a quantum program can be
regarded as the application of several quantum gates in the form of unitary matrices on qubits
in the form of state vectors, together with measurements at certain instances. In a fault–tolerant
setting, the universality and the supremacy of quantum computing thus depends upon the cost to
implement an arbitrary unitary operation to a given accuracy. This problem has been answered
elegantly, and independently, by Solovay and Kitaev [7, 3], resulting is what is known today as
the Solovay–Kitaev theorem.

According to the Solovay–Kitaev theorem, it is possible to approximate any 2 × 2 unitary
matrix with unit determinant to an arbitrary accuracy ε by a product of O(log4 1

ε ) physically
realizable 2 × 2 unitaries with unit determinant. More precisely, the theorem for SU(2) can be
stated as follows.

Theorem 1.1(Solovay–Kitaev) Let G be a finite subset of SU(2) such that G contains its own
inverse and 〈G〉 is dense in SU(2). Then for any ε > 0, Gl, the set of all strings that can be made
from G without using more than l elements, provides an ε–net for SU(2) where l = O(log4( 1

ε )).
This leads to an interesting theoretical question: what other mathematical structures than

special unitary matrices would support this type of approximation and provide a platform for
quantum–like computation?

Several previous researchers have investigated the possibility of having different algebraic
structures that support quantum–like computing. Aerts and Czachor [1] explored the possi-
bility of using geometric algebras for efficient computing , demonstrating a simulation of the
Deutsch–Jozsa algorithm. Later, Cafaro and Mancini [2] formalized the geometric algebra ap-
proach of quantum gates. This work is of particular significance as it generalizes the notion of
quantum gates. Fernandez and Schneeberger [5] explored possibility of adopting quarternions
instead of unitary matrices, relating it to Bernstein–Vazirani theorem. Recently, Mahasinghe et
al [8] investigated the possibility of using rotations, by proving a version of the Solovay–Kitaev
theorem for the rotation group SO(3).

It is well–known that the circuit–gate framework is based on the Heisenberg and Born inter-
pretation of quantum mechanics [4, 9]. On the other hand, one should not forget in this regard
the C*–algebra formalism of quantum mechanics. Therefore, considering the geometric algebra
approach [2] and the C*–algebra formalism, it is a natural question to ask whether quantum–like
computations are supported in a C*–algebra setting. If the question whether Solovay–Kitaev
type approximations are possible in such a setting is explored, it would be helpful for a better
understanding of the scope of quantum–like computations. In this context, we attempt to inves-
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tigate the question whether a generalized version can be established in a C*–algebra setting.

2 Preliminaries

Definition 2.1. A complex algebra A is called a C*–algebra, if there exists a norm, ‖ · ‖: A −→
R and an involution, ∗ : A −→ C satisfying:

1. A is complete with respect to ‖ · ‖

2. ‖ ab ‖≤‖ a ‖‖ b ‖, ∀a, b ∈ A, and

3. ‖ a∗a ‖=‖ a ‖2, ∀a ∈ A.

A C*–algebra A is said to be unital if A has an multiplicative identity. In the usual scenario
this identity is denoted by 1A.

Definition 2.2. An element u of a unital C*–algebra A is said to be unitary if u∗u = 1A = uu∗.

Definition 2.3. Let A and B be two C*–algebras. Then a ∗–homomorphism is a linear, mul-
tiplicative mapping, ϕ : A → B which satisfies ϕ(a∗) = ϕ(a)∗,∀a ∈ A. A unital or a unit
preserving ∗–homomorphism is a ∗-homomorphism defined between two unital C*–algebras A
and B with ϕ(1A) = 1B .

Definition 2.4. Trace on a C* algebra A is a bounded linear functional T : A → C satisfying :
T (a∗) = T (a), T (a∗a) ≥ 0 and T (ab) = T (ba) for all a, b ∈ A. If A is unital and T is a trace
with T (1) = 1, T is said to be normalised.

Definition 2.5. [6] Suppose A is a unital C*–algebra and T is a normalized trace on A. Then the
Fuglede–Kadison determinant det : U(A)→ R+ is defined by,

det(a) = exp[T (log(a∗a)
1
2 )],∀a ∈ U(A) (2.1)

An inductive sequence in C∗-algebras is a sequence A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . . where An is

a C∗-algebra and ϕn : An → An+1 is a ∗-homomorphism for each n ∈ N. If An and ϕn is unital
for every n ∈ N the above sequence is said to be a unital indcutive sequence.

Definition 2.6. A C∗-algebra A is said to be the inductive limit of the inductive sequence A1
ϕ1−→

A2
ϕ2−→ A3

ϕ3−→ . . . if the following are true:

1. There exists a sequence {µn}∞n=1 of ∗-homomorphisms such that µn : An → A and µn =
µn+1 ◦ φn for every n ∈ N.

2. If B is a C∗-algebra and {λn}∞n=1 is a sequence of ∗-homomorphisms such that λn : An →
B and λn = λn+1 ◦ φn for every n ∈ N, then there exists a unique ∗-homomorphism
λ : A→ B such that λn = λ ◦ µn for every n ∈ N.

Proposition 2.7. Every inductive sequence of C∗-algebras A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . . has an

inductive limit A with ∗-homomorphisms µn : An → A as in Definition 2.6 (1). Moreover;

(i) A =
∞⋃
n=1

µn(An).

(ii) µn(a) = µn+1(ϕn(a)) for each n ∈ N and for all n ∈ N and a ∈ An.

(iii) ‖ µn(a) ‖= lim
m→∞

‖ ϕm,n(a) ‖ for all n ∈ N and a ∈ A.

(iv) If A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . . is unital then A is unital and µn is unital for every n ∈ N.

More on inductive limits can be found in [11].

Definition 2.8. A C∗ algebra A is said to be an UHF algebra if A is isomorphic to an inductive
limit of a unital inductive sequence of the form,

Mk1(C)
ϕ1−→Mk2(C)

ϕ2−→Mk3(C)
ϕ3−→ . . . (2.2)
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where, {kn}∞n=1 is a sequence of natural numbers and {ϕn}∞n=1 is a sequence of unital ∗ - ho-

momorphisms. From Proposition 2.7 it follows that A =
∞⋃
n=1

µn(Mkn(C)) where {µn} are as in

Definition 2.6. Note that since each ϕn is unital, kn devides kn+1 for each n ∈ N.

Definition 2.9. Let H be a Hilbert space and B(H) the space of all bounded operators of H .
Consider the linear mapping, α : H → B(H), where for all x, y belong to H , α(x)α(y) +
α(y)α(x) = 0 and α(x)α(y)∗ + α(y)∗α(x) = 〈y|x〉I , where I is the identity operator on H .
These are called canonical anti-commutation relations. The CAR algebra is the C*–algebra
generated from α(H). i.e., A = C∗(α(H)).

Proposition 2.10. LetH be a separable Hilbert space andA = C∗(α(H)) where α : H → B(H)
as in Definition 2.9. Then A is UHF algebra and is independent (up to isomorphisms) of the
choice of H,α. In particular, A is isomoprhic the limit of the inductive sequence M21(C) ϕ1−→

M22(C) ϕ2−→M23(C) ϕ3−→ . . . , where ϕn : M2n(C)→M2n+1(C) is defined by ϕn(a) =

(
a 0
0 a

)
,

for each n ∈ N and a ∈M2n(C).

Corollary 2.11. Let A and M21(C) ϕ1−→ M22(C) ϕ2−→ M23(C) ϕ3−→ . . . be as in Proposition 2.10.
Then there exist ∗-homomorphisms µn : M2n(C) → A such that µn = µn+1 ◦ ϕn for every
n ∈ N and

A =
∞⋃
n=1

µn(M2n(C)) (2.3)

3 C*–algebra approach

Throughout this section we will write A to denote the CAR algebra. In exploring the possibility
of establishing Soloway - Kitaev type approximation results for A one requires to extend the
notion of special unitary matrices to A.

Let τn : M2n(C) → C be the usual normalised trace. i.e τn(a) =
1

2n
∑n
i=1 aii,∀a =

(aij)2n×2n ∈ M2n(C). Note that for every n ∈ N, τn = τn+1 ◦ ϕn where ϕn is as in Corol-
lary 2.11.

Proposition 3.1: There exists a unique normalised trace τ : A→ C.

Proof. As observed above τn = τn+1 ◦ ϕn. Hence, τ :
∞⋃
n=1

µn(M2n(C)) defined by τ(µn(a)) =

τn(a),∀a ∈M2n(C) is well defined and is bounded linear. Since each τn is a trace it follows that

τ satisfy the trace properties given in Definition 2.4. Now from density of
∞⋃
n=1

µn(M2n(C)) in

A (Corollary 2.11), τ extends to trace on A. Since τn(12n) = 1 where 12n denotes the identity
in M2n(C) and µn is unital for each n, we have τ(1) = 1. To observe the uniqueness of τ note
that for any normalised trace τ ′ on A, τ ′ ◦ µn is a normalised trace on M2n(C). But τn is the
only normalised trace on M2n(C). Hence τn = τ ′ ◦ µn and τ = τ ′ on (Mkn(C). Therefore, by

density of
∞⋃
n=1

µn(M2n(C)), we get τ = τ ′.

With τ as above we have Fuglede–Kadison determinant (Definition 2.5) defined in A. We will
use det to denote this.

Proposition 3.2: Under the Fuglede—Kadison determinant in A, any unitary element is a spe-
cial unitary in A.

Proof. Let u ∈ A be an unitary. Then u∗u = 1. Then log(u∗u) = log(1) = 0. Thus
τ(log(u∗u)

1
2 ) = τ(0) = 0. Therefore det(u) = exp 0 = 1.
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Proposition 3.3: [10] For each unitray u ∈ A and ε > 0 there exists a special unitray un ∈
M2n(C) for some n ∈ N such that

‖ u− µn(un) ‖< ε (3.1)

Now as mentioned, from the Solovay Kitaev theorem we have the instruction set In, where
the free group of In denoted by (In)l is dense in SU(M2n(C)). Then for each un ∈ SU(M2n(C))
there exists a word (un)l such that ‖ (un)l − un ‖< ε

2 . Then since µn : M2n(C) −→ A is a
unital *-isomorphism, ‖ µn(un)l − µn(un) ‖< ε

2 . Then combining this with triangle inequality
and Proposition 3.2 we get

‖ µn((un)l)− u ‖ ≤ ‖ µn((un)l)− µn(un) ‖ + ‖ µn(un)− u ‖
≤ ‖ (un)l − un ‖ + ‖ µn(un)− u ‖

<
ε

2
+
ε

2
< ε

This leads to the following Theorem.

Theorem 3.7: For each u ∈ SU(A) and for each ε > 0 there exists a lu,ε > 0 such that there
is a word w ∈

⋃∞
n=1 µn(In) of length lu,ε such that ‖ w − u ‖< ε.

4 Conclusion

We explored the possibility of performing quantum–like computations in a C*–algebra setting.
Specifically, the possibility of establishing a version of the Solovay–Kitaev theorem in a UHF
algebra setting was traversed. In this regard a special instance of a UHF algebra, called CAR
algebra was studied by concentrating on finding a link between such an algebra and finite ma-
trix algebras, for which the Solovay–Kitaev approximations are fundamentally proven. While
investigating a path to achieve the objective it was discovered that for a given element in the
CAR algebra there, is a possibility of finding a positive real number l such that a word with
length of the said l made up of elements of the CAR algebra, which gives an approximation up
to an arbitrary accuracy level. This is primarily different from the word length mentioned under
the original theorem in the sense that the said word length should only depend upon the desired
accuracy but not on the element that is being approximated.

Further follow up can be done in order to come up with a version which is more inline with
the original theorem which is to find either a finite or a countable subset, whose free group will
be dense in the CAR algebra. One possible path is to investigate the possibility of considering
the matrix algebra consisting of matrices with elements from the CAR algebra and writing and
proving the Solovay–Kitaev theorem for the special unitary group of the said matrix algebra.
Also being inline with the objective of investigating the possibility of expanding the scope on
which the Solovay–Kitaev approximations can be applied, a perusal can be done to reexamine
the theorem from a geometric algebra perspective.

5 Declaration

Several results in this paper were presented at the International Conference on Multidisciplinary
Approaches in Science, Colombo.
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