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Abstract It is one thing to show the existence of transcendental numbers, and another thing
to construct explicitly the transcendental numbers. Apart from these two things there is much
more difficult thing is to investigate the specific number is transcendental. The aim of this article
is to take the reader to this three fold nature displayed in the classical literature on transcendental
numbers.

1 Introduction

Let Z[x] denote the ring of polynomials with integer coefficients. We define

A = {a ∈ C : p(a) = 0 for some p(x) ∈ Z[x]} (1.1)

and call it as the set of algebraic numbers. We consider the set T such that

A ∪ T = C and A ∩ T = ∅ (1.2)

The elements of the set T are called the transcendental numbers.
We define a subset of A as follows

AR = {a ∈ R : p(a) = 0 for some p(x) ∈ Z[x]} (1.3)

and call the elements of AR real algebraic numbers and denote its complement in R by TR and
the elements of TR are called real transcendental numbers.

Clearly, the set of rational number Q is a subset AR. Therefore, we need only to categorize
irrational numbers for TR.

Therefore, the following questions that will follow immediately have high historical impor-
tance in the theory of transcendental numbers:

(i) Is TR a non-empty set ?

(ii) What is the cardinality of TR ?

Similar questions for A and T will follow automatically.
The subject of transcendental numbers started in 1844 by Liouville, by launching his dis-

covery Liouville’ s approximation theorem. Liouville’s theorem enabled him to give first proof
on the existence of transcendental numbers. George Cantor taken totally a different approach in
1874 and published a spectacular paper on countability of algebraic numbers.

It is one thing to show the existence of transcendental numbers, and another thing to con-
struct explicitly the transcendental numbers. Apart from these two things there is much more
difficult thing is to investigate the specific number is transcendental.

The aim of this article is to take the reader to this three fold nature displayed in the literature
on transcendental numbers. An undergraduate student who has been introduced to measure
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theory, after reading the statement “Algebraic numbers are countable” (whose measure is 0)
desperately look for hand full of transcendental numbers! After reading this article one will be
in a position to write as many transcendental numbers as one wishes.

Hermite proved the transcendence of e in 1873, and Lindemann proved the transcendence
of π in 1882. These proofs were considered among the greatest achievements in the nineteenth
century mathematics.

Cantor’s methods are non-constructive type so it raised questions about its validity at that
time. But the result, set of Algebraic numbers A, is countable must have shocked the mathemat-
ical community at that time. A qualitative analysis that every number is almost transcendental
opened a path to study more in depth about the transcendental numbers.

One may ask an interesting question here which connects to the linear continuum hypothesis.
Cantor proved that

No set S has bijection with its power set P(S)
So Is there any bijection between the P(A) to C ?

2 Rational approximation of an irrational number

We need to approximate an irrational number by rational numbers for practical purposes. Many
of the standard books contain this literature. One of the main theorems is that there are infinitely
many rational numbers p/q corresponding to any irrational number α such that∣∣∣∣α− p

q

∣∣∣∣ < 1
q2

This can be obtained as a corollary to the following simple result derived by Dirichlet in 1842,
by using Pigeon-hole principle.

For any real α and any integer N > 1, there exist integers p, q with 0 < q < N such that
|qα− p| ≤ 1/Q.

There is a better approximation to this, which is known as The classical Hurwitz-Borel theo-
rem:

For any irrational number α, there are infinitely many rational numbers, p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

and note that here
√

5 is the best possible constant in the above inequality. It means if
√

5 is
replaced by any larger constant there are irrational numbers α, which do not satisfy the above
inequality for infinitely many rational numbers. One such example seen in textbooks is 1

2(
√

5−
1). In fact, this is an important statement to motivate to find the irrational numbers which can be
approximated by infinitely many rational numbers within 1/q3, 1/q4, . . . , 1/qn etc.

Also note that if α is a rational number and α 6= p/q there are only finitely many rationals
p/q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2

The value two in the power of q in the above inequality is defined by some authors as approx-
imation exponent or the order of approximation.

Definition 2.1. A real number α has approximation exponent (or order of approximation) τ(α)
if τ(α) is the smallest number such that for all n > τ(α)∣∣∣∣α− p

q

∣∣∣∣ < 1
qn

(2.1)

has only finitely many solutions.

One can see that an approximation exponent of a rational number is one. From the theorem
of Dirichlet, the approximation exponent of an irrational number is at least two.
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When we approximate an irrational number by a rational number we wish that the error is
small and the denominator is also as small as possible to use it for practical purposes. Therefore,
an approximation index is defined to be the product of these two factors, namely the error and
the denominator. The smaller of this product may be the better approximation of this number α.
For example,

10
∣∣∣∣√3− 17

10

∣∣∣∣ ≈ 0.32

3
∣∣∣∣√3− 5

3

∣∣∣∣ ≈ 0.195

So, we may say, 5/3 is a better approximation than 17/10. Since all rational numbers are alge-
braic, the question comes to categorize only the irrational numbers.

Definition 2.2. An irrational number α is called well-approximable if for all positive integers N ,
n there is a rational number p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1
Nqn

It is also possible to construct as many well-approximable numbers as you want. See Niven
[1]. One of the main theorems is due to Joseph Liouville, which says that a well-approximable
number can not be algebraic. In fact, this theorem enables us to give a concrete example to show
the existence of a transcendental number

Theorem 2.3. (Liouville, 1844) If α is an algebraic number with degree n > 1 then there exists
a number c = c(α) > 0 such that the inequality∣∣∣∣α− p

q

∣∣∣∣ > c

qn
(2.2)

holds for all rational numbers p/q(q > 0).

We can use Liouville’s theorem to construct transcendental numbers. For example, let

ξ =
∞∑
n=1

10−n!.

Write

pj = 10j!
j∑
n=1

10−n!, qj = 10j! (j = 1, 2, . . . )

then pj and qj are relatively prime rational integers and we have∣∣∣∣ξ − pj
qj

∣∣∣∣ = ∞∑
n=j+1

10−n! < 10−(j+1)! (1 + 10−1 + 10−2 + . . .
)

=
10
9
q−j−1
j < q−jj .

The transcendental numbers which are shown by using this technique are called Liouville num-
bers.

Definition 2.4. An irrational number α is called a Liouville number if for no pair c > 0, n ≥ 2
the inequality 2.2 in Theorem 2.3 holds for all rational numbers p/q.

Clearly Liouville numbers are transcendental and it is also known that the set of Liouville
numbers is of measure zero. Don’t get tempted to show that π is a Liouville number !

Mahler[4] proved the following theorem to show π is not a Liouville number.

Theorem 2.5. If p and q ≥ 2 are two positive integers, then∣∣∣∣π − p

q

∣∣∣∣ > 1
q42
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3 Construction of transcendental numbers

3.1 Construction of transcendental numbers using polynomials with rational
coefficients

Another interesting method of constructing transcendental numbers that are not Liouville’s num-
bers is due to Mahler. He proved a fascinating result choosing the values of a specific non-
constant polynomial and writing its values as follows: See [3].

Consider a non- constant polynomial p(x) with rational coefficients such that p(n) > 0 for
all n ∈ N. Then the number

0.p(1)p(2)p(3) . . .

is a transcendental number but is not a Livoullie’s number. For example, for p(x) = 2x we have
the following number

0.24681012161820 . . .

is a transcendental number but not a Livouville’s number. By using the method given above a
reader can easily see that the number

0.123456789101112 . . .

is a transcendental number.

3.2 Lindemann’s theorem and Transcendence of e and π

There are several theorems of constructing transcendental numbers. In 1882, F. Lindemann
sketched in his memoir a more general theorem from which one can derive e and π are transcen-
dental. We state the Lindemann’s theorem below:

Theorem 3.1. For any distinct algebraic numbers α1, α2, . . . , αn and any non-zero algebraic
numbers β1, β2, . . . , βn we have

β1e
α1 + β2e

α2 + · · ·+ βne
αn 6= 0 (3.1)

From Theorem 3.1, as a special case we can see e is transcendental: For any rational numbers
β1, β2, . . . , βn we have the following relation

β1e
n + β2e

n−1 + · · ·+ βne
0 6= 0

Another way, in the Equation 3.1 for n = 1, we have eα is transcendental for any non-zero
algebraic α. For α = 1, it follows that e is a transcendental number.

Transcendence of π follows from the following Equation:

eπi + 1 = 0 (3.2)

Euler considered π is one of the five primary numbers in Mathematics and he felt himself the
existence of such a simple relation in Eqn. 3.2 with other four primary numbers is a proof of the
existence of God!

Also by writing,

cosα =
eiα + e−iα

2
it follows that cosα is transcendental for any algebraic α 6= 0. Similarly one can verify that sinα
and tanα are transcendental for algebaraic α.

3.3 Hilbert’s 7 th problem

In 1900, at the International Congress of Mathematicians, held in Paris, Hilbert raised a list of
23 problems. One of the formulations of Hilbert’s 7 th problem was the following:

Is αβ is transcendental for any algebraic number α 6= 0, 1 and for any algebraic irrational
β?
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In 1929 Gelfond showed that αβ is transcendental for any algebraic number α 6= 0, 1 and for
any imaginary quadratic irrational β. In particular, this implies that

eπ = (−1)−i (3.3)

is transcendental. Equation [3.3] can be easily deduced from the Equation 3.2.

4 Roth’s theorem and Approximation of π

Friedrich Roth was awarded Field’s medal at I.C.M. in Edenburg, in 1958 for proving the fol-
lowing theorem:

Theorem 4.1. (Roth’s Theorem) If α is any algebraic number, and ε > 0, then the inequality∣∣∣∣α− p

q

∣∣∣∣ > 1
q2+ε (4.1)

holds for all but finitely many rational numbers p/q.

Note that the ε in Roth‘s theorem can not be dropped as any irrational number can be approx-
imated by infinitely many rational numbers within 1/q2.

The reader must note that to show that α is transcendental, one must show that α can be
approximated by infinitely many rational p/q within 1/q2+ε for some ε > 0. That is∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

holds for infinitely many rational numbers.

4.1 Approximation of π

One of the oldest mathematical problems is to determine the area and perimeter of a circle of
radius r, Archimedes calculated approximate values of π by approximating the area of regular
polygons inscribed in the disc of radius 1. Consider the regular nth polygon of sides sn = 3×2n
sides. It is easy to find the area an of each regular polygon of sides sn as follows:

By using the area of each isosceles triangle inscribed inside the regular polygon sn one can
compute the area an of each regular polygon of sides sn is equal to

an =
1
2
sn sin

(
2π
sn

)
for n = 1, 2, . . . .

First note that the area of each isosceles triangle inscribed inside the regular polygon sn is
equal to

1
2

sin
(

2π
sn

)
.

Therefore, the area an of each regular polygon of sides sn is equal to

an =
1
2
sn sin

(
2π
sn

)
for n = 1, 2, . . . .

Now consider the outer polygons with circle inside. Once again it is not hard to see that the
area of each outer isosceles triangle is

tan
(
π

sn

)
and similarly we can find the area of each outer polygon An circumscribed the circle is equal to

An = sn tan
(
π

sn

)
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n=1,  Number of sides = 6

Figure 1. Regular polygons with 6 sides

for n = 1, 2, . . . .
One may verify that both the sequences converge to the same real number which is the area

of the unit circle and we define it as π.
Since we know that π is transcendental, by Roth’s theorem there is a sequence of rationals(

pn
qn

)
, an ≤ pn

qn
≤ An such that for an ε > 0∣∣∣∣π − pn

qn

∣∣∣∣ < 1
q2+ε
n

where
an = 3× 2n−1 sin

(
π

3× 2n−1

)
and

An = 3× 2n tan
(

π

3× 2n

)
But, the difficulty is to find explicitly a sequence of rational numbers!
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