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Abstract We recall some definitions and results related to (strongly) n-stable rings and by
applying the almost division algorithm over a class of subrings of K[x] (the ring of polynomials
over a field K), construct an example of a commutative ring which is not strongly n-stable for
any positive integer n.

Dedicated to the Memory of Marion E .Moore

1 Introduction

The main goal of this work is to provide an example of a commutative ring which is not strongly
n-stable (Example 2.5), simply, by applying [3, Proposition 7]. In this section, we focus only on
some terminologies and definitions and in the next section, will provide the required theorems
before constructing our example and, finally, end the paper with a brief comments (mainly taken
from [10]) related to the significant power of the strongly stable range (or rank) in commutative
ring theory.

• The notion of strongly stable range in commutative rings and unitary modules was initi-
ated by Rahimi (the second author of this paper) ([18] and [19]) and in [10] there is a detailed
discussion related to the significant advantage of the notion of strongly stable range (or rank) for
the study of outer product rings and very strongly completable rings in comparison to the other
(original) previous methods. .

The concept of stable range was initiated by H. Bass in his investigation of the stability prop-
erties of the general linear group in algebraic K-theory [2]. In ring theory, stable range provides
an arithmetic invariant for rings that is related to interesting issues such as cancelation, substitu-
tion, and exchange. The simplest case of stable range 1 has especially proved to be important in
the study of many ring-theoretic topics.

• In this note a ring R, unless otherwise indicated, is commutative with identity 1 6= 0. Also
by a sequence of elements of R, we mean a finite sequence and will use it implicitly without any
confusion in the context.

Definition 1.1. Let R be a commutative ring and s ≥ 1 an integer. A sequence (a1, a2, . . . , as, as+1)
of elements of R is said to be stable if (a1, a2, . . . , as, as+1) = (a1+b1as+1, a2+b2as+1, . . . , as+
bsas+1) for some b1, b2, . . . , bs ∈ R. A sequence (a1, a2, . . . , as, as+1) of elements of R is said to
be a unimodular sequence if 1 is in the ideal (a1, a2, . . . , as, as+1).

Remark 1.2. As in [5], we use (a1, a2, . . . , as, as+1), s ≥ 1, to denote both a sequence and the
ideal generated by the elements of the sequence; but the context will always make our meaning
clear. Also, we follow [5] for the term “unimodular sequence" instead of “primitive vector" as
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used in [14]. For a detailed study of stable range in commutative rings, semirings, and (unitary)
modules; see [5], [10], [14], [15], [16], [17], [18], [19], and [22].

Definition 1.3. For any fixed integer n ≥ 1, a commutative ring R is said to be strongly n-stable
[resp., n-stable] provided that any [resp., unimodular] sequence of elements in R of size larger
than n is stable. For convenience, a strongly n-stable (resp., n-stable) ring is called strongly
stable [resp., stable] whenever n = 1. It follows that if R is a strongly n-stable [resp., an n-
stable] ring, then also R is strongly m-stable [resp., m-stable] for any fixed integer m ≥ n.

In the following, we write the definition of the stable range in a commutative ring for uni-
modular sequences as defined in [5] for the sake of completeness. Note that this definition is
exactly the same as our definition that defined above.

Definition 1.4. Let R be a commutative ring and s ≥ 1 an integer. An integer n ≥ 1 is
said to be in the stable range of R (or simply, R is n-stable) if every unimodular sequence
(a1, a2, . . . , as, as+1), s ≥ n, of elements of R is stable.

Remark 1.5. It is clear that if R is n-stable, then it is m-stable for any integer m ≥ n. Note that
the term "R is n-stable" is used in [15] (for convenience) and is exactly the same as the statement
"n is in the stable range of R", which is used by D. Estes and J. Ohm [5, page 345].

We now close this section with two facts related to the dimension of a commutative ring and
its stable range for the sake of reference and completeness.

Remark 1.6. Theorem 3.4 in [9] states that any n-dimensional commutative integral domain is
(n+ 1)-stable and if R is an arbitrary n-dimensional commutative ring, then it is (n+ 2)-stable.
Also, Theorem 2.3 in [5] provides a sharp upper bound for the stable range of a commutative
ring by its j-Noetherian dimension.

2 Constructing the Claimed Example

In this section, we discuss some facts that are necessary for the construction of our claimed
example (Example 2.5) and, finally, end the section with a brief comments (mainly taken from
[10]) related to the significant power of the strongly stable range (or rank) for matrix completions
over different types of commutative rings.

Theorem 2.1. Let R be a ring and n ≥ 1 a fixed integer. Then R is strongly n-stable if and only
if any sequence of size n+ 1 is stable.

Proof. A proof by induction is given for the sufficient part. Assume, a1, a2, . . . , an, an+1, an+2
is a sequence in the ring R. Thus,

an+2 ∈ (a1, a2, . . . , an, an+1, an+2)

implies

an+2 =
n+2∑
i=1

aixi =
n∑
i=1

aixi + l

for some x1, x2, . . . , xn, xn+1, xn+2 ∈ R, where l = an+1xn+1 + an+2xn+2.
Consequently,

an+2 ∈ (a1, a2, . . . , an, l)

and for appropriate r1, r2, . . . , rn ∈ R,

an+2 ∈ (a1 + r1l, a2 + r2l, . . . , an + rnl)

⊆ (a1 + r1xn+2an+2, a2 + r2xn+2an+2, . . . , an + rnxn+2an+2, an+1 + 0an+2).
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Corollary 2.2. If all unimodular sequences of size n+1 (n ≥ 1 a fixed integer) of a commutative
ring R are stable, then any unimodular sequence of size larger than n is stable. That is, R is
n-stable.

We need the following result for construction of our example (Example 2.5).

Theorem 2.3. The homomorphic image of a strongly n-stable ring is strongly n-stable.

Proof. By virtue of the above result, it suffices to consider only the sequences of size n+ 1. Let
B be an ideal of a strongly n-stable ring A and a1 +B, a2 +B, . . . , an+B, an+1 +B a sequence
in A/B. Thus,

an+1 +B ∈ (a1 +B, a2 +B, . . . , an +B, an+1 +B)

implies

an+1 =
n+1∑
i=1

riai + b

=
n∑
i=1

riai + rn+1an+1 + b

=
n∑
i=1

riai + l

for some r1, r2, . . . , rn, rn+1 ∈ A and b ∈ B with l = rn+1an+1 + b. Consequently, for
appropriate s1, s2, . . . , sn ∈ A,

an+1 ∈ (a1 + s1l, a2 + s2l, . . . , an + snl)

implies

an+1 +B ∈ (a1 + s1rn+1an+1 +B, a2 + s2rn+1an+1 +B, . . . , an + snrn+1an+1 +B).

proof In [3], chapman defines and applies a weaker form of the division algorithm, namely the
almost division algorithm of index m (m a positive integer) over a natural class of subrings R of
K[X] containing the field K and then shows that the number of generators of an ideal I of R
can not be only bounded, but also provides examples of ideals that can be generated by n, but
not n − 1 elements. Further, besides [3], [4], and [21], a more general approach to rings and
semirings satisfying an almost division algorithm can be found in [13] and [20].

(∗) We now in order to complete our work for the construction of our example (Example
2.5), recall some literature related to the notion of numerical monoids and commutative semi-
group rings and will take it (exactly) from [3] as follows.

Let N0 represent the nonnegative integers. An additive submonoid S of N0 is called a nu-
merical monoid. Using elementary number theory, it is easy to show that there is a finite set of
positive integers n1, . . . , nk such that if s ∈ S, then

s = x1n1 + · · ·+ xknk,

where each xi is a nonnegative integer. To represent that n1, . . . , nk is a generating set for S,
we use the notation

S = (n1, . . . , nk)

= {x1n1 + · · ·+ xknk | xi ∈ N0}.
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If the generators n1, . . . , nk are relatively prime, then S is called primitive and in [3, Propo-
sition 2], it is stated that S is always isomorphic to a primitive numerical semigroup; and S has
a unique minimal cardinality generating set.

Now, if K is a field and S a numerical semigroup, then set

K[X;S] = {f(X) | f(X) ∈ K[X] and f(X) =
∑
σ∈S

aiX
σ},

where it is understood that the sum above is finite. The rings K[X;S] are known as semigroup
rings, and [6] is a good general reference on the subject. Under our hypotheses, the rings K[X;S]
consist of all polynomials with exponents coming from the numerical monoid S.

Let n > 1 be a positive integer and set S = (n, n+ 1, . . . , 2n− 1). Notice that S consists of
0 along with all positive integers greater than or equal to n. Thus, a typical element in K[X;<
n, n+ 1, . . . , 2n− 1 >] is of the form

f(X) = a0 +
k∑
i=n

aiX
i

where k ≥ n and again each ai is in K.

If S = (n1, . . . , nk) is a numerical semigroup, then the semigroup ring K[X;S] is equivalent
to the extension of K by the monomial terms Xn1 , . . . , Xnk (i.e., K[X;S] = K[Xn1 , . . . , Xnk ]).

(∗∗) A Noetherian integral domain in which the ideals can be n-generated is said to have the
n-generator property. If an integral domain D has the n-generator property for some n ∈ N, then
it has the m-generator property for some minimal value m ∈ N. Dedekind domains are generally
not principal ideal domains, but they always have the 2-generator property (a proof of this can
be found in [12, Theorem 17]). Actually, any ring with n-generator property (n ≥ 2 a minimal
integer) can not be a strongly (n− 1)-stable. Otherwise, there exists an (n− 1)-generated ideal
in R which contradicts the minimality of n. Hence, Dedekind domains are not generally strongly
stable.

We will use the following remark in the next example.

Remark 2.4. In Proposition 7 of [3], it is shown that the ideal

I = (Xn, Xn+1, . . . , X2n−1)

is not an (n− 1)-generated ideal in K[X;S], where K is a field, n > 1 a positive integer, and
S = (n, n+ 1, . . . , 2n− 1) a numerical semigroup.

We now construct our example by applying Proposition 7 in [3].

Example 2.5. Let n ≥ 2 be a fixed integer, K a field, and Rn = K[X;Sn], where Sn =
(n, n + 1, . . . , 2n − 1) a numerical monoid. Clearly, by [3, Proposition 7], Rn is not strongly
(n − 1)-stable (see the preceding remark). Now, let R =

∏
n≥2 Rn be the direct product of

Rn’s as defined above. Then R is not strongly (n− 1)-stable since the homomorphic image of a
strongly m-stable ring is again strongly m-stable (Theorem 2.3) for any positive integer m ≥ 1.

•We close by recalling some brief notes (mainly) from [10] related to the significant advan-
tage of the notion of strongly stable range (or rank) for the study of outer product rings and very
strongly completable rings in comparison to the other classical approaches.

In [10], there is a discussion of matrix completions over different types of rings with many
references related to this context. Completable rings have been extensively studied, largely in
connection with Serre’s Problem (now the Quillen-Suslin Theorem), which can be phrased as:
polynomial rings in finitely many variables over fields are completable [11]. In 1981 Gustafson,
Moore, and Reiner [7] extended Hermite’s classic result along a different course, showing that
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(or more generally any Dedekind domain) is very strongly completable, i.e., given an m×n ma-
trix A (m < n) and an element d of the ideal generated by its m×m minors, we can extend A to
an n× n matrix with determinant d. Nearly thirty years later, Gustafson, Robinson, Richter, and
Wardlaw [8] returned to the topic, using a similar technique to show that principal ideal rings are
very strongly completable.

The literature on outer product rings and very strongly completable rings (as described in
[10]) has focused almost exclusively on the Noetherian case. These results are often deep, with
proofs that do not typically generalize to non-Noetherian rings at all, so it is likely to be ex-
tremely difficult to achieve the same level of understanding of the general case. However, Juett
and Williams in [10] achieve a significant expansion of the theory of outer product rings and
very strongly completable rings by providing non-Noetherian generalizations of some of the ex-
amples given in the introduction of their paper [10].

Their generalizations involve sufficient conditions in terms of the notion of strongly stable
rank which was introduced by Rahimi (the second author of this paper) in [18]. Their method
involving strongly stable rank provides a completely different approach to that used in the orig-
inal proofs, and it is arguably simpler. Because strongly stable rank is a previously relatively
unexplored concept, which holds some interest in its own right and has the potential to find other
applications, they spent a good deal of time developing its theory.

They mentioned that the first study of strongly stable rank conditions was as recent as Rahimi’s
papers in 2003 [18] and 2005 [19]. This notion is still relatively unexplored and they claimed
that they could not find any mention of it outside of Rahimi’s work. So they developed its basic
properties and found upper bounds on the strongly stable ranks of certain modules. These bounds
will eventually lead to new examples of outer product rings and very strongly completable rings.

Also, in [1], there is a discussion of matrix completions over J-stable rings and in [1, The-
orem 4.11], it is shown that every J-stable ring is strongly completable. The authors in the
paragraph preceding [1, Corollary 4.2] refer to [15, Corollary 2.1], which is a typo and should
be "[15, Corollary 2.11]" that states every 2-stable ring is completable.
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