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Abstract In this paper, we introduce the concept of an (m,n)−closed δ−primary ideal of
R, where R is a commutative ring with non zero identity, and δ is an expansion function of
ideals of R. Several results on (m,n)−closed δ−primary ideal of R are proved. We prove
that I = pk1

1 ...p
kr
r D is an (m,n)−closed δ−primary ideal of D if and only if pki

i D is an
(m,n)−closed δ−primary ideal of D for every i ∈ {1, ..., r}. Also, we present and prove the re-
lation between n−absorbing δ−primary ideals and (m,n)−closed δ−primary ideals. Examples
of (m,n)−closed δ−primary ideals are also studied.

1 Introduction

Recently, extensive researches have been done on prime and primary ideals and submodules. The
families of prime and primary ideals (resp. submodules) are very interesting algebraic classes.
Ring theorists therefore must often restrict their attention to certain types of these concepts of
ideals and submodules or to certain context in which these concepts of ideals and submodules are
especially beneficia. The various properties that describe these families and their various gen-
eralizations testify to their ubiquitous nature across many branches of mathematics, including
number theory, geometry, and topology. New objects related to prime and primary ideals were
introduced and studied by Badawi and Badawi et.al. in [4] and [7] respectively. These are the
concepts of 2−absorbing and 2−absorbing primary ideals of commutative rings. Later, many
authors studied on this issue, see for example [6, 8, 9, 10, 12]. The concept of δ−primary ideals
in commutative rings was introduced by Zhao in [15]. This concept is considered to unify prime
and primary ideals. Many results of prime and primary ideals are extended to these structures,
see for examples [11], [14]. In ring theory, it is known that primary ideals are directly closed to
prime ideals. These inspired us to define (m,n)−closed δ−primary ideals. The innovative idea
behind this paper is to construct more accurate results and concepts regarding generalizations of
prime ideals. Hence, the motivation of writing this paper lies to create new concepts that can be
used in many branches in commutative algebra and its applications. Also, to continue the study
of the family of n−absorbing ideals and to identify new properties in that subject. The remains
of this paper is organized as follows:
Section 2 concerns some basic definitions and results that are used in the sequel of this paper. In
section 3, the main results concerning (m,n)−closed δ− primary ideals will be given and then
examples have been provided. Section 4 concerns (m,n)−closed δ−primary ideals in trivial
ring extensions. Section 5 concerns the conclusion.
Throughout this paper, all rings are assumed to be commutative with nonzero identity, all mod-
ules are unitary and all ring homomorphisms preserve the identity.

2 Preliminary Notes

Let R be a commutative ring and I be an ideal of R. An ideal I is called proper if I 6= R. Let
I be a proper ideal of R. Then, the radical of I is defined by {x ∈ R | ∃ n ∈ N, xn ∈ I},
denoted by

√
I (note that

√
R = R and

√
0 is the ideal of all nilpotent elements of R). For the

ring R, we shall use Nil(R), U(R), char(R) to denote the set of all nilpotent elements, units,
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and characteristic of R, respectively.

Definition 2.1. ([4], [7]) A proper ideal I of R is called a 2−absorbing ideal (respectively,
2−absorbing primary ideal) of R if whenever abc ∈ I (respectively, 0 6= abc ∈ I) for some
a, b, c ∈ R, implies ab ∈ I or ac ∈ I or bc ∈ I (respectively, ab ∈ I or ac ∈

√
I or bc ∈

√
I).

Another generalization of prime ideals of commutative rings is the concept of n−absorbing
ideals, defined as follows.

Definition 2.2. [2] Let n be a positive integer. A proper ideal I of R is called an n−absorbing
ideal (respectively, strongly n−absorbing ideal) of R if whenever x1...xn+1 ∈ I for some
x1, ..., xn+1 ∈ R (respectively, I1...In+1 ⊆ I for some ideals I1, ..., In+1 of R), then there
are n of the xi ′s (respectively, n of the Ii ′s) whose product is in I .

Thus, a 1−absorbing ideal is just a prime ideal.

Definition 2.3. [3] Letm and n be positive integers. A proper ideal I ofR is called a semi−n−absorbing
ideal of R if whenever xn+1 ∈ I for some x ∈ R implies xn ∈ I . More generally, a proper
ideal I of R is called an (m,n)−closed ideal of R if whenever xm ∈ I for some x ∈ I implies
xn ∈ I .

Definition 2.4. [15] Let Id(R) be the set of all ideals of R. A function δ : Id(R) −→ Id(R)
is called an expansion function of Id(R) if it has the following two properties: I ⊆ δ(I) and if
I ⊆ J for some ideals, I , J of R, then δ(I) ⊆ δ(J). A proper ideal I of R is called a δ−primary
ideal of R if whenever xy ∈ I for some x, y ∈ R implies x ∈ I or y ∈ δ(I).

Afterwards, Fahid and Zhao introduced the concept of 2−absorbing δ−primary ideal, which
is a generalization of δ primary ideal.

Definition 2.5. [11] A proper ideal I of R is called a 2−absorbing δ−primary ideal of R if
whenever xyz ∈ I for some x, y, z ∈ R implies xy ∈ I or yz ∈ δ(I) or xz ∈ δ(I). A proper
ideal I of R is called a strongly 2−absorbing δ−primary ideal of R if whenever I1, I2, I3 are
ideals of R, I1I2I3 ⊆ I , I1I3 6⊆ I and I2I3 6⊆ δ(I), then I1I2 ⊆ δ(I).

The concepts of n−absorbing δ−primary ideals and weakly n−absorbing δ−primary ideals
are generalizations of the concepts of n−absorbing primary ideals and weakly n−absorbing
primary ideals respectively. Recall the following definition:

Definition 2.6. [14] A proper ideal I of R is called an n−absorbing δ−primary ideal (respec-
tively, weakly n−absorbing δ−primary ideal) of R if whenever x1...xn+1 ∈ I (respectively,
0 6= x1...xn+1 ∈ I) for some x1, ..., xn+1 ∈ R implies x1...xn ∈ I or there exists 1 ≤ k < n
such that x1...x̂k...xn+1 ∈ δ(I), where x1...x̂k...xn+1 denotes the product of x1...xk−1xk+1...xn+1.

3 Properties of (m,n)−closed δ−primary ideals

We start by the following definition.

Definition 3.1. Let R be a commutative ring, I a proper ideal of R, δ an expansion function of
Id(R) and m and n positive integers.

(1) I is called a semi−n−absorbing δ−primary ideal of R if whenever an+1 ∈ I for some
a ∈ R, then an ∈ δ(I).

(2) I is called an (m,n)−closed δ−primary ideal of R if whenever am ∈ I for some a ∈ R,
then an ∈ δ(I).

Clearly, a proper ideal is (m,n)−closed δ−primary for 1 ≤ m ≤ n; so we usually assume
that 1 ≤ n < m. We give our first trivial result.

Theorem 3.2. Let R be a commutative ring, I a proper ideal of R, δ an expansion function of
Id(R) and m and n positive integers. Then,
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(1) I is a semi−n−absorbing δ−primary ideal of R if and only if I is an (n + 1, n)−closed
δ−primary ideal of R.

(2) If I is an n−absorbing δ−primary ideal of R, then I is a semi−n−absorbing δ−primary
ideal of R.

(3) If I is an (m,n)−closed δ−primary ideal ofR, then I is an (m, k)−closed δ−primary ideal
of R for every positive integer k ≥ n.

(4) An (m,n)−closed δ−primary ideal of R is (ḿ, ń)−closed δ−primary ideal of R for all
positive integers ḿ ≤ m and ń ≥ n.

(5) If δ(I) is an (m,n)−closed ideal of R, then I is an (m,n)−closed δ−primary ideal of R.

(6) Any radical ideal I of R, i.e.,
√
I = I is an (m,n)−closed δ−primary ideal of R for all

positive integers m and n.

(7) An n−absorbing ideal of R is an (m,n)−closed δ−primary ideal of R for every positive
integer m.

Proof. (1)-(6) follows directly from the definitions.
(7) Let I be an n−absorbing ideal of R and let m > n be an integer. Assume that am ∈ I for
some a ∈ R. Then, an ∈ I ⊆ δ(I) by ([2], Theorem 2.1 (a)). Thus, I is an (m,n)−closed
δ−primary ideal of R for m > n. Clearly, I is an (m,n)−closed δ−primary ideal of R for every
integer 1 ≤ m ≤ n. Hence, I is an (m,n)−closed δ−primary ideal of R for every positive
integer m.

In the following example, we give some expansion functions of ideals of a ring R.

Example 3.3. (1) The identity function δI , where δI(I) = I for every I ∈ Id(R), is an expan-
sion function of ideals of R.

(2) For each ideal I, define δ√I(I) =
√
I . Then, δ√I is an expansion function of ideals of R.

Remark 3.4. Let R be a commutative ring, δI an expansion function of Id(R) and m and n
positive integers, then a proper ideal I of R is an (m,n)−closed δI−primary ideal of R if and
only if I is an (m,n)−closed ideal of R.

Example 3.5. It is clear that, any n−absorbing ideal of R is an (n+ 1, n)−absorbing ideal of R.
However, this need not be true for semi−n−absorbing δ−primary ideals. For example, letR = Z
and I = 12Z. Then δ√I(I) =

√
I = 6Z. One can easily see that, I is a semi−1−absorbing

(i.e., (2, 1)−closed) δ√I−primary ideal of R, but not a semi−2−absorbing (i.e, (3, 2)-closed)
δ√I−primary ideal of R.

Theorem 3.6. Let R be a commutative ring, δ and γ expansion functions of Id(R) with δ(I) ⊆
γ(I), and m and n integers with 1 ≤ n < m. If I is an (m,n)−closed δ−primary ideal of R,
then I is an (m,n)−closed γ−primary ideal of R.

Proof. Since δ(I) ⊆ γ(I) and I is an (m,n)−closed δ−primary ideal of R, then the claim
follows.

Theorem 3.7. Let R be a commutative ring, δ an expansion function of Id(R), m and n positive
integers, and I an (m,n)−closed δ−primary ideal of R with

√
δ(I) = δ(

√
I). Then,

√
I is an

(m,n)−closed δ−primary ideal of R.

Proof. Let a ∈ R such that am ∈
√
I . Then, there exists a positive integer k such that

(am)k ∈ I . Since I is an (m,n)−closed δ−primary ideal of R, we conclude that (an)k ∈ δ(I).
Hence, an ∈

√
δ(I) = δ(

√
I). Thus,

√
I is an (m,n)−closed δ−primary ideal of R.

Example 3.8. Let R be a commutative ring, δ be an expansion function of Id(R), m and n
are positive integers, and J ⊆ I be proper ideals of R. Suppose that I is an (m,n)−closed
δ−primary ideal of R such that δ(J) = δ(I). Let K be an ideal of R such that J ⊆ K ⊆ I .
Then, K is an (m,n)−closed δ−primary ideal of R. To show this, let am ∈ K ⊆ I for some
a ∈ R. Since J ⊆ K ⊆ I and δ(J) = δ(I), we conclude that δ(K) = δ(I), and thus
an ∈ δ(I) = δ(K).
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Theorem 3.9. Let R be a commutative ring, δ an expansion function of Id(R), and m and n
positive integers. If I1, ..., Ik are radical ideals of R, then I1...Ik is an (m,n)−closed δ−primary
ideal of R for all integers m > 1 and n ≥ min{m, k}. In particular, I1...Ik is a semi-
k−absorbing δ−primary ideal (i.e. (k + 1, k)−closed δ−primary ideal) of R.

Proof. Let am ∈ I1...Ik for some a ∈ R. Then, am ∈ Ij for every j ∈ {1, ..., k}, and thus
a ∈ Ij since Ij is a radical ideal of R. Thus, ak ∈ I1...Ik. Hence, an ∈ I1...Ik ⊆ δ(I1...Ik) for
n ≥ min{m, k}. In particular statement is clear.

Theorem 3.10. Let R be a commutative ring, δ an expansion function of Id(R), and m and n
positive integers.

(1) If I is a proper ideal of R with δ(δ(I)) = δ(I), then δ(I) is an (m,n)−closed ideal of R if
and only if δ(I) is an (m,n)−closed δ−primary ideal of R.

(2) Suppose that δ(0) is an (m,n)−closed δ−primary ideal of R with δ(δ(0)) = δ(0). Then,
δ(0) is an (m,n)−closed ideal of R.

Proof. (1) The necessary part is clear. For the sufficient part, assume that am ∈ δ(I) for some
a ∈ R. Since δ(I) is an (m,n)−closed δ−primary ideal ofR, then we have an ∈ δ(δ(I)) =
δ(I). Hence, δ(I) is an (m,n)−closed ideal of R.

(2) The proof is similar to that in case (1).

We recall the following definition.

Definition 3.11. [14] Let f : R −→ A be a ring homomorphism and δ, γ expansion functions of
Id(R) and Id(A) respectively. Then, f is called a δγ−homomorphism if δ(f−1(I)) = f−1(γ(I))
for all ideals I of A.

If γr is a radical operation on A and δr is a radical operation on R, then any homomor-
phism from R to A is an example of δrγr−homomorphism. Also, if f is a δγ−epimorphism
and I is an ideal of R containing Ker(f), then γ(f(I)) = f(δ(I)). In particular, if f is a
δγ−ring−isomorphism, then f(δ(I)) = γ(f(I)) for every ideal I of R.

Theorem 3.12. Let R and A be commutative rings, m and n positive integers, and f : R −→ A
a δγ−homomorphism, where δ is an expansion function of Id(R) and γ is an expansion function
of Id(A).

(1) If J is an (m,n)−closed γ−primary ideal (respectively, semi−n−absorbing γ−primary
ideal) ofA, then f−1(J) is an (m,n)−closed δ−primary ideal (respectively, semi−n−absorbing
δ−primary ideal) of R.

(2) If f is surjective and I is an (m,n)−closed δ−primary ideal (respectively, semi−n−absorbing
δ−primary ideal) ofR containingKer(f), then f(I) is an (m,n)−closed γ−primary ideal
(respectively, semi−n−absorbing γ−primary ideal) of A.

Proof. (1) Assume that J is an (m,n)−closed γ−primary ideal of A and am ∈ f−1(J) for
some a ∈ R. Then, f(am) = [f(a)]m ∈ J . By our assumption, we conclude that [f(a)]n ∈
γ(J). Thus, an ∈ f−1(γ(J)). Since δ(f−1(J)) = f−1(γ(J)), we get an ∈ δ(f−1(J)).
Therefore, f−1(J) is an (m,n)−closed δ−primary ideal of R. Similarly, it can be verified
for semi−n−absorbing γ−primary ideal of A.

(2) Assume that I is an (m,n)−closed δ−primary ideal of R and bm ∈ f(I) for some b ∈ A.
Since f is epimorphism, we have f(am) = bm for some a ∈ R. Thus, f(am) ∈ f(I) and
so am ∈ I since Ker(f) ⊆ I . As I is an (m,n)−closed δ−primary ideal of R, we have
an ∈ δ(I). Then, we have bn ∈ γ(f(I)). Therefore, f(I) is an (m,n)−closed γ−primary
ideal of A. Similarly, it can be verified for semi−n−absorbing δ−primary ideal of R.

Let δ be an expansion function of Id(R) and I a proper ideal of R. The function δq :
R/I −→ R/I defined by δq(J/I) = δ(J)/I for ideals I ⊆ J , becomes an expansion func-
tion of R/I . The next corollary is a result of Theorem 3.12 and extends n−absorbing ideals in
([2], Corollary 4.3) to (m,n)−closed δ−primary ideals, so the proof will be omitted.
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Corollary 3.13. LetR be a commutative ring, I ⊆ J proper ideals ofR, δ an expansion function
of Id(R) and m and n positive integers. Then, J/I is an (m,n)−closed δq−primary ideal
(respectively, semi−n−absorbing δq−primary ideal) of R/I if and only if J is an (m,n)−closed
δ−primary ideal (respectively, semi−n−absorbing δ−primary ideal) of R.

Let R be a commutative ring, m and n positive integers, and δ an expansion function of
Id(R). As in [11], a proper ideal I of a commutative ring R is said to be a strongly n−absorbing
δ−primary ideal ofR if whenever I1...In+1 ⊆ I for some ideals I1, ..., In+1 ofR, then I1...In ⊆ I

or there exists 1 ≤ k ≤ n such that I1...Îk...In+1 ⊆ δ(I), where I1...Îk...In+1 denotes the
product of I1...Ik−1Ik+1...In+1. Clearly, a strongly n−absorbing δ−primary ideal of R is an
n−absorbing δ−primary ideal of R and in [11] the authors conjectured that the two concepts are
equivalent. Analogously, we define a proper ideal I of R to be a strongly semi−n−absorbing
δ−primary ideal of R if whenever Jn+1 ⊆ I for some ideal J of R implies Jn ⊆ δ(I), and
more generally, a proper ideal I of R is said to be a strongly (m,n)−closed δ−primary ideal
of R if whenever Jm ⊆ I for some ideal J of R implies Jn ⊆ I . It is clear that a strongly
(m,n)−closed δ−primary ideal of R is also an (m,n)−closed δ−primary ideal of R. However,
an (m,n)−closed δ−primary ideal of R need not be a strongly (m,n)−closed δ−primary ideal
of R.

Example 3.14. Let δI be the identity expansion function of Id(R), where R = Z[X,Y ]. Let
I = (X2, 2XY, Y 2), then J =

√
I = (X,Y ). Assume that xm ∈ I for some x ∈ R and

m a positive integer. Then, x ∈
√
I , and thus x = aX + bY for some a, b ∈ R. Hence,

x2 = (aX + bY )2 = a2X2 + 2abXY + b2Y 2 ∈ δI(I). Thus, I is an (m, 2)−closed δI−primary
ideal of R for every positive integer m. One can check that Jm ⊆ I ∀ m ≥ 3. Now, XY 6∈ I ,
so J2 * δI(I) and hence I is not a strongly (m, 2)−closed δI−primary ideal of R ∀m ≥ 3.

Theorem 3.15. Let R be a commutative ring, δ an expansion function of Id(R), m a positive
integer, J an (m, 2)−closed δ−primary ideal of R, and I an ideal of R.

(1) If Im ⊆ J , then 2I2 ⊆ δ(J).

(2) If Im ⊆ J and 2 ∈ U(R), then I2 ⊆ δ(J) (i.e., J is a strongly (m, 2)−closed δ−primary
ideal of R).

Proof. (1) Let a, b ∈ I . Then, am, bm, (a+b)m ∈ J since Im ⊆ J , and thus a2, b2, (a+b)2 ∈
δ(J) since J is an (m, 2)−closed δ−primary ideal of R. Hence, 2ab = (a+ b)2− a2− b2 ∈
δ(J), and therefore, 2I2 ⊆ δ(J).

(2) Follows directly from (1).

Theorem 3.16. Let R be a commutative ring, m and n positive integers, S ⊆ R \ {0} a multi-
plicative set with I ∩ S = φ, δS an expansion function of Id(RS) such that δS(IS) = (δ(I))S ,
where δ is an expansion function of Id(R), and I an (m,n)−closed δ−primary ideal of R.

(1) IS is an (m,n)−closed δS−primary ideal of RS . In particular, if I is a semi−n−absorbing
δ−primary ideal of R, then IS is a semi−n−absorbing δS−primary ideal of RS .

(2) If n = 2, 2 ∈ S, and Jm ⊆ IS for some ideal J of RS , then J2 ⊆ IS (i.e., IS is a strongly
(m,n)−closed δS−primary ideal of RS).

Proof. (1) Let am ∈ IS for a ∈ RS . Then, a = r
s for some r ∈ R and s ∈ S, and thus

am = rm

sm = i
g for some i ∈ I and g ∈ S. Hence, rmgz = smiz ∈ I for some z ∈ S,

and thus (rgz)m ∈ I . Hence, (rgz)n ∈ δ(I) since I is (m,n)−closed δ−primary ideal of
R, and thus an = rn

sn = rngnzn

sngnzn ∈ IS ⊆ (δ(I))S = δS(IS). Hence, IS is an (m,n)−closed
δS−primary ideal of RS . In the same way, it is easy to show that IS is a semi-n-absorbing
δS−primary ideal of RS .

(2) Assume that Jm ⊆ IS for some ideal J of RS . Then, 2 ∈ U(RS) since 2 ∈ S. Thus,
J2 ⊆ IS by Theorem 3.15 (2).
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Recall from [14] that an expansion function δ of Id(R) satisfies the finite intersection prop-
erty if δ(I1 ∩ ... ∩ In) = δ(I1) ∩ ... ∩ δ(In) for some ideals I1, ..., In of the commutative ring R.
Note that the radical operation on ideals of a commutative ring is an example of an expansion
function satisfying the finite intersection property. The next result generalizes Theorem 3.9.

Theorem 3.17. Let R be a commutative ring, δ an expansion function of Id(R) satisfying the
finite intersection property, m1, ...,mk, n1, ..., nk positive integers, and I1, ..., Ik proper ideals of
R.

(1) If Ij is an (mj , nj)−closed δ−primary ideal of R for all j ∈ {1, ..., k} and P = δ(Ij) for
all j ∈ {1, ..., k}, then I1∩...∩ Ik is an (m,n)−closed δ−primary ideal ofR for all positive
integers m ≤ min{m1, ...,mk} and n ≥ min{m,max{n1, ..., nk}}.

(2) If Ij is an (mj , nj)−closed δ−primary ideal of R for all j ∈ {1, ..., k}, then I1...Ik is an
(m,n)−closed δ−primary ideal of R for all positive integers m ≤ min{m1, ...,mk} and
n ≥ min{n, n1 + ...+ nk}.

Proof. (1) Let am ∈ I1 ∩ ... ∩ Ik for some a ∈ R, m ≤ min{m1, ...,mk}, and j ∈ {1, ..., k}.
Then am ∈ Ij , and thus amj ∈ Ij . Thus, anj ∈ δ(Ij) = P since Ij is an (mj , nj)−closed
δ−primary ideal of R. Thus, an ∈ δ(I1 ∩ ... ∩ Ik) = δ(I1) ∩ ... ∩ δ(Ik) = P for
n ≥ max{n1, ..., nk}. Hence, an ∈ δ(I1 ∩ ... ∩ Ik) = δ(I1) ∩ ... ∩ δ(Ik) = P for
n ≥ min{m,max{n1, ..., nk}}.

(2) Let am ∈ I1...Ik for some a ∈ R, m ≤ min{m1, ...,mk}, and j ∈ {1, ..., k}. Then,
am ∈ Ij , and thus amj ∈ Ij . Thus, anj ∈ δ(Ij) since Ij is an (mj , nj)−closed δ−primary
ideal of R. Hence, an1+...+nk ∈ δ(I1...Ik) and therefore, an ∈ δ(I1...Ik) for n ≥ n1 + ...+
nk. Thus, an ∈ δ(I1...Ik) for n ≥ min{n, n1 + ...+ nk}.

Corollary 3.18. Let R be a commutative ring, δ an expansion function of Id(R) satisfying the
finite intersection property, m and n positive integers, and I1, ..., Ik proper ideals of R. If
I1, ..., Ik are (m,n)−closed δ−primary ideal (respectively, semi−n−absorbing ideals) of R,
and P = δ(Ij) for all j ∈ {1, ..., k}, then I1 ∩ ... ∩ Ik is an (m,n)−closed δ−primary ideal
(respectively, semi−n−absorbing ideal) of R.

Proof. It is clear.

Theorem 3.19. LetD be an integral domain, δ an expansion function of Id(D),m and n integers
with 1 ≤ n < m, and I = pjD, where p is a prime element of D and j is a positive integer.
Suppose that the following two statements hold.
(i) j = mx+r, where x and r are positive integers with x ≥ 0, 1 ≤ r ≤ n, x(mod n)+r ≤ n;
and
(ii) x 6= 0 =⇒ m = n+ y for some integer y with 1 ≤ y ≤ n− 1.
Then I is an (m,n)−closed δ−primary ideal of D.

Proof. Assume that j = mx+r, where x and r are integers with x ≥ 0, 1 ≤ r ≤ n, x(mod n)+
r ≤ n, and if x 6= 0, then m = n+ y for some integer y such that 1 ≤ y ≤ n− 1. Suppose that
am ∈ I for some a ∈ D. We have two cases.
Case(i): x = 0. Then, j = r, and thus 1 ≤ j ≤ n. Then, p|a, and hence pj |aj . Hence, pj |an
since n ≥ j, and thus an ∈ I ⊆ δ(I).
Case(ii): x 6= 0. We show that pj |an, and hence an ∈ I ⊆ δ(I). Then, p|a and pj |am since
am ∈ I . If pj |a, then an ∈ I . So assume that pj - a. Let i be the largest positive integer
such that pi|a. Thus, pmi|am and mi is the largest positive integer such that pmi|am. Hence,
mi > j, so 0 > j − mi = (mx + r) − mi = m(x − i) + r. Since 1 ≤ r ≤ n, we have
i > x. Thus, i = x + z for some integer z ≥ 1. Then, j = mx + r and m = n + y give
j
n = mx+r

n = (n+y)x+r
n = nx+yx+r

n = x+ cx+r
n ≤ x+ 1 since xc+ r = x(mmod n) + r ≤ n.

Since z ≥ 1, we have i = x+ z ≥ x+ 1 ≥ j
n , and hence ni ≥ j. Thus, pni|an since pi|a, and

thus pj |an since ni ≥ j. Thus, an ∈ I ⊆ δ(I). Thus, I is an (m,n)−closed δ−primary ideal of
D.
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Corollary 3.20. Let D be an integral domain, δ an expansion function of Id(D), n a positive
integer and I = pjD, where p is a prime element of D and j is a positive integer. If j =
(n+ 1)x+ r, where x and r are positive integers with x ≥ 0, 1 ≤ r < n, and x+ r ≤ n, then
I is a semi−n−absorbing δ−primary ideal (i.e. (n+ 1, n)−closed δ−primary ideal) of R.

Proof. The proof is clear by Theorem 3.19 since an ideal I of R is a semi −n−absorbing
δ−primary ideal if and only if I is (n+ 1, n)−closed δ−primary ideal.

Example 3.21. Led D be an integral domain, δ an expansion of Id(D), and I = pkD, where p is
a prime ideal of D and k is a positive integer. Then by Corollary 3.20, I is a semi−2−absorbing
δ−primary ideal (i.e., (3, 2)−closed δ−primary ideal) of R if and only if k ∈ {1, 2, 4}.

Let D be an integral domain. It is well known that if p1, ..., pr are non associate prime
elements of D, then pk1

1 D ∩ ...∩ pkr
r D = pk1

1 ...p
kr
r D for all positive integers k1, ..., kr. Note that

pk1
1 ...p

kr
r D is an n−absorbing ideal if and only if n ≥ k1 + ...+ kr ([2], Theorem 2.1. (d)).

Theorem 3.22. Let D be an integral domain, δ an expansion function of Id(D) satisfying the
finite intersection property, m and n integers with 1 ≤ n < m, and I = pk1

1 ...p
kr
r D, where

p1, ..., pr are non associate prime elements of D and k1, ..., kr are positive integers. Then, the
following statements are equivalent.

(1) I is an (m,n)−closed δ−primary ideal of D.

(2) pki
i D is an (m,n)−closed δ−primary ideal of D for every i ∈ {1, ..., r}.

Proof. (1) =⇒ (2) Let Ii = pki
i D. Assume that am ∈ Ii for some a ∈ D. Let b =

a(p
k1
1 ...pkr

r )

p
ki
i

∈ D. Then, bm ∈ I , and hence bn ∈ δ(I) since I is an (m,n)−closed δ−primary

ideal of D. By construction, bn ∈ I ⊆ δ(I) if and only if an ∈ Ii ⊆ δ(Ii). Thus, Ii is an
(m,n)−closed δ−primary ideal of D for every i ∈ {1, ..., r}.
(2) =⇒ (1) This is clear by Corollary 3.18 since pk1

1 D ∩ ... ∩ pkr
r D = pk1

1 ...p
kr
r D.

Let D be an integral domain, δ an expansion function of Id(R) satisfying the finite intersec-
tion property, and I a proper ideal of D. For fixed positive integers m, k1, ..., kr, we next deter-
mine the smallest positive integer n such that I = pk1

1 ...p
kr
r D is an (m,n)−closed δ−primary

ideal of D, where p1, ..., pr are non associate prime elements of D. Note that m ≥ n since
every proper ideal is (n, n)−closed δ−primary and I is (ḿ, n)−closed δ−primary for every pos-
itive integer ḿ ≤ m. Also, for fixed positive integers n, k1, ..., kr, we determine the largest
positive integer m such that I = pk1

1 ...p
kr
r D is an (m,n)−closed δ−primary ideal of D, where

p1, ..., pr are non associate prime elements of D. Note that n ≥ m since every proper ideal is
(m,m)−closed δ−primary and I is (m, ń)−closed δ−primary for every positive integer ń ≤ n.

Theorem 3.23. Let D be an integral domain, δ an expansion function of Id(D) satisfying the fi-
nite intersection property, and I = pk1

1 ...p
kr
r D, where p1, ..., pr are non associate prime elements

of D and k1, ..., kr are positive integers.

(1) Let m be a positive integer. If ni is the smallest positive integer such that pki
i D is an

(m,ni)−closed δ−primary ideal of D for every i ∈ {1, ..., r}, then n = max{n1, ..., nr} is
the smallest positive integer such that I is an (m,n)−closed δ−primary ideal of D.

(2) Let n be a positive integer. If mi is the smallest positive integer such that pki
i D is an

(mi, n)−closed δ−primary ideal of D for every i ∈ {1, ..., r}, then m = min{m1, ...,mr}
is the largest positive integer such that I is an (m,n)−closed δ−primary ideal of D.

Proof. This follows since I is an (m,n)−closed δ−primary ideal of D if and only if every pki
i D

is an (m,n)−closed δ−primary ideal of D by Theorem 3.22.

Recall that an ideal of R1 × R2 has the form I1 × I2 for some ideals I1 of R1 and I2 of R2,
where R1 and R2 are commutative rings. Let R = R1× ...× Rk, where Ri is a commutative ring
with nonzero identity and δi be an expansion function of Id(Ri) for each i ∈ {1, 2, ..., k}. Let δ×
be a function of Id(R), which is defined by δ×(I1× I2× ...× Ik) = δ1(I1)×δ2(I2)× ...×δk(Ik)
for each ideal Ii of Ri were i ∈ {1, 2, ..., k}. Then δ× is an expansion function of Id(R). Note
that every ideal of R is of the form I1 × I2 × ... × Ik, where each ideal Ii is an ideal of Ri,
i ∈ {1, 2, ..., k}.
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Theorem 3.24. Let R = R1 × R2, where where R1 and R2 are commutative rings, δi be an
expansion function of Id(Ri) for each i ∈ {1, 2}, J a proper ideal of R, and m and n positive
integers. Then the following statements are equivalent.

(1) J is an (m,n)−closed δ×−primary ideal of R.

(2) J = I1 × R2, or J = R1 × I2 or J = I1 × I2 for (m,n)−closed δ1−primary ideal I1 of
R1 and (m,n)−closed δ2−primary ideal I2 of R2.

Proof. Follows directly from the definitions.

4 (m,n)−closed δ−primary ideals in trivial ring extensions of commutative
rings

Let R be a commutative ring, δ an expansion function of Id(R), M an R−module and m and
n positive integers. In this suction, we study (m,n)−closed δ−primary ideals in trivial ring
extension of R by M (or the idealization of M over R) that is denoted by R(+)M . As in [13],
R(+)M = {(a, b) : a ∈ R, b ∈ M} is a commutative ring with identity (1, 0) under addition
defined by (a, b)+(c, d) = (a+c, b+d) and multiplication defined by (a, b)(c, d) = (ac, ad+bc)
for each a, c ∈ R and b, d ∈ M . Note that ({0}(+)M)2 = {0}, so {0}(+)M ⊆ Nil(R(+)M).
We define a function δ(+) : Id(R(+)M) −→ Id(R(+)M) such that δ(+)(I(+)N) = δ(I)(+)M
for every ideal I of R and every submodule N of M . Then, δ(+) is an expansion function of
ideals of R(+)M .

Theorem 4.1. Let R be a commutative ring, δ an expansion function of Id(R), n a positive
integer, I a proper ideal of R, and M an R−module. Then,

(1) I is an n−absorbing δ−primary ideal of R if and only if I(+)M is an n−absorbing
δ(+)−primary ideal of R(+)M .

(2) I is a strongly n−absorbing δ−primary ideal of R if and only if I(+)M is a strongly
n−absorbing δ(+)−primary ideal of R(+)M .

(3) I is an (m,n)−closed δ−primary ideal of R if and only if I(+)M is an (m,n)−closed
δ(+)−primary ideal of R(+)M .

Proof. It is clear.

Lemma 4.2. Let D be an integral domain with quotient field K, M a K−vector space, F a
K−subspase of M , δ an expansion function of Id(D), and n a positive integer. Then, {0}(+)F
is a strongly 2−absorbing δ(+)−primary ideal of D(+)M , and hence {0}(+)F is a strongly
n−absorbing δ(+)−primary ideal of D(+)M .

Proof. First of all, we show that {0}(+)F is a 2−absorbing δ(+)−primary ideal of D(+)M .
Let (ri, ei) ∈ D(+)M , where 1 ≤ i ≤ 3. Suppose that (r1, e1)(r2, e2)(r3, e3) ∈ {0}(+)F .
Since D is an integral domain, we may assume that r3 = 0. Suppose that r1r2 = 0. Then,
(r1, e1)(r3, e3) ∈ {0}(+)F or (r2, e2)(r3, e3) ∈ δ(+)({0}(+)F ). Suppose that r1r2 6= 0. Then,
(r1, e1)(r2, e2)(r3, e3) = (0, r1r2e3). Since F is aK−subspace ofM , we conclude that r−1

2 r−1
1 (r1r2e3) =

e3 ∈ F . Thus, (r3, e3) = (0, e3) ∈ δ(+)({0}(+)F ), and hence (r1, e1)(r3, e3) ∈ δ(+)({0}(+)F ).
Thus, {0}(+)F is a 2−absorbing δ(+)−primary ideal of D(+)M . Hence, {0}(+)F is a strongly
2−absorbing δ(+)−primary ideal of D(+)M by ([4], Theorem 2.13).

Theorem 4.3. Let D be an integral domain with quotient field K, δ an expansion function of
Id(D), M a K−vector space, and N a D−submodule of M . If N is a K−subspace of M , then
{0}(+)N is an n−absorbing δ(+)−primary ideal of D(+)M for some integer n ≥ 2.

Proof. Follows directly from Lemma 4.2.

Theorem 4.4. LetR be a commutative ring, δ an expansion function of Id(R),M be anA−module,
and A = R(+)M . Suppose that I(+)N is a proper ideal of A, where I is a proper ideal of R
and N is a submodule of M with IM ⊆ N . If I is an (m,n)−closed δ−primary ideal of R for
some positive integers n < m, then I(+)N is an (m,n+ 1)−closed δ(+)−primary ideal of A.
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Proof. Assume that I is an (m,n)−closed δ−primary ideal of R for some positive integers
n < m. Let a = (x, y) ∈ A and suppose that am = (xm,mxm−1y) ∈ I(+)N . Since I is
an (m,n)−closed δ−primary ideal of R, so (xn+1, (n+ 1)xny) = an+1 ∈ δ(+)(I(+)N ). Thus,
I(+)N is an (m,n+ 1)−closed δ(+)−primary ideal of A.

Theorem 4.5. LetR be a commutative ring, δ an expansion function of Id(R),M be anA−module,
and A = R(+)M . Suppose that I(+)N is a proper ideal of A, where I is a proper ideal of R
and N is a submodule of M with IM ⊆ N . Let m and n be integers with 1 ≤ n < m. Then
the following statements are equivalent.

(1) I(+)N is an (m,n)−closed δ(+)−primary ideal of A.

(2) I is an (m,n)−closed δ−primary ideal ofR and whenever xm ∈ I for some x ∈ R implies
nxn−1M ⊆ N .

Proof. (1) =⇒ (2) Assume that I(+)N is an (m,n)−closed δ(+)−primary ideal of A. Then,
it is clear that I is an (m,n)−closed δ−primary ideal of R. Suppose that xm ∈ I for some
x ∈ R and let y ∈ M with a = (x, y). Since I is an (m,n)−closed δ−primary ideal of R, so
xn ∈ δ(I). As n ≤ m − 1, so xm−1 ∈ I . Since IM ⊆ N and xm−1 ∈ I , we conclude that
am = (xm,mxm−1y) ∈ (I(+)N). Since I(+)N is an (m,n)−closed δ(+)−primary ideal of A,
we conclude that an = (xn, nxn−1y) ∈ δ(+)(A) and therefore nxn−1M ⊆ N .
(2) =⇒ (1) Assume that I is an (m,n)−closed δ−primary ideal of R and whenever xm ∈ I for
some x ∈ R implies nxn−1M ⊆ N . Let a = (x, y) ∈ A for some x ∈ R and some y ∈ M ,
and suppose that am = (xm,mxm−1y) ∈ I(+)N . Since xm ∈ I and I is an (m,n)−closed
ideal of R, we have xn ∈ R and nxn−1y ∈ N . Thus, (xn, nxn−1y) ∈ δ(+)(I(+)N). Hence,
I(+)N is an (m,n)−closed δ(+)−primary ideal of A.

Theorem 4.6. LetR be a commutative ring, δ an expansion function of Id(R),M be anA−module,
m and n integers with 1 ≤ n < m, I a proper ideal of R, and A = R(+)M . Suppose that
char(R) divides n. Then the following statements are equivalent.

(1) I(+)N is an (m,n)−closed δ(+)−primary ideal of A for every submodule N of M where
IM ⊆ N .

(2) I is an (m,n)−closed δ−primary ideal of R.

Proof. (1) =⇒ (2) It is clear by Theorem 4.5.
(2) =⇒ (1) Let N be a submodule of M with IM ⊆ N . Since char(R) divides n, so whenever
xm ∈ I for some x ∈ R implies nxn−1M = 0M ⊆ N , where 0M is the additive identity of M .
Thus, I(+)N is an (m,n)−closed δ(+)−primary ideal of A by Theorem 4.5.

We recall the following definition.

Definition 4.7. [5] Let p be a prime element of an integral domain D. Suppose that pt|d for some
d ∈ D and a positive integer t but pt+1 - d. Then we write pt‖d.

Theorem 4.8. Let D be an integral domain, A = D(+)D, δ an expansion function of Id(D), m
and n integers with 1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a
positive integer. Assume that m < k and char(D) 6= n. Let x = d k

me and y = dkxe. Then the
following statements are equivalent.

(1) I(+)piD is an (m,n)−closed δ(+)−primary ideal of A for some integer i ≥ 1.

(2) One of the following three cases must hold:
(a) y < n < m and i ≤ k.
(b) y = n, p - n.1D(in D), where 1D is the identity of D and i ≤ x(n− 1) < k.
(c) y = n, pt‖n.1D(in D), and i ≤ min{x(n− 1) + t, k}.

Proof. (1) =⇒ (2) Assume that I(+)piD is an (m,n)−closed δ(+)−primary ideal ofA for some
integer i ≥ 1. Since I(+)pip is an ideal of D, we have I ⊆ piD. Thus, i ≤ k. Now x = d k

me
is the smallest positive integer where (px)m ∈ I . Also, y = dkxe is the smallest positive integer
where (px)y ∈ I . Since I(+)piD is an (m,n)−closed δ(+)−primary ideal of A and 1 ≤ n < m,
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we have y ≤ n < m. Since I(+)piD is an (m,n)−closed δ(+)−primary ideal of A, we have
I is an (m,n)−closed δ−primary ideal of D and whenever am ∈ I for some a ∈ D implies
nan−1D ⊆ piD by Theorem 4.5. Hence, since (px)m ∈ I , we have n(px)n−1 ∈ piD by
Theorem 4.5. If y < n < m, then y < n−1 and thus n(px)n−1 ∈ pkD = I (note that (px)y ∈ I
and i ≤ k). Assume that n = y and p - n.1D(in D). Since y is the smallest positive integer
where (px)y ∈ I and p - n.1D, we have x(n − 1) < k and n(px)n−1 ∈ piD if and only if
i ≤ x(n − 1) < k. Assume that y = n and pt‖n.1D(in D). Since i ≤ x(n − 1) < k, we have
n(px)n−1 ∈ piD if and only if i ≤ min{x(n− 1) + t, k}.
(2) =⇒ (1) In view of proof (1) =⇒ (2) above, one can easily see that if (a), (b) or (c) holds,
then I is an (m,n)−closed δ−primary ideal of D and whenever am ∈ I for some a ∈ D
implies nan−1D ⊆ piD. Thus, I(+)piD is an (m,n)−closed δ(+)−primary ideal of A by
Theorem 4.5.

Theorem 4.9. Let D be an integral domain, A = D(+)D, δ an expansion function of Id(D), m
and n integers with 1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a
positive integer. Assume that m > k and char(D) 6= n. If one of the following three cases hold:
(a) k < n < m and i ≤ k for some integer i ≥ 1.
(b) n = k, and 1 ≤ i < k.
(c) n = i = k, and p|k.1D(in D), where 1D is the identity of D.
Then, I(+)piD is an (m,n)−closed δ(+)−primary ideal of A.

Proof. If (a), (b) or (c) holds, then one can easily verify that I is an (m,n)−closed δ−primary
ideal of D and whenever xm ∈ I for some x ∈ D implies nxn−1D ⊆ piD. Hence, I(+)piD is
an (m,n)−closed δ(+)−primary ideal of A by Theorem 4.5.

Theorem 4.10. Let D be an integral domain with quotient field K, M a K−vector space, and δ
an expansion function of Id(D). Then the following statements are equivalent.

(1) Every proper ideal of D is an (m,n)−closed δ−primary ideal of D for some integers
1 ≤ n < m.

(2) Every proper ideal of D(+)M is an (m,n)−closed δ(+)−primary ideal of D(+)M for
some integers 1 ≤ n < m.

Proof. (1) =⇒ (2) Assume that every proper ideal of D is an (m,n)−closed δ−primary ideal
of D for some integers 1 ≤ n < m, and let I be an ideal of D. Since M is a divisor D−module,
we have I = J(+)M for some proper ideal J of D or I = {0}(+)N for some D−submodule
N of M by ([1], Corollary 3.4). If I = J(+)M , then it is clear that I is an (m,n)−closed
δ(+)−primary ideal of D(+)M since J is an (m,n)−closed δ−primary ideal of D for some
integers 1 ≤ n < m. If I = {0}(+)N , then I is an (m,n)−closed δ(+)−primary ideal of
D(+)M for every integer m ≥ 3 since D is an integral domain. Therefore, every proper ideal of
D(+)M is an (m,n)−closed δ(+)−primary ideal of D(+)M for some integers 1 ≤ n < m.
(2) =⇒ (1) It is clear.

5 Conclusion

Here, we represented a new form of the theory of absorbing ideals of commutative rings. We
discussed and proved new theorems in this area. We proved that if S ⊆ R\{0} is a multiplicative
set with I ∩ S = φ, δS is an expansion function of Id(RS) such that δS(IS) = (δ(I))S , where
δ is an expansion function of Id(R), and I is an (m,n)−closed δ−primary ideal of R, then IS
is an (m,n)−closed δS−primary ideal of RS . Also, we considered the trivial ring extensions of
commutative rings and studied the properties of (m,n)−closed δ−primary ideals in these rings.
We can generalize the concept of (m,n)−closed δ−primary ideals to the concept of weakly
(m,n)−closed δ− primary ideals in the next work.
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