Some results on k-step Hamiltonian graph

F. Movahedi, M. H. Akhbari and R. Hasni

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78; Secondary 05C25

Keywords and phrases: k-step Hamiltonian graph, Line graph, Join of graphs, t-subdivision of graph, Helm graph.

Abstract Let G(V, E) be a simple graph with |V| = n vertices and |E| = m edges. A graph G is said to admit an AL(k)-traversal if there exists a sequence of vertices $\{v_1, v_2, \ldots, v_n\}$ such for each $i = 1, 2, \ldots, n-1$, the distance for v_i and v_{i+1} is equal to k. The graph G is called a k-step Hamiltonian graph if it has an AL(k)-traversal in G and $d(v_1, v_n) = k$. In this paper, we obtain results of the investigation of property k-step Hamiltonian on some graph operations such that line graph, join of two graphs and jump graph of certain graphs. We investigate k-step Hamiltonicity for some graph families.

1 Introduction

All graphs in this paper are simple, finite, connected and undirected. Let G = (V, E) be a simple graph with n vertices and the size of m. The distance d(u, v) is denoted by the distance between two vertices u and v of a graph that is the minimum length of the paths connecting them [1]. Throughout this paper, K_n , C_n and P_n denote a complete graph, the cycle and the path of order n, respectively [1].

Hamiltonicity is a very important topic in graph theory. A Hamiltonian path(cycle) is a path(cycle) that visits each vertex of the graph exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph [2]. In [3] is defined as a new concept of the Hamiltonian graph as a k-step Hamiltonian graph.

For $k \ge 1$, a graph G is said to have an AL(k)-traversal if there exists a sequence $\{v_1, v_2, \ldots, v_n\}$ such for each $i = 1, 2, \ldots, n - 1$, the distance for v_i and v_{i+1} is equal to k. Graph G is called a k-step Hamiltonian if it has an AL(k)-traversal and $d(v_n, v_1) = k$. Note that a 1-step Hamiltonian graph is a graph with a Hamiltonian cycle.

For example, the cubic graph in Figure 1 is 2-step Hamiltonian [4]. A Hamiltonian graph need not be a k-step Hamiltonian. The simplest examples are cycles C_n with $n \equiv 0 \pmod{k}$ which are not AL(k)-traversable, hence cannot be k-step Hamiltonian.

Figure 1. A 2-step Hamiltonian cubic graph.

Lau et al. investigated 2-step Hamiltonicity of tripartite graphs [3]. In [4] is considered k-step Hamiltonicity of bipartite and tripartite graphs. In [5] is proposed several constructions of 3-step Hamiltonian trees from smaller 3-step Hamiltonian trees. More results on the k-step Hamiltonian graph are obtained in [6, 7, 8]. In this paper, we study the k-step Hamiltonicity of some operations of graphs.

The join of two graphs G_1 and G_2 , denoted by $G_1 + G_2$, is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup \{uv | u \in V(G_1) \text{ and } v \in V(G_2)\}$ [1]. In this paper, the k-step Hamiltonicity of $G_1 + G_2$ is investigated.

The line graph of a graph G, denoted by L(G), has E as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G have at least one vertex in common. The complement of a graph G is denoted by \overline{G} with the same vertices set of G such that two distinct vertices of \overline{G} are adjacent if and only if they are not adjacent in G [1]. The complement of line graph L(G) is called the jump graph of G and is denoted by J(G) [9]. We study the property of k-step Hamiltonicity of the complement of some graphs and line graphs.

2 Main results

In this section, we propose main results of this paper to investigate the k-step Hamiltonicity of some graphs. First, we recall some results that are used in this paper. For this purpose, let $D_k(G)$, for a graph G, denote the generated graph from G such that $V(D_k(G)) = V(G)$ and $E(D_k(G)) = \{uv \mid d(u, v) = k\}$ in G [3].

Lemma 2.1. [3] A graph G is a k-step Hamiltonian if and only if $D_k(G)$ is a Hamiltonian graph.

Lemma 2.2. [3] Cycle C_n for odd $n \ge 5$ is 2-step Hamiltonian graph.

Lemma 2.3. [4] For integers $n \ge 3$ and $k \ge 2$, the cycle C_n is a k-step Hamiltonian if and only if $n \ge 2k + 1$ and gcd(n, k) = 1.

Theorem 2.4. If G_1 and G_2 are k-step Hamiltonian graphs for $k \ge 1$, then $D_k(G_1) + D_k(G_2)$ is Hamiltonian.

Proof. Let G_1 and G_2 be k-step Hamiltonian graphs of orders n and m, respectively. By Lemma 2.1, $D_k(G_1)$ and $D_k(G_2)$ are Hamiltonian. Assume that C_i is a Hamiltonian cycle on graph C_i for i = 1, 2 which $u_1u_2 \ldots u_nu_1$ is a cycle C_1 and $v_1v_2 \ldots v_mv_1$ is cycle C_2 .

According to the structure of graph $D_k(G_1) + D_k(G_2)$, the vertex u_i is adjacent to v_j for every $1 \le i \le n$ and $1 \le j \le m$. Thus, one can consider the following Hamiltonian cycle for graph $D_k(G_1) + D_k(G_2)$.

First, on the cycle C_1 from the vertex u_1 go to v_1 in the graph $D_k(G_2)$ and so, path $v_1v_2 \ldots v_m$ is passed in the graph $D_k(G_2)$. Thus, by edge $v_m u_2$ go back to $D_k(G_1)$. So, with passing the path $u_2 \ldots u_n u_1$, the Hamiltonian cycle in graph $D_k(G_1) + D_k(G_2)$ is the complete. This cycle is as following

$$u_1v_1v_2\ldots v_mu_2\ldots u_nu_1.$$

Therefore, the proof completes. \Box

Theorem 2.5. For any two connected graphs G_1 and G_2 , then $G_1 + G_2$ is not k-step Hamiltonian graph for $k \ge 2$.

Proof. According to the structure of graph $G = G_1 + G_2$, all of the vertices from G_1 and G_2 are adjacent to each other. The vertex of G_1 is not adjacent to the vertex of G_2 , vice versa, in $D_k(G)$ for $k \ge 2$. Therefore, $D_k(G)$ is disconnected with at least two components consisting of $V_1 \subseteq V(G_1)$ and $V_2 \subseteq V(G_2)$, respectively. Thus, $D_k(G)$ is not Hamiltonian and by Lemma 2.1, $G_1 + G_2$ is not the k-step Hamiltonian graph for $k \ge 2$. \Box

According to Lemma 2.2 and since the line graph of a cycle is isomorphic to the same cycle, it is clear to have the following result.

Proposition 2.6. For cycle C_n of order odd n, $L(C_n)$ is a 2-step Hamiltonian graph.

Theorem 2.7. For $n \ge 5$, graph \overline{P}_n has AL(2)-traversal. But it is not a 2-step Hamiltonian graph.

Proof. Let P_n be the path of order n with vertex set $\{u_1, \ldots, u_n\}$. We consider the graph structure of the complement of P_n as following.

On the path P_n , the edges of consecutive vertices $u_i u_{i+1}$ are deleted for i = 1, ..., n-1. We have two cases.

Case 1) If n is even, then any vertex u_i connect to any vertex u_j for $i = 1, \ldots, \frac{n}{2} + 1$ and $j = i + 2, \ldots, n$. Therefore, we consider the path $u_i u_{i+3} u_{i+1}$ for any two consecutive vertices u_i and u_{i+1} where $i = 1, \ldots, \frac{n}{2}$ and the path $u_i u_{i-2} u_{i+1}$ for $i = \frac{n}{2} + 1, \ldots, n - 1$. Thus, $d(u_i, u_{i+1}) = 2$ for $1 \le i \le n - 1$. So, graph \bar{P}_n is AL(2)-traversable. On the other hand, since two vertices u_1 and u_n are adjacent in \bar{P}_n , $d(u_1, u_n) = 1$, then \bar{P}_n is not a 2-step Hamiltonian graph.

Case 2) If n is odd, then every vertex u_i connect to any vertex u_j for $i = 1, \ldots, \frac{n-1}{2} + 1$ and $j = i + 2, \ldots, n$. Similar to case 1, we consider the path $u_i u_{i+3} u_{i+1}$ for any two consecutive vertices u_i and u_{i+1} which $i = 1, \ldots, \frac{n-1}{2}$ and the path $u_i u_{i-2} u_{i+1}$ for $i = \frac{n+1}{2}, \ldots, n-1$. Therefore, the distance between two vertices u_i and u_{i+1} is 2 for $1 \le i \le n-1$. Also, since two vertices u_1 and u_n are adjacent in $\overline{P_n}$, $d(u_1, u_n) = 1$. Therefore, in this case the result completes too. \Box

Since the line graph of path P_n is isomorphic to the path of order n - 1, $J(P_n) = \overline{P}_{n-1}$. Let vertices on path P_{n-1} be u_1, \ldots, u_{n-1} . Using Theorem 2.7, we have the following result.

Corollary 2.8. For $n \ge 4$, the jump graph of P_n has AL(2)-traversal. But, it is not a 2-step Hamiltonian graph.

Theorem 2.9. *Graph of* $\overline{P_n}$ *, for* n > 4 *is Hamiltonian.*

Proof. Let the vertices set of \bar{P}_n be $\{u_1, \ldots, u_n\}$. There is an edge between any two vertices u_i and v_j for $1 \le i, j \le n - 1$ such that the following edges set are not in the graph \bar{P}_n .

$$\{u_1u_2, u_2u_3, \ldots, u_{n-2}u_{n-1}, u_{n-1}u_n\}.$$

We have two the following cases.

Case 1) If n is even, then we consider the Hamiltonian cycle in the graph \bar{P}_n as following,

 $u_1u_3u_5\ldots u_{n-1}u_2u_4\ldots u_nu_1.$

Case 2) If n is odd, then the Hamiltonian cycle in the graph \bar{P}_n is as following,

 $u_1u_3u_5\ldots u_nu_2u_4\ldots u_{n-1}u_1.$

Therefore, the proof completes. \Box

Corollary 2.10. $J(P_n)$, for n > 4 has a Hamiltonian cycle.

Proof. Since $L(P_n) = P_{n-1}$, the jump graph of P_n is \overline{P}_{n-1} . According to the proof of Theorem 2.9, the result holds. \Box

Theorem 2.11. For $n \ge 5$, the graph \overline{C}_n is a 2-step Hamiltonian graph.

Proof. Let C_n be the cycle of order n with vertex set $\{u_1, \ldots, u_n\}$. The edge set of the complement of C_n is $E(K_n \setminus C_n)$. With the same discussion in the proof of Theorem 2.7, \overline{C}_n includes the vertices $\{u_1, \ldots, u_n\}$ that every vertex u_i is adjacent to other vertices except for u_{i-1} and u_{i+1} for any $2 \le i \le n-1$. Also, vertex u_1 is adjacent to other vertices in \overline{C}_n except for two vertices u_2 and u_n .

Note that $d(u_i, u_{i+1}) = 2$ for all i = 1, ..., n by considering the path $u_i u_k u_{i+1}$ for $k \neq i, i \pm 1, i + 2$. On the other hand, by selecting the path $u_1 u_k u_n$ that $k \neq 1, n$, we have $d(u_1, u_n) = 2$. Therefore, \overline{C}_n is a 2-step Hamiltonian graph and a 2-step Hamiltonian cycle of \overline{C}_n is given by $u_1, u_2, ..., u_n, u_1$. \Box **Corollary 2.12.** For $n \ge 5$, the jump graph of C_n is a 2-step Hamiltonian graph.

Proof. The jump graph of C_n is the complement of the line graph of C_n . Since the line graph of C_n is isomorphic to C_n itself, $J(C_n) = \overline{C_n}$. Using Theorem 2.11, the result holds. \Box

We consider some families of graphs and investigate the property of k-step Hamiltonian for $k \ge 1$ about these families. For a graph G, the subdivision graph S(G) is a graph obtained from G by replacing each edge of G by a path of length 2. The t-subdivision graph $S_t(G)$ of G is a graph obtained from G by replacing each edge of G by a path of length t + 1. Obviously, $S_1(G) = S(G)$ [10].

Theorem 2.13. For $n \ge 4$ that $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$, the subdivision graph of C_n is a 3-step Hamiltonian graph.

Proof. Let $S(C_n)$ be the subdivision graph of C_n . According to the definition, $S(C_n)$ is obtained from C_n by replacing each edge of C_n with a path of length 2. Thus, the subdivision graph of C_n is a cycle of order 2n. Since $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$, we have $2n \equiv 2 \pmod{3}$ or $2n \equiv 1 \pmod{3}$. Therefore, using Lemma 2.3 the result complements. \Box

Theorem 2.14. Let C_n be a cycle graph with odd n. Then $S_t(C_n)$ is a 2-step Hamiltonian graph for any even t.

Proof. According to the definition of the t-subdivision graph, $S_t(G)$ of G is a graph obtained from G by replacing each edge of G with a path of length t + 1. If t is even, then every edge in C_n is replaced with a path of length odd t + 1.

So, the number of vertices of $S_t(C_n)$ is equal to (t+1)n which the cycle of order odd. Therefore, by Lemma 2.2 graph $S_t(G)$ is a 2-step Hamiltonian graph. \Box

The helm graph H_n is the graph obtained from a wheel graph with n vertices by adjoining a pendant edge at each vertex of the cycle. The web graph is obtained by joining the pendant vertices of a helm graph to form a cycle and then adding a single pendant edge to each vertex of this outer cycle. We consider the kind of generalized web graph that is without a center vertex [11]. First, we recall the following results.

Lemma 2.15. [1] A graph is bipartite if and only if it has no odd cycle.

Lemma 2.16. [3] All bipartite graphs are not k-step Hamiltonian for even $k \ge 2$.

Theorem 2.17. Let H_n be a helm graph with a wheel graph of order $n \ge 6$. Then H_n is 2-step Hamiltonian graph for any n.

Proof. Let H_n be the helm graph of order 2n - 1 that n is the number of vertices of the wheel graph in H_n . It is easy to show that for n = 4, 5, the helm graph is not 2-step Hamiltonian graph. For $n \ge 6$, we consider two cases.

Case 1) If n is even, then we consider the sequence of vertices on H_n as in Figure 2(a) such that the distance of any two consecutive vertices v_i and v_{i+1} is 2 for i = 1, 2, ..., 2n - 2 and $d(v_1, v_{2n-1}) = 2$.

Case 2) If n is odd, then we consider the sequence of vertices on graph H_n as in Figure 2(b). According labeling vertices in Figure 2, $d(v_i, v_{i+1}) = 2$ for i = 1, 2, ..., 2n - 1 and $d(v_1, v_{2n-1}) = 2$.

Therefore, for the above two cases, graph H_n is a 2-step Hamiltonian graph. \Box

Theorem 2.18. Let Wb_n be a web graph. Then Wb_n is a 2-step Hamiltonian graph of order odd.

Figure 2. a) Labeling for 2-step Hamiltonian Helm graph with even n, b) Labeling for 2-step Hamiltonian Helm graph with odd n.

Proof. Let Wb_n be the web graph of order 3n. If n is even, then the order of Wb_n is even. Using Lemma 2.15, graph Wb_n is a bipartite graph. According to Lemma 2.16, graph Wb_n is not a 2-step Hamiltonian graph.

If n is odd, then assuming C_1 and C_2 are the inner and outer cycles, respectively. Let $\{v_1, \ldots, v_n\}$ be the set of vertices of C_1 , $\{u_1, \ldots, u_n\}$ and $\{l_1, \ldots, l_n\}$ be the sets of vertices of C_2 and the leaves in H_n , respectively (see Figure 3(a)). Note that the vertex v_i in C_1 is adjacent to the vertices u_i and vertex u_i is adjacent to leaf l_i for $i = 1, \ldots, n$.

First, we consider Wb_3 . Figure 3(b) is shown the labeling on vertices for 2-step Hamiltonicity.

For $n \ge 4$, we determine the sequence $\{v_1, v_3, v_5, \dots, v_n, v_2, \dots, v_{n-1}\}$ on cycle C_1 such that the distance of any two vertices is 2. So, we select the sequence of vertices on the cycle C_2 and the set of leaves as following

$$\{l_{n-1}, u_{n-2}, l_{n-3}, u_{n-4}, \dots, l_2, u_1, l_n, u_{n-1}, \dots, l_3, u_2, l_1, u_n\}.$$

To merge the first sequence and second sequence, the distance of any two consecutive vertices is 2 and $d(v_1, u_2) = 2$. Thus, Wb_n is a 2-step Hamiltonian graph. \Box

Figure 3. a) A web graph with labeling on vertices, b) A labeling for 2-step Hamiltonian Wb_3 .

A polar grid graph $P_{m,n}$ is a graph contains *m* cycles with a common center as vertex such that any cycle has *n* vertices [12]. We investigate the 2-step Hamiltonicity on graph $P_{m,n}$ for

m = 2, 3 in the following Theorems.

Theorem 2.19. Let $P_{2,n}$ be a polar grid graph. Then $P_{2,n}$ is a 2-step Hamiltonian graph for any odd n.

Proof. Assume that $P_{2,n}$ is the polar grid graph of order 2n + 1 for odd n. If n = 3, then Figure 4(a) is shown the labeling on vertices for Al(2)-traversal in graph $P_{2,3}$. It is clear to see that $P_{2,3}$ is not a 2-step Hamiltonian graph.

For odd $n \ge 5$, we consider the sequence of vertices of $P_{2,n}$ as in Figure 4(b) such that the distance of any two consecutive vertices i and i+1 is 2 for i = 1, ..., 2n-2 and d(1, 2n+1) = 2. Therefore, graph $P_{2,n}$ is a 2-step Hamiltonian for any odd $n \ge 5$. \Box

Figure 4. a) Labeling for 2-step Hamiltonian $P_{2,3}$, b) Labeling for 2-step Hamiltonian on a polar grid graph $P_{2,n}$ for any odd $n \ge 5$.

Theorem 2.20. Let $P_{3,n}$ be a polar grid graph. Then $P_{3,n}$ is a 2-step Hamiltonian graph for any odd n.

Proof. Let $P_{3,n}$ be the polar grid graph of the order 3n+1 for odd n. If n is odd, then suppose that C_1, C_2 and C_3 are the cycles with the vertices sets $\{v_1, \ldots, v_n\}, \{u_1, \ldots, u_n\}$ and $\{w_1, \ldots, w_n\}$, respectively (see Figure 5). Also, the vertex o is the center of inner cycle C_3 . According to labeling on vertices in Figure 5, we determine the sequence as following.

 $\{v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, \dots, v_{n-2}, u_{n-1}, v_n, u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, \dots, u_{n-2}, o, u_n, v_{n-1}, w_1\},\$

on graph $P_{3,n}$ such that the distance of any two vertices is 2. So, we select vertices on cycle C_3 with the condition AL(2)-traversal as following

 $\{w_1, w_3, w_5, \ldots, w_{n-2}, w_n, w_2, w_4, \ldots, w_{n-3}, w_{n-1}\}.$

To merge the first sequence and the second sequence, the distance of any two consecutive vertices is 2 and $d(w_{n-1}, v_1) = 2$. \Box

The Gear graph G_n is the graph obtained from the wheel W_n by inserting a vertex between any two adjacent vertices in its cycle C_n [12].

Theorem 2.21. Let G_n be a gear graph. Then G_n is not a k-step Hamiltonian graph for any even $k \ge 2$.

Proof. Let G_n be the gear graph of order 2n + 1 for $n \ge 3$. According to the structure of graph G_n and using Lemma 2.15, graph G_n is a bipartite graph. So, by Lemma 2.16 graph G_n is not k-step Hamiltonian for any even $k \ge 2$. \Box

Figure 5. A labeling on vertices in the polar grid graph $P_{3,n}$.

The graph lotus inside a circle LC_n is obtained from the cycle C_n with the vertices set $\{u_1, \ldots, u_n\}$ and a star graph $K_{1,n}$ with central vertex o and the end vertices $\{v_1, \ldots, v_n\}$ by joining each v_i to u_i and u_{i+1} (mod n) [13].

Figure 6. Labeling on vertices in the graph lotus inside a circle LC_n .

Theorem 2.22. Let LC_n be a graph lotus inside a circle. Then LC_n is a 2-step Hamiltonian graph for odd n.

Proof. Let LC_n be the graph lotus inside a circle that the vertices are labeled as Figure 6. We determine the sequence on vertices as following

 $\{u_1, o, u_3, u_5, \ldots, u_n, u_2, u_4, \ldots, u_{n-1}, v_n, v_1, v_2, v_3, v_4, \ldots, v_{n-1}\},\$

such that the distance of any two vertices is 2. Also, $d(v_{n-1}, u_1) = 2$. So, graph LC_n is 2-step Hamiltonicity. \Box

References

- [1] F. Harary, Graph Theory, Reading, MA: Addison-Wesley, (1994).
- [2] T. P. Kirkman, On the representation of polyhedra, Phil. Trans. Royal Soc., 146 413-418 (1856).
- [3] G. C. Lau, S. M. Lee, K. Schaffer, S. M. Tong, S. Lui, On k-step Hamiltonian Graphs, J. Combin. Math. Combin. Comput., 90 145–158 (2014).

- [4] G. C. Lau, S. M. Lee, K. Schaffer, S. M. Tong, On k-step Hamiltonian Bipartite and Tripartite Graphs, Malaya J. Mat., 2(3) 180–187 (2014).
- [5] G. C. Lau, Y. S. Ho, S. M. Lee, K. Schaffer, On 3-step Hamiltonian trees, J. Graph Labeling, 1(1) 41–53 (2015).
- [6] N. A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, R. Hasni, Bounds for the Independence Number in k-Step Hamiltonian Graphs, *Comput. Sci. J. Mold.*, 26, 1(76), 15–28 (2018).
- [7] G.C. Lau, S. M. Lee, K. Schaffer, S.M. Tong, A Complete Solution of 3-step Hamiltonian Grids and Torus Graphs, *Thai J. Math.*, 17 107–113 (2019).
- [8] N. A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, R. Hasni, A Note on k-Step Hamiltonian Graphs, *Malays. J. Math. Sci.*, 13(1) 87–93 (2019).
- [9] G. Chartrand, H. Hevia, E. B. Jarrett, M. Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math., 170 63–79 (1997).
- [10] D. M. Cvetkocic, M. Doob, H. Sachs, Spectra of graphs Theory and Application, Academic Press, New York, (1980).
- [11] J. A. Gallian, Dynamic Survey DS6: Graph Labeling, Electronic J. Combinatorics., 6 1–58 (2007).
- [12] S. N. Daoud, Edge odd graceful labeling of some path and cycle related graphs, AKCE Int. J. Graphs Comb., 14 178–203 (2017).
- [13] R. Ponraja, S. Sathish Narayanana, R. Kalab, Radio mean labeling of a graph, AKCE Int. J. Graphs Comb., 12 224–228 (2015).

Author information

F. Movahedi, Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran. E-mail: f.movahedi@gu.ac.ir

M. H. Akhbari, Department of Mathematics, Estahban Branch, Islamic Azad University, Estahban, Iran. E-mail: hadi.akhbari@iau.ac.ir

R. Hasni, Special Interest Group on Modeling and Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu 21030 Kuala Nerus, Terengganu, Malaysia. E-mail: hroslan@umt.edu.my

Received: 2022-04-09 Accepted: 2022-08-20