Some results on k-step Hamiltonian graph

F. Movahedi, M. H. Akhbari and R. Hasni
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78; Secondary 05C25
Keywords and phrases: k-step Hamiltonian graph, Line graph, Join of graphs, t-subdivision of graph, Helm graph.

Abstract

Let $G(V, E)$ be a simple graph with $|V|=n$ vertices and $|E|=m$ edges. A graph G is said to admit an $A L(k)$-traversal if there exists a sequence of vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such for each $i=1,2, \ldots, n-1$, the distance for v_{i} and v_{i+1} is equal to k. The graph G is called a k-step Hamiltonian graph if it has an $A L(k)$-traversal in G and $d\left(v_{1}, v_{n}\right)=k$. In this paper, we obtain results of the investigation of property k-step Hamiltonian on some graph operations such that line graph, join of two graphs and jump graph of certain graphs. We investigate k-step Hamiltonicity for some graph families.

1 Introduction

All graphs in this paper are simple, finite, connected and undirected. Let $G=(V, E)$ be a simple graph with n vertices and the size of m. The distance $d(u, v)$ is denoted by the distance between two vertices u and v of a graph that is the minimum length of the paths connecting them [1]. Throughout this paper, K_{n}, C_{n} and P_{n} denote a complete graph, the cycle and the path of order n, respectively [1].

Hamiltonicity is a very important topic in graph theory. A Hamiltonian path(cycle) is a path(cycle) that visits each vertex of the graph exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph [2]. In [3] is defined as a new concept of the Hamiltonian graph as a k-step Hamiltonian graph.

For $k \geq 1$, a graph G is said to have an $A L(k)$-traversal if there exists a sequence $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such for each $i=1,2, \ldots, n-1$, the distance for v_{i} and v_{i+1} is equal to k. Graph G is called a k-step Hamiltonian if it has an $A L(k)$-traversal and $d\left(v_{n}, v_{1}\right)=k$. Note that a 1 -step Hamiltonian graph is a graph with a Hamiltonian cycle.

For example, the cubic graph in Figure 1 is 2-step Hamiltonian [4]. A Hamiltonian graph need not be a k-step Hamiltonian. The simplest examples are cycles C_{n} with $n \equiv 0(\bmod \mathrm{k})$ which are not $A L(k)$-traversable, hence cannot be k-step Hamiltonian.

Figure 1. A 2-step Hamiltonian cubic graph.

Lau et al. investigated 2-step Hamiltonicity of tripartite graphs [3]. In [4] is considered k-step Hamiltonicity of bipartite and tripartite graphs. In [5] is proposed several constructions of 3-step Hamiltonian trees from smaller 3-step Hamiltonian trees. More results on the k-step Hamiltonian graph are obtained in $[6,7,8]$. In this paper, we study the k-step Hamiltonicity of some operations of graphs.

The join of two graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$ [1]. In this paper, the k-step Hamiltonicity of $G_{1}+G_{2}$ is investigated.

The line graph of a graph G, denoted by $L(G)$, has E as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have at least one vertex in common. The complement of a graph G is denoted by \bar{G} with the same vertices set of G such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G [1]. The complement of line graph $L(G)$ is called the jump graph of G and is denoted by $J(G)$ [9]. We study the property of k-step Hamiltonicity of the complement of some graphs and line graphs.

2 Main results

In this section, we propose main results of this paper to investigate the k-step Hamiltonicity of some graphs. First, we recall some results that are used in this paper. For this purpose, let $D_{k}(G)$, for a graph G, denote the generated graph from G such that $V\left(D_{k}(G)\right)=V(G)$ and $E\left(D_{k}(G)\right)=\{u v \mid d(u, v)=k\}$ in G [3].
Lemma 2.1. [3] A graph G is a k-step Hamiltonian if and only if $D_{k}(G)$ is a Hamiltonian graph.
Lemma 2.2. [3] Cycle C_{n} for odd $n \geq 5$ is 2 -step Hamiltonian graph.
Lemma 2.3. [4] For integers $n \geq 3$ and $k \geq 2$, the cycle C_{n} is a k-step Hamiltonian if and only if $n \geq 2 k+1$ and $\operatorname{gcd}(n, k)=1$.

Theorem 2.4. If G_{1} and G_{2} are k-step Hamiltonian graphs for $k \geq 1$, then $D_{k}\left(G_{1}\right)+D_{k}\left(G_{2}\right)$ is Hamiltonian.
Proof. Let G_{1} and G_{2} be k-step Hamiltonian graphs of orders n and m, respectively. By Lemma 2.1, $D_{k}\left(G_{1}\right)$ and $D_{k}\left(G_{2}\right)$ are Hamiltonian. Assume that C_{i} is a Hamiltonian cycle on graph C_{i} for $i=1,2$ which $u_{1} u_{2} \ldots u_{n} u_{1}$ is a cycle C_{1} and $v_{1} v_{2} \ldots v_{m} v_{1}$ is cycle C_{2}.

According to the structure of graph $D_{k}\left(G_{1}\right)+D_{k}\left(G_{2}\right)$, the vertex u_{i} is adjacent to v_{j} for every $1 \leq i \leq n$ and $1 \leq j \leq m$. Thus, one can consider the following Hamiltonian cycle for graph $D_{k}\left(G_{1}\right)+D_{k}\left(G_{2}\right)$.

First, on the cycle C_{1} from the vertex u_{1} go to v_{1} in the graph $D_{k}\left(G_{2}\right)$ and so, path $v_{1} v_{2} \ldots v_{m}$ is passed in the graph $D_{k}\left(G_{2}\right)$. Thus, by edge $v_{m} u_{2}$ go back to $D_{k}\left(G_{1}\right)$. So, with passing the path $u_{2} \ldots u_{n} u_{1}$, the Hamiltonian cycle in graph $D_{k}\left(G_{1}\right)+D_{k}\left(G_{2}\right)$ is the complete. This cycle is as following

$$
u_{1} v_{1} v_{2} \ldots v_{m} u_{2} \ldots u_{n} u_{1}
$$

Therefore, the proof completes.
Theorem 2.5. For any two connected graphs G_{1} and G_{2}, then $G_{1}+G_{2}$ is not k-step Hamiltonian graph for $k \geq 2$.
Proof. According to the structure of graph $G=G_{1}+G_{2}$, all of the vertices from G_{1} and G_{2} are adjacent to each other. The vertex of G_{1} is not adjacent to the vertex of G_{2}, vice versa, in $D_{k}(G)$ for $k \geq 2$. Therefore, $D_{k}(G)$ is disconnected with at least two components consisting of $V_{1} \subseteq V\left(G_{1}\right)$ and $V_{2} \subseteq V\left(G_{2}\right)$, respectively. Thus, $D_{k}(G)$ is not Hamiltonian and by Lemma 2.1, $G_{1}+G_{2}$ is not the k-step Hamiltonian graph for $k \geq 2$.

According to Lemma 2.2 and since the line graph of a cycle is isomorphic to the same cycle, it is clear to have the following result.

Proposition 2.6. For cycle C_{n} of order odd $n, L\left(C_{n}\right)$ is a 2-step Hamiltonian graph.
Theorem 2.7. For $n \geq 5$, graph \bar{P}_{n} has $A L$ (2)-traversal. But it is not a 2-step Hamiltonian graph.
Proof. Let P_{n} be the path of order n with vertex set $\left\{u_{1}, \ldots, u_{n}\right\}$. We consider the graph structure of the complement of P_{n} as following.

On the path P_{n}, the edges of consecutive vertices $u_{i} u_{i+1}$ are deleted for $i=1, \ldots, n-1$. We have two cases.

Case 1) If n is even, then any vertex u_{i} connect to any vertex u_{j} for $i=1, \ldots, \frac{n}{2}+1$ and $j=i+2, \ldots, n$. Therefore, we consider the path $u_{i} u_{i+3} u_{i+1}$ for any two consecutive vertices u_{i} and u_{i+1} where $i=1, \ldots, \frac{n}{2}$ and the path $u_{i} u_{i-2} u_{i+1}$ for $i=\frac{n}{2}+1, \ldots, n-1$. Thus, $d\left(u_{i}, u_{i+1}\right)=2$ for $1 \leq i \leq n-1$. So, graph \bar{P}_{n} is $A L(2)$-traversable. On the other hand, since two vertices u_{1} and u_{n} are adjacent in $\bar{P}_{n}, d\left(u_{1}, u_{n}\right)=1$, then \bar{P}_{n} is not a 2-step Hamiltonian graph.

Case 2) If n is odd, then every vertex u_{i} connect to any vertex u_{j} for $i=1, \ldots, \frac{n-1}{2}+1$ and $j=i+2, \ldots, n$. Similar to case 1 , we consider the path $u_{i} u_{i+3} u_{i+1}$ for any two consecutive vertices u_{i} and u_{i+1} which $i=1, \ldots, \frac{n-1}{2}$ and the path $u_{i} u_{i-2} u_{i+1}$ for $i=\frac{n+1}{2}, \ldots, n-1$. Therefore, the distance between two vertices u_{i} and u_{i+1} is 2 for $1 \leq i \leq n-1$. Also, since two vertices u_{1} and u_{n} are adjacent in $\bar{P}_{n}, d\left(u_{1}, u_{n}\right)=1$. Therefore, in this case the result completes too.

Since the line graph of path P_{n} is isomorphic to the path of order $n-1, J\left(P_{n}\right)=\bar{P}_{n-1}$. Let vertices on path P_{n-1} be u_{1}, \ldots, u_{n-1}. Using Theorem 2.7, we have the following result.

Corollary 2.8. For $n \geq 4$, the jump graph of P_{n} has $A L(2)$-traversal. But, it is not a 2-step Hamiltonian graph.

Theorem 2.9. Graph of \bar{P}_{n}, for $n>4$ is Hamiltonian.

Proof. Let the vertices set of \bar{P}_{n} be $\left\{u_{1}, \ldots, u_{n}\right\}$. There is an edge between any two vertices u_{i} and v_{j} for $1 \leq i, j \leq n-1$ such that the following edges set are not in the graph \bar{P}_{n}.

$$
\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n-2} u_{n-1}, u_{n-1} u_{n}\right\} .
$$

We have two the following cases.
Case 1) If n is even, then we consider the Hamiltonian cycle in the graph \bar{P}_{n} as following,

$$
u_{1} u_{3} u_{5} \ldots u_{n-1} u_{2} u_{4} \ldots u_{n} u_{1}
$$

Case 2) If n is odd, then the Hamiltonian cycle in the graph \bar{P}_{n} is as following,

$$
u_{1} u_{3} u_{5} \ldots u_{n} u_{2} u_{4} \ldots u_{n-1} u_{1}
$$

Therefore, the proof completes.
Corollary 2.10. $J\left(P_{n}\right)$, for $n>4$ has a Hamiltonian cycle.
Proof. Since $L\left(P_{n}\right)=P_{n-1}$, the jump graph of P_{n} is \bar{P}_{n-1}. According to the proof of Theorem 2.9, the result holds.

Theorem 2.11. For $n \geq 5$, the graph \bar{C}_{n} is a 2-step Hamiltonian graph.
Proof. Let C_{n} be the cycle of order n with vertex set $\left\{u_{1}, \ldots, u_{n}\right\}$. The edge set of the complement of C_{n} is $E\left(K_{n} \backslash C_{n}\right)$. With the same discussion in the proof of Theorem 2.7, \bar{C}_{n} includes the vertices $\left\{u_{1}, \ldots, u_{n}\right\}$ that every vertex u_{i} is adjacent to other vertices except for u_{i-1} and u_{i+1} for any $2 \leq i \leq n-1$. Also, vertex u_{1} is adjacent to other vertices in \bar{C}_{n} except for two vertices u_{2} and u_{n}.

Note that $d\left(u_{i}, u_{i+1}\right)=2$ for all $i=1, \ldots, n$ by considering the path $u_{i} u_{k} u_{i+1}$ for $k \neq i, i \pm$ $1, i+2$. On the other hand, by selecting the path $u_{1} u_{k} u_{n}$ that $k \neq 1, n$, we have $d\left(u_{1}, u_{n}\right)=2$. Therefore, \bar{C}_{n} is a 2 -step Hamiltonian graph and a 2 -step Hamiltonian cycle of \bar{C}_{n} is given by $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$.

Corollary 2.12. For $n \geq 5$, the jump graph of C_{n} is a 2-step Hamiltonian graph.
Proof. The jump graph of C_{n} is the complement of the line graph of C_{n}. Since the line graph of C_{n} is isomorphic to C_{n} itself, $J\left(C_{n}\right)=\bar{C}_{n}$. Using Theorem 2.11, the result holds.

We consider some families of graphs and investigate the property of k-step Hamiltonian for $k \geq 1$ about these families. For a graph G, the subdivision graph $S(G)$ is a graph obtained from G by replacing each edge of G by a path of length 2 . The t-subdivision graph $S_{t}(G)$ of G is a graph obtained from G by replacing each edge of G by a path of length $t+1$. Obviously, $S_{1}(G)=S(G)[10]$.

Theorem 2.13. For $n \geq 4$ that $n \equiv 1(\bmod 3)$ or $n \equiv 2(\bmod 3)$, the subdivision graph of C_{n} is a 3-step Hamiltonian graph.

Proof. Let $S\left(C_{n}\right)$ be the subdivision graph of C_{n}. According to the definition, $S\left(C_{n}\right)$ is obtained from C_{n} by replacing each edge of C_{n} with a path of length 2 . Thus, the subdivision graph of C_{n} is a cycle of order $2 n$. Since $n \equiv 1(\bmod 3)$ or $n \equiv 2(\bmod 3)$, we have $2 n \equiv 2(\bmod 3)$ or $2 n \equiv 1(\bmod 3)$. Therefore, using Lemma 2.3 the result complements.

Theorem 2.14. Let C_{n} be a cycle graph with odd n. Then $S_{t}\left(C_{n}\right)$ is a 2-step Hamiltonian graph for any even t.

Proof. According to the definition of the t-subdivision graph, $S_{t}(G)$ of G is a graph obtained from G by replacing each edge of G with a path of length $t+1$. If t is even, then every edge in C_{n} is replaced with a path of length odd $t+1$.
So, the number of vertices of $S_{t}\left(C_{n}\right)$ is equal to $(t+1) n$ which the cycle of order odd. Therefore, by Lemma 2.2 graph $S_{t}(G)$ is a 2-step Hamiltonian graph.

The helm graph H_{n} is the graph obtained from a wheel graph with n vertices by adjoining a pendant edge at each vertex of the cycle. The web graph is obtained by joining the pendant vertices of a helm graph to form a cycle and then adding a single pendant edge to each vertex of this outer cycle. We consider the kind of generalized web graph that is without a center vertex [11]. First, we recall the following results.

Lemma 2.15. [1] A graph is bipartite if and only if it has no odd cycle.

Lemma 2.16. [3] All bipartite graphs are not k-step Hamiltonian for even $k \geq 2$.

Theorem 2.17. Let H_{n} be a helm graph with a wheel graph of order $n \geq 6$. Then H_{n} is 2-step Hamiltonian graph for any n.

Proof. Let H_{n} be the helm graph of order $2 n-1$ that n is the number of vertices of the wheel graph in H_{n}. It is easy to show that for $n=4,5$, the helm graph is not 2-step Hamiltonian graph. For $n \geq 6$, we consider two cases.

Case 1) If n is even, then we consider the sequence of vertices on H_{n} as in Figure 2(a) such that the distance of any two consecutive vertices v_{i} and v_{i+1} is 2 for $i=1,2, \ldots, 2 n-2$ and $d\left(v_{1}, v_{2 n-1}\right)=2$.

Case 2) If n is odd, then we consider the sequence of vertices on graph H_{n} as in Figure 2(b). According labeling vertices in Figure 2, $d\left(v_{i}, v_{i+1}\right)=2$ for $i=1,2, \ldots, 2 n-1$ and $d\left(v_{1}, v_{2 n-1}\right)=2$.
Therefore, for the above two cases, graph H_{n} is a 2-step Hamiltonian graph.
Theorem 2.18. Let $W b_{n}$ be a web graph. Then $W b_{n}$ is a 2-step Hamiltonian graph of order odd.

Figure 2. a) Labeling for 2-step Hamiltonian Helm graph with even n, b) Labeling for 2-step Hamiltonian Helm graph with odd n.

Proof. Let $W b_{n}$ be the web graph of order $3 n$. If n is even, then the order of $W b_{n}$ is even. Using Lemma 2.15, graph $W b_{n}$ is a bipartite graph. According to Lemma 2.16, graph $W b_{n}$ is not a 2-step Hamiltonian graph.

If n is odd, then assuming C_{1} and C_{2} are the inner and outer cycles, respectively. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices of $C_{1},\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{l_{1}, \ldots, l_{n}\right\}$ be the sets of vertices of C_{2} and the leaves in H_{n}, respectively (see Figure 3(a)). Note that the vertex v_{i} in C_{1} is adjacent to the vertices u_{i} and vertex u_{i} is adjacent to leaf l_{i} for $i=1, \ldots, n$.

First, we consider $W b_{3}$. Figure 3(b) is shown the labeling on vertices for 2-step Hamiltonicity.

For $n \geq 4$, we determine the sequence $\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n}, v_{2}, \ldots, v_{n-1}\right\}$ on cycle C_{1} such that the distance of any two vertices is 2 . So, we select the sequence of vertices on the cycle C_{2} and the set of leaves as following

$$
\left\{l_{n-1}, u_{n-2}, l_{n-3}, u_{n-4}, \ldots, l_{2}, u_{1}, l_{n}, u_{n-1}, \ldots, l_{3}, u_{2}, l_{1}, u_{n}\right\}
$$

To merge the first sequence and second sequence, the distance of any two consecutive vertices is 2 and $d\left(v_{1}, u_{2}\right)=2$. Thus, $W b_{n}$ is a 2 -step Hamiltonian graph.

Figure 3. a) A web graph with labeling on vertices, b) A labeling for 2-step Hamiltonian $W b_{3}$.

A polar grid graph $P_{m, n}$ is a graph contains m cycles with a common center as vertex such that any cycle has n vertices [12]. We investigate the 2 -step Hamiltonicity on graph $P_{m, n}$ for
$m=2,3$ in the following Theorems.

Theorem 2.19. Let $P_{2, n}$ be a polar grid graph. Then $P_{2, n}$ is a 2-step Hamiltonian graph for any odd n.

Proof. Assume that $P_{2, n}$ is the polar grid graph of order $2 n+1$ for odd n. If $n=3$, then Figure 4(a) is shown the labeling on vertices for $A l(2)$-traversal in graph $P_{2,3}$. It is clear to see that $P_{2,3}$ is not a 2-step Hamiltonian graph.

For odd $n \geq 5$, we consider the sequence of vertices of $P_{2, n}$ as in Figure 4(b) such that the distance of any two consecutive vertices i and $i+1$ is 2 for $i=1, \ldots, 2 n-2$ and $d(1,2 n+1)=2$. Therefore, graph $P_{2, n}$ is a 2-step Hamiltonian for any odd $n \geq 5$.

Figure 4. a) Labeling for 2-step Hamiltonian $P_{2,3}$, b) Labeling for 2-step Hamiltonian on a polar grid graph $P_{2, n}$ for any odd $n \geq 5$.

Theorem 2.20. Let $P_{3, n}$ be a polar grid graph. Then $P_{3, n}$ is a 2-step Hamiltonian graph for any odd n.

Proof. Let $P_{3, n}$ be the polar grid graph of the order $3 n+1$ for odd n. If n is odd, then suppose that C_{1}, C_{2} and C_{3} are the cycles with the vertices sets $\left\{v_{1}, \ldots, v_{n}\right\},\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$, respectively (see Figure 5). Also, the vertex o is the center of inner cycle C_{3}.
According to labeling on vertices in Figure 5, we determine the sequence as following.

$$
\begin{aligned}
& \left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, \ldots, v_{n-2}, u_{n-1}, v_{n}, u_{1}\right. \\
& \left.v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, \ldots, u_{n-2}, o, u_{n}, v_{n-1}, w_{1}\right\}
\end{aligned}
$$

on graph $P_{3, n}$ such that the distance of any two vertices is 2 . So, we select vertices on cycle C_{3} with the condition $A L(2)$-traversal as following

$$
\left\{w_{1}, w_{3}, w_{5}, \ldots, w_{n-2}, w_{n}, w_{2}, w_{4}, \ldots, w_{n-3}, w_{n-1}\right\}
$$

To merge the first sequence and the second sequence, the distance of any two consecutive vertices is 2 and $d\left(w_{n-1}, v_{1}\right)=2$.

The Gear graph G_{n} is the graph obtained from the wheel W_{n} by inserting a vertex between any two adjacent vertices in its cycle C_{n} [12].

Theorem 2.21. Let G_{n} be a gear graph. Then G_{n} is not a k-step Hamiltonian graph for any even $k \geq 2$.

Proof. Let G_{n} be the gear graph of order $2 n+1$ for $n \geq 3$. According to the structure of graph G_{n} and using Lemma 2.15, graph G_{n} is a bipartite graph. So, by Lemma 2.16 graph G_{n} is not k-step Hamiltonian for any even $k \geq 2$.

Figure 5. A labeling on vertices in the polar grid graph $P_{3, n}$.

The graph lotus inside a circle $L C_{n}$ is obtained from the cycle C_{n} with the vertices set $\left\{u_{1}, \ldots, u_{n}\right\}$ and a star graph $K_{1, n}$ with central vertex o and the end vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ by joining each v_{i} to u_{i} and $u_{i+1}(\bmod \mathrm{n})$ [13].

Figure 6. Labeling on vertices in the graph lotus inside a circle $L C_{n}$.

Theorem 2.22. Let $L C_{n}$ be a graph lotus inside a circle. Then $L C_{n}$ is a 2 -step Hamiltonian graph for odd n.
Proof. Let $L C_{n}$ be the graph lotus inside a circle that the vertices are labeled as Figure 6. We determine the sequence on vertices as following

$$
\left\{u_{1}, o, u_{3}, u_{5}, \ldots, u_{n}, u_{2}, u_{4}, \ldots, u_{n-1}, v_{n}, v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n-1}\right\}
$$

such that the distance of any two vertices is 2 .
Also, $d\left(v_{n-1}, u_{1}\right)=2$. So, graph $L C_{n}$ is 2 -step Hamiltonicity.

References

[1] F. Harary, Graph Theory, Reading, MA: Addison-Wesley, (1994).
[2] T. P. Kirkman, On the representation of polyhedra, Phil. Trans. Royal Soc.,146 413-418 (1856).
[3] G. C. Lau, S. M. Lee, K. Schaffer, S. M. Tong, S. Lui, On k-step Hamiltonian Graphs, J. Combin. Math. Combin. Comput., 90 145-158 (2014).
[4] G. C. Lau, S. M. Lee, K. Schaffer, S. M. Tong, On k-step Hamiltonian Bipartite and Tripartite Graphs, Malaya J. Mat., 2(3) 180-187 (2014).
[5] G. C. Lau, Y. S. Ho, S. M. Lee, K. Schaffer, On 3-step Hamiltonian trees, J. Graph Labeling, 1(1) 41-53 (2015).
[6] N. A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, R. Hasni, Bounds for the Independence Number in k-Step Hamiltonian Graphs, Comput. Sci. J. Mold., 26, 1(76), 15-28 (2018).
[7] G.C. Lau, S. M. Lee, K. Schaffer, S.M. Tong, A Complete Solution of 3-step Hamiltonian Grids and Torus Graphs, Thai J. Math., 17 107-113 (2019).
[8] N. A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, R. Hasni, A Note on k-Step Hamiltonian Graphs, Malays. J. Math. Sci., 13(1) 87-93 (2019).
[9] G. Chartrand, H. Hevia, E. B. Jarrett, M. Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math., 170 63-79 (1997) .
[10] D. M. Cvetkocic, M. Doob, H. Sachs, Spectra of graphs Theory and Application, Academic Press, New York, (1980).
[11] J. A. Gallian, Dynamic Survey DS6: Graph Labeling, Electronic J. Combinatorics., 6 1-58 (2007).
[12] S. N. Daoud, Edge odd graceful labeling of some path and cycle related graphs, AKCE Int. J. Graphs Comb., 14 178-203 (2017).
[13] R. Ponraja, S. Sathish Narayanana, R. Kalab, Radio mean labeling of a graph, AKCE Int. J. Graphs Comb., 12 224-228 (2015).

Author information

F. Movahedi, Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran.

E-mail: f.movahedi@gu.ac.ir
M. H. Akhbari, Department of Mathematics, Estahban Branch, Islamic Azad University, Estahban, Iran. E-mail: hadi.akhbari@iau.ac.ir
R. Hasni, Special Interest Group on Modeling and Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu 21030 Kuala Nerus, Terengganu,, Malaysia.
E-mail: hroslan@umt.edu.my

```
Received: 2022-04-09
```

Accepted: 2022-08-20

