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Abstract Let G(V,E) be a simple graph with |V | = n vertices and |E| = m edges. A graph
G is said to admit an AL(k)-traversal if there exists a sequence of vertices {v1, v2, . . . , vn} such
for each i = 1, 2, . . . , n − 1, the distance for vi and vi+1 is equal to k. The graph G is called
a k-step Hamiltonian graph if it has an AL(k)-traversal in G and d(v1, vn) = k. In this paper,
we obtain results of the investigation of property k-step Hamiltonian on some graph operations
such that line graph, join of two graphs and jump graph of certain graphs. We investigate k-step
Hamiltonicity for some graph families.

1 Introduction

All graphs in this paper are simple, finite, connected and undirected. Let G = (V,E) be a simple
graph with n vertices and the size of m. The distance d(u, v) is denoted by the distance between
two vertices u and v of a graph that is the minimum length of the paths connecting them [1].
Throughout this paper, Kn, Cn and Pn denote a complete graph, the cycle and the path of order
n, respectively [1].

Hamiltonicity is a very important topic in graph theory. A Hamiltonian path(cycle) is a
path(cycle) that visits each vertex of the graph exactly once. A graph that contains a Hamilto-
nian cycle is called a Hamiltonian graph [2]. In [3] is defined as a new concept of the Hamiltonian
graph as a k-step Hamiltonian graph.

For k ≥ 1, a graph G is said to have an AL(k)–traversal if there exists a sequence {v1, v2, . . . , vn}
such for each i = 1, 2, . . . , n − 1, the distance for vi and vi+1 is equal to k. Graph G is called a
k-step Hamiltonian if it has an AL(k)–traversal and d(vn, v1) = k. Note that a 1-step Hamilto-
nian graph is a graph with a Hamiltonian cycle.

For example, the cubic graph in Figure 1 is 2-step Hamiltonian [4]. A Hamiltonian graph
need not be a k-step Hamiltonian. The simplest examples are cycles Cn with n ≡ 0 (mod k)
which are not AL(k)–traversable, hence cannot be k-step Hamiltonian.

Figure 1. A 2-step Hamiltonian cubic graph.
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Lau et al. investigated 2-step Hamiltonicity of tripartite graphs [3]. In [4] is considered k-step
Hamiltonicity of bipartite and tripartite graphs. In [5] is proposed several constructions of 3-step
Hamiltonian trees from smaller 3-step Hamiltonian trees. More results on the k-step Hamilto-
nian graph are obtained in [6, 7, 8]. In this paper, we study the k-step Hamiltonicity of some
operations of graphs.

The join of two graphs G1 and G2, denoted by G1 + G2, is the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1) and v ∈ V (G2)} [1]. In
this paper, the k-step Hamiltonicity of G1 +G2 is investigated.

The line graph of a graph G, denoted by L(G), has E as its vertex set, where two vertices
in L(G) are adjacent if and only if the corresponding edges in G have at least one vertex in
common. The complement of a graph G is denoted by Ḡ with the same vertices set of G such
that two distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G [1]. The
complement of line graph L(G) is called the jump graph of G and is denoted by J(G) [9]. We
study the property of k-step Hamiltonicity of the complement of some graphs and line graphs.

2 Main results

In this section, we propose main results of this paper to investigate the k-step Hamiltonicity
of some graphs. First, we recall some results that are used in this paper. For this purpose, let
Dk(G), for a graph G, denote the generated graph from G such that V (Dk(G)) = V (G) and
E(Dk(G)) = {uv | d(u, v) = k} in G [3].

Lemma 2.1. [3] A graph G is a k-step Hamiltonian if and only if Dk(G) is a Hamiltonian graph.

Lemma 2.2. [3] Cycle Cn for odd n ≥ 5 is 2-step Hamiltonian graph.

Lemma 2.3. [4] For integers n ≥ 3 and k ≥ 2, the cycle Cn is a k-step Hamiltonian if and only
if n ≥ 2k + 1 and gcd(n, k) = 1.

Theorem 2.4. If G1 and G2 are k-step Hamiltonian graphs for k ≥ 1, then Dk(G1) +Dk(G2)
is Hamiltonian.

Proof. Let G1 and G2 be k-step Hamiltonian graphs of orders n and m, respectively. By Lemma
2.1, Dk(G1) and Dk(G2) are Hamiltonian. Assume that Ci is a Hamiltonian cycle on graph Ci

for i = 1, 2 which u1u2 . . . unu1 is a cycle C1 and v1v2 . . . vmv1 is cycle C2.
According to the structure of graph Dk(G1) + Dk(G2), the vertex ui is adjacent to vj for

every 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus, one can consider the following Hamiltonian cycle for
graph Dk(G1) +Dk(G2).

First, on the cycle C1 from the vertex u1 go to v1 in the graph Dk(G2) and so, path v1v2 . . . vm
is passed in the graph Dk(G2). Thus, by edge vmu2 go back to Dk(G1). So, with passing the
path u2 . . . unu1, the Hamiltonian cycle in graph Dk(G1) +Dk(G2) is the complete. This cycle
is as following

u1v1v2 . . . vmu2 . . . unu1.

Therefore, the proof completes. 2

Theorem 2.5. For any two connected graphs G1 and G2, then G1+G2 is not k-step Hamiltonian
graph for k ≥ 2.

Proof. According to the structure of graph G = G1 + G2, all of the vertices from G1 and G2
are adjacent to each other. The vertex of G1 is not adjacent to the vertex of G2, vice versa, in
Dk(G) for k ≥ 2. Therefore, Dk(G) is disconnected with at least two components consisting
of V1 ⊆ V (G1) and V2 ⊆ V (G2), respectively. Thus, Dk(G) is not Hamiltonian and by Lemma
2.1, G1 +G2 is not the k-step Hamiltonian graph for k ≥ 2. 2

According to Lemma 2.2 and since the line graph of a cycle is isomorphic to the same cycle,
it is clear to have the following result.
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Proposition 2.6. For cycle Cn of order odd n, L(Cn) is a 2-step Hamiltonian graph.

Theorem 2.7. For n ≥ 5, graph P̄n has AL(2)-traversal. But it is not a 2-step Hamiltonian
graph.

Proof. Let Pn be the path of order n with vertex set {u1, . . . , un}. We consider the graph
structure of the complement of Pn as following.

On the path Pn, the edges of consecutive vertices uiui+1 are deleted for i = 1, . . . , n− 1. We
have two cases.

Case 1) If n is even, then any vertex ui connect to any vertex uj for i = 1, . . . , n
2 + 1 and

j = i + 2, . . . , n. Therefore, we consider the path uiui+3ui+1 for any two consecutive vertices
ui and ui+1 where i = 1, . . . , n

2 and the path uiui−2ui+1 for i = n
2 + 1, . . . , n − 1. Thus,

d(ui, ui+1) = 2 for 1 ≤ i ≤ n− 1. So, graph P̄n is AL(2)-traversable. On the other hand, since
two vertices u1 and un are adjacent in P̄n, d(u1, un) = 1, then P̄n is not a 2-step Hamiltonian
graph.

Case 2) If n is odd, then every vertex ui connect to any vertex uj for i = 1, . . . , n−1
2 + 1 and

j = i + 2, . . . , n. Similar to case 1, we consider the path uiui+3ui+1 for any two consecutive
vertices ui and ui+1 which i = 1, . . . , n−1

2 and the path uiui−2ui+1 for i = n+1
2 , . . . , n − 1.

Therefore, the distance between two vertices ui and ui+1 is 2 for 1 ≤ i ≤ n− 1. Also, since two
vertices u1 and un are adjacent in P̄n, d(u1, un) = 1. Therefore, in this case the result completes
too. 2

Since the line graph of path Pn is isomorphic to the path of order n− 1, J(Pn) = P̄n−1. Let
vertices on path Pn−1 be u1, . . . , un−1. Using Theorem 2.7, we have the following result.

Corollary 2.8. For n ≥ 4, the jump graph of Pn has AL(2)-traversal. But, it is not a 2-step
Hamiltonian graph.

Theorem 2.9. Graph of P̄n, for n > 4 is Hamiltonian.

Proof. Let the vertices set of P̄n be {u1, . . . , un}. There is an edge between any two vertices
ui and vj for 1 ≤ i, j ≤ n− 1 such that the following edges set are not in the graph P̄n.

{u1u2, u2u3, . . . , un−2un−1, un−1un}.

We have two the following cases.
Case 1) If n is even, then we consider the Hamiltonian cycle in the graph P̄n as following,

u1u3u5 . . . un−1u2u4 . . . unu1.

Case 2) If n is odd, then the Hamiltonian cycle in the graph P̄n is as following,

u1u3u5 . . . unu2u4 . . . un−1u1.

Therefore, the proof completes. 2

Corollary 2.10. J(Pn), for n > 4 has a Hamiltonian cycle.

Proof. Since L(Pn) = Pn−1, the jump graph of Pn is P̄n−1. According to the proof of Theorem
2.9, the result holds. 2

Theorem 2.11. For n ≥ 5, the graph C̄n is a 2-step Hamiltonian graph.

Proof. Let Cn be the cycle of order n with vertex set {u1, . . . , un}. The edge set of the comple-
ment of Cn is E(Kn \ Cn). With the same discussion in the proof of Theorem 2.7, C̄n includes
the vertices {u1, . . . , un} that every vertex ui is adjacent to other vertices except for ui−1 and
ui+1 for any 2 ≤ i ≤ n − 1. Also, vertex u1 is adjacent to other vertices in C̄n except for two
vertices u2 and un.

Note that d(ui, ui+1) = 2 for all i = 1, . . . , n by considering the path uiukui+1 for k 6= i, i±
1, i+ 2. On the other hand, by selecting the path u1ukun that k 6= 1, n, we have d(u1, un) = 2.
Therefore, C̄n is a 2-step Hamiltonian graph and a 2-step Hamiltonian cycle of C̄n is given by
u1, u2, . . . , un, u1. 2
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Corollary 2.12. For n ≥ 5, the jump graph of Cn is a 2-step Hamiltonian graph.

Proof. The jump graph of Cn is the complement of the line graph of Cn. Since the line graph of
Cn is isomorphic to Cn itself, J(Cn) = C̄n. Using Theorem 2.11, the result holds. 2

We consider some families of graphs and investigate the property of k-step Hamiltonian for
k ≥ 1 about these families. For a graph G, the subdivision graph S(G) is a graph obtained from
G by replacing each edge of G by a path of length 2. The t-subdivision graph St(G) of G is
a graph obtained from G by replacing each edge of G by a path of length t + 1. Obviously,
S1(G) = S(G) [10].

Theorem 2.13. For n ≥ 4 that n ≡ 1 (mod 3) or n ≡ 2 (mod 3), the subdivision graph of Cn is
a 3-step Hamiltonian graph.

Proof. Let S(Cn) be the subdivision graph of Cn. According to the definition, S(Cn) is obtained
from Cn by replacing each edge of Cn with a path of length 2. Thus, the subdivision graph of
Cn is a cycle of order 2n. Since n ≡ 1 (mod 3) or n ≡ 2 (mod 3), we have 2n ≡ 2 (mod 3) or
2n ≡ 1 (mod 3). Therefore, using Lemma 2.3 the result complements. 2

Theorem 2.14. Let Cn be a cycle graph with odd n. Then St(Cn) is a 2-step Hamiltonian graph
for any even t.

Proof. According to the definition of the t-subdivision graph, St(G) of G is a graph obtained
from G by replacing each edge of G with a path of length t+ 1. If t is even, then every edge in
Cn is replaced with a path of length odd t+ 1.
So, the number of vertices of St(Cn) is equal to (t+1)n which the cycle of order odd. Therefore,
by Lemma 2.2 graph St(G) is a 2-step Hamiltonian graph. 2

The helm graph Hn is the graph obtained from a wheel graph with n vertices by adjoining
a pendant edge at each vertex of the cycle. The web graph is obtained by joining the pendant
vertices of a helm graph to form a cycle and then adding a single pendant edge to each vertex of
this outer cycle. We consider the kind of generalized web graph that is without a center vertex
[11]. First, we recall the following results.

Lemma 2.15. [1] A graph is bipartite if and only if it has no odd cycle.

Lemma 2.16. [3] All bipartite graphs are not k-step Hamiltonian for even k ≥ 2.

Theorem 2.17. Let Hn be a helm graph with a wheel graph of order n ≥ 6. Then Hn is 2-step
Hamiltonian graph for any n.

Proof. Let Hn be the helm graph of order 2n − 1 that n is the number of vertices of the wheel
graph in Hn. It is easy to show that for n = 4, 5, the helm graph is not 2-step Hamiltonian graph.
For n ≥ 6, we consider two cases.

Case 1) If n is even, then we consider the sequence of vertices on Hn as in Figure 2(a) such
that the distance of any two consecutive vertices vi and vi+1 is 2 for i = 1, 2, . . . , 2n − 2 and
d(v1, v2n−1) = 2.

Case 2) If n is odd, then we consider the sequence of vertices on graph Hn as in Figure
2(b). According labeling vertices in Figure 2, d(vi, vi+1) = 2 for i = 1, 2, . . . , 2n − 1 and
d(v1, v2n−1) = 2.
Therefore, for the above two cases, graph Hn is a 2-step Hamiltonian graph. 2

Theorem 2.18. Let Wbn be a web graph. Then Wbn is a 2-step Hamiltonian graph of order
odd.



Results on k-step Hamiltonian graph 295

Figure 2. a) Labeling for 2-step Hamiltonian Helm graph with even n, b) Labeling for 2-step
Hamiltonian Helm graph with odd n.

Proof. Let Wbn be the web graph of order 3n. If n is even, then the order of Wbn is even. Using
Lemma 2.15, graph Wbn is a bipartite graph. According to Lemma 2.16, graph Wbn is not a
2-step Hamiltonian graph.

If n is odd, then assuming C1 and C2 are the inner and outer cycles, respectively. Let
{v1, . . . , vn} be the set of vertices of C1, {u1, . . . , un} and {l1, . . . , ln} be the sets of vertices
of C2 and the leaves in Hn, respectively (see Figure 3(a)). Note that the vertex vi in C1 is adja-
cent to the vertices ui and vertex ui is adjacent to leaf li for i = 1, . . . , n.

First, we consider Wb3. Figure 3(b) is shown the labeling on vertices for 2-step Hamiltonic-
ity.

For n ≥ 4, we determine the sequence {v1, v3, v5, . . . , vn, v2, . . . , vn−1} on cycle C1 such that
the distance of any two vertices is 2. So, we select the sequence of vertices on the cycle C2 and
the set of leaves as following

{ln−1, un−2, ln−3, un−4, . . . , l2, u1, ln, un−1, . . . , l3, u2, l1, un}.

To merge the first sequence and second sequence, the distance of any two consecutive vertices
is 2 and d(v1, u2) = 2. Thus, Wbn is a 2-step Hamiltonian graph. 2

Figure 3. a) A web graph with labeling on vertices, b) A labeling for 2-step Hamiltonian Wb3.

A polar grid graph Pm,n is a graph contains m cycles with a common center as vertex such
that any cycle has n vertices [12]. We investigate the 2-step Hamiltonicity on graph Pm,n for
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m = 2, 3 in the following Theorems.

Theorem 2.19. Let P2,n be a polar grid graph. Then P2,n is a 2-step Hamiltonian graph for any
odd n.

Proof. Assume that P2,n is the polar grid graph of order 2n+ 1 for odd n. If n = 3, then Figure
4(a) is shown the labeling on vertices for Al(2)-traversal in graph P2,3. It is clear to see that P2,3
is not a 2-step Hamiltonian graph.

For odd n ≥ 5, we consider the sequence of vertices of P2,n as in Figure 4(b) such that the
distance of any two consecutive vertices i and i+1 is 2 for i = 1, . . . , 2n−2 and d(1, 2n+1) = 2.
Therefore, graph P2,n is a 2-step Hamiltonian for any odd n ≥ 5. 2

Figure 4. a) Labeling for 2-step Hamiltonian P2,3, b) Labeling for 2-step Hamiltonian on a
polar grid graph P2,n for any odd n ≥ 5.

Theorem 2.20. Let P3,n be a polar grid graph. Then P3,n is a 2-step Hamiltonian graph for any
odd n.

Proof. Let P3,n be the polar grid graph of the order 3n+1 for odd n. If n is odd, then suppose that
C1, C2 and C3 are the cycles with the vertices sets {v1, . . . , vn}, {u1, . . . , un} and {w1, . . . , wn},
respectively (see Figure 5). Also, the vertex o is the center of inner cycle C3.
According to labeling on vertices in Figure 5, we determine the sequence as following.

{v1, u2, v3, u4, v5, u6, v7, u8, . . . , vn−2, un−1, vn, u1,

v2, u3, v4, u5, v6, u7, v8, . . . , un−2, o, un, vn−1, w1},

on graph P3,n such that the distance of any two vertices is 2. So, we select vertices on cycle C3
with the condition AL(2)-traversal as following

{w1, w3, w5, . . . , wn−2, wn, w2, w4, . . . , wn−3, wn−1}.

To merge the first sequence and the second sequence, the distance of any two consecutive
vertices is 2 and d(wn−1, v1) = 2. 2

The Gear graph Gn is the graph obtained from the wheel Wn by inserting a vertex between
any two adjacent vertices in its cycle Cn [12].

Theorem 2.21. Let Gn be a gear graph. Then Gn is not a k-step Hamiltonian graph for any
even k ≥ 2.

Proof. Let Gn be the gear graph of order 2n+ 1 for n ≥ 3. According to the structure of graph
Gn and using Lemma 2.15, graph Gn is a bipartite graph. So, by Lemma 2.16 graph Gn is not
k-step Hamiltonian for any even k ≥ 2. 2
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Figure 5. A labeling on vertices in the polar grid graph P3,n.

The graph lotus inside a circle LCn is obtained from the cycle Cn with the vertices set
{u1, . . . , un} and a star graph K1,n with central vertex o and the end vertices {v1, . . . , vn} by
joining each vi to ui and ui+1 (mod n) [13].

Figure 6. Labeling on vertices in the graph lotus inside a circle LCn.

Theorem 2.22. Let LCn be a graph lotus inside a circle. Then LCn is a 2-step Hamiltonian
graph for odd n.

Proof. Let LCn be the graph lotus inside a circle that the vertices are labeled as Figure 6. We
determine the sequence on vertices as following

{u1, o, u3, u5, . . . , un, u2, u4, . . . , un−1, vn, v1, v2, v3, v4, . . . , vn−1},

such that the distance of any two vertices is 2.
Also, d(vn−1, u1) = 2. So, graph LCn is 2-step Hamiltonicity. 2
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