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Abstract In this work, we prove some fixed point theorems for integral type contractive
conditions in the setting of complete S-metric spaces and give some consequences of the main
results. Also we give some examples in support of the results. Our results extend and generalize
several results from the existing literature. Specially our results generalize the results of Özgür
and Tas [13].

1 Introduction

Banach contraction principle [1] is one of the milestones in the development of fixed point the-
ory. Its significance lies in the vast applicability to a great number of branches of mathematical
sciences, for example, theory of existence of solutions for nonlinear differential, integral and
functional equations, variational inequalities and optimization and approximation theory.

A mapping T : X → X , where X is a nonempty set and (X, d) is a metric space, is said to
be a contraction if there exists b ∈ [0, 1) such that for all x, y ∈ X ,

d(T (x), T (y)) ≤ b d(x, y). (1.1)

If the metric space (X, d) is complete then the mapping satisfying (1.1) has a unique fixed point.
Inequality (1.1) implies continuity of T .

There are many generalization of this principle. These generalizations are made either by
using different contractive conditions or by imposing some additional condition on the ambient
spaces. On the other hand, a number of generalizations of metric spaces have been done and one
of such generalization is an S-metric space.

In 2012, the concept of an S-metric has been introduced and studied as a generalization of a
metric. This concept has been given by Sedghi et al. [24] as follows.

Definition 1.1. ([24]) Let X be a nonempty set and S : X3 → [0,∞) be a function satisfying the
following conditions for all x, y, z, t ∈ X:

(S1) S(x, y, z) = 0 if and only if x = y = z;
(S2) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).
Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric

space (in short SMS).

Example 1.2. ([24]) Let X = Rn and ‖·‖ a norm onX , then S(x, y, z) = ‖y+z−2x‖+‖y−z‖
is an S-metric on X .

Example 1.3. ([24]) Let X = Rn and ‖ · ‖ a norm on X , then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is
an S-metric on X .

Example 1.4. ([25]) Let X = R be the real line. Then S(x, y, z) = |x − z| + |y − z| for all
x, y, z ∈ R is an S-metric on X . This S-metric on X is called the usual S-metric on X .

In literature, several fixed point theorems have been given for self mappings satisfying various
contractive conditions on an S-metric space (see [3, 4, 6, 10, 11, 12, 21, 22, 23, 24, 25]). One
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of the celebrated results among these works is the Banach contraction principle on a complete
S-metric space which was generalized by Sedghi et al. [24]. The statement of the result is as
follows.

Theorem 1.5. ([24]) Let (X,S) be a complete S-metric space and let T : X → X be a self-
mapping of X such that

S(Tx, Ty, Tz) ≤ k S(x, y, z), (1.2)

for all x, y, z ∈ X , where k ∈ (0, 1) is a constant. Then T has a unique fixed point in X .

On the other hand some generalizations of the well-known fixed point theorems obtained on
S-metric spaces via some new fixed point results (see [11, 12, 24, 25] for more details).

In 2014, Mlaiki [7] introduced the notion of complex valued S-metric space and showed
the existence and uniqueness of a common fixed point of two self-mappings in such spaces and
also illustrated some examples to validate the results. In [8], the same author introduced α − ψ
contractive mapping in S-metric spaces and proved the existence of fixed point for such mapping
under some conditions imposed on self-mapping T . In 2016, Souayah and Mlaiki [26] have
introduced an extension of S-metric spaces called Sb-metric spaces and proved the existence
of fixed point for a self-mapping defined on such spaces and also proved some results on the
topology of the Sb-metric spaces (see, also [9]).

Later, different applications of some contractive conditions have been obtained on S-metric
space such as differential equations, complex valued functions etc. (see [7, 10, 14, 15, 16]).

Now a days, fixed point theory has been examined for various contractive conditions. Indeed,
one of those is integral type contraction which was introduced by Branciari [2] in 2002 and
proved a fixed point result for mappings defined on a complete metric space satisfying a general
contractive type condition of integral type. The Branciari’s [2] result is as follows.

Theorem 1.6. ([2]) Let (X, d) be a complete metric space, h ∈ (0, 1), ϕ : [0,∞) → [0,∞) is a
Lebesgue-integrable mapping which is summable on each compact subset of [0,∞), nonnegative
and such that for each ε > 0, ∫ ε

0
ϕ(t)dt > 0,

and let T : X → X be a self-mapping of X such that∫ d(Tx,Ty)

0
ϕ(t)dt ≤ h

∫ d(x,y)

0
ϕ(t)dt,

for all x, y ∈ X . Then T has a unique fixed point u ∈ X such that limn→∞ Tnw = u for each
w ∈ X .

After Theorem 1.6, a lot of research works have been carried out on generalizing contractive
conditions of integral type for different contractive mappings satisfying many known properties
(see [18, 19]). Affine work has been done by Rhoades [20] extending the result of Theorem 1.6
([2]) by replacing the condition (1.3) by the following condition:∫ d(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ m(x,y)=max

{
d(x,y),d(x,Tx),d(y,Ty), d(x,Ty)+d(y,Tx)

2

}
0

ϕ(t)dt, (1.3)

for each c ∈ [0, 1) and x, y ∈ X .
In 2016, Rahman et al. [17] have established a common fixed point result of Altman integral

type for four self-mappings in the context of S-metric spaces and gave an example in support of
the result.

Recently, Özgür and Tas [13] have studied new contractive conditions of integral type on
S-metric spaces and established some fixed point theorems for various contractive conditions
of integral type and gave examples in support of the established results. Also they obtained an
application to the Fredholm integral equation.

Motivated by Özgür and Tas [13] and some others, we investigate some fixed point theorems
for contractive conditions of integral type in the framework of S-metric spaces and give some
examples in support of the results. The results presented in this paper extend and generalize
several results in the existing literature.
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2 Preliminaries

At first we recall some basic results about S-metric spaces.

Definition 2.1. ([24]) Let (X,S) be an S-metric space.
(1) A sequence {un} in X converges to u ∈ X if and only if S(un, un, u) → 0 as n → ∞,

that is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have S(un, un, u) < ε.
We denote this by limn→∞ un = u or un → u as n→∞.

(2) A sequence {un} in X is called a Cauchy sequence if S(un, un, um)→ 0 as n,m→∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0 we have S(un, un, um) < ε.

(3) The S-metric space (X,S) is called complete if every Cauchy sequence in X is conver-
gent in X .

Lemma 2.2. ([24], Lemma 2.5) Let (X,S) be an S-metric space. Then, we have S(x, x, y) =
S(y, y, x) for all x, y ∈ X .

The above Lemma 2.2 can be considered as a symmetry condition on an S-metric space.

Lemma 2.3. ([24], Lemma 2.12) Let (X,S) be an S-metric space. If xn → x and yn → y as
n→∞ then S(xn, xn, yn)→ S(x, x, y) as n→∞.

In the following lemma we see the relationship between a metric and S-metric.

Lemma 2.4. ([4]) Let (X, d) be a metric space. Then the following properties are satisfied:
(1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X .
(2) un → u in (X, d) if and only if un → u in (X,Sd).
(3) {un} is Cauchy in (X, d) if and only if {un} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

We call the function Sd defined in Lemma 2.4 (1) as the S-metric generated by the metric d.
It can be found an example of an S-metric which is not generated by any metric in [4, 12].

3 Main Results

In this section, we shall prove some unique fixed point theorems for integral type contractive
conditions in the setting of complete S-metric spaces.

Throughout this paper we assume that ϕ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping
which is summable on each compact subset of [0,∞), nonnegative and such that for each ε > 0,∫ ε

0
ϕ(t)dt > 0. (3.1)

Theorem 3.1. Let (X,S) be a complete S-metric space, and the function ϕ : [0,∞)→ [0,∞) be
defined as in (3.1) and let T : X → X be a self-mapping of X such that∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ q1

∫ S(x,x,y)

0
ϕ(t)dt+ q2

∫ S(x,x,Tx)

0
ϕ(t)dt

+q3

∫ S(y,y,Ty)

0
ϕ(t)dt+ q4

∫ S(x,x,Ty)

0
ϕ(t)dt

+q5

∫ S(y,y,Tx)

0
ϕ(t)dt

+q6

∫ max{S(x,x,y),S(y,y,Ty),S(y,y,Tx)}

0
ϕ(t)dt

+q7

∫ S(x,x,Tx)S(x,x,Ty)
2S(x,x,Ty)+S(y,y,Tx)+S(y,y,Ty)

0
ϕ(t)dt, (3.2)

for all x, y ∈ X , where q1, q2, q3, q4, q5, q6, q7 are nonnegative reals such that q1 +q2 +q3 +3q4 +
2q6 + q7 < 1. Then T has a unique fixed point u ∈ X and we have Tnw = u for each w ∈ X .
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Proof. Let x0 ∈ X and the sequence {xn} be defined as Tnx0 = xn for n = 1, 2, . . . . Suppose
that xn+1 6= xn for all n. Using the inequality (3.2), the conditions (S1), (S2) and Lemma 2.2,
we have∫ S(xn,xn,xn+1)

0
ϕ(t)dt =

∫ S(Txn−1,Txn−1,Txn)

0
ϕ(t)dt

≤ q1

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt+ q2

∫ S(xn−1,xn−1,Txn−1)

0
ϕ(t)dt

+q3

∫ S(xn,xn,Txn)

0
ϕ(t)dt+ q4

∫ S(xn−1,xn−1,Txn)

0
ϕ(t)dt

+q5

∫ S(xn,xn,Txn−1)

0
ϕ(t)dt

+q6

∫ max{S(xn−1,xn−1,Txn−1),S(xn,xn,Txn),S(xn,xn,Txn−1)}

0
ϕ(t)dt

+q7

∫ S(xn−1,xn−1,Txn−1)S(xn−1,xn−1,Txn)

2S(xn−1,xn−1,Txn)+S(xn,xn,Txn−1)+S(xn,xn,Txn)

0
ϕ(t)dt

= q1

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt+ q2

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+q3

∫ S(xn,xn,xn+1)

0
ϕ(t)dt+ q4

∫ S(xn−1,xn−1,xn+1)

0
ϕ(t)dt

+q5

∫ S(xn,xn,xn)

0
ϕ(t)dt

+q6

∫ max{S(xn−1,xn−1,xn),S(xn,xn,xn+1),S(xn,xn,xn)}

0
ϕ(t)dt

+q7

∫ S(xn−1,xn−1,xn)S(xn−1,xn−1,xn+1)
2S(xn−1,xn−1,xn+1)+S(xn,xn,xn)+S(xn,xn,xn+1)

0
ϕ(t)dt

≤ (q1 + q2 + q4 + q6 + q7)

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+(q3 + 2q4 + q6)

∫ S(xn,xn,xn+1)

0
ϕ(t)dt, (3.3)

which implies∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤

(q1 + q2 + q4 + q6 + q7

1− q3 − 2q4 − q6

) ∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt.

(3.4)

If we take µ =
(

q1+q2+q4+q6+q7
1−q3−2q4−q6

)
, then we find µ < 1 since q1 + q2 + q3 + 3q4 + 2q6 + q7 < 1.

Using the inequality (3.4) again, we obtain∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ µn

∫ S(x0,x0,x1)

0
ϕ(t)dt. (3.5)

Taking the limit as n→∞, in inequality (3.5), we get

lim
n→∞

∫ S(xn,xn,xn+1)

0
ϕ(t)dt = 0, (3.6)

since 0 < µ < 1. The condition (3.6) implies

lim
n→∞

S(xn, xn, xn+1) = 0. (3.7)
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Now, we show that the sequence {xn} is a Cauchy sequence. Assume that {xn} is not a Cauchy
sequence. Then there exists an ε > 0 and subsequences {mi} and {ni} such that mi < ni <
mi+1 with

S(xmi
, xmi

, xni
) ≥ ε, (3.8)

and

S(xmi
, xmi

, xni−1) < ε. (3.9)

Now, using Lemma 2.2, we have

S(xmi−1, xmi−1, xni−1) ≤ 2S(xmi−1, xmi−1, xmi
)

+S(xni−1, xni−1, xmi
)

< 2S(xmi−1, xmi−1, xmi) + ε, (3.10)

and

lim
i→∞

∫ S(xmi−1,xmi−1,xni−1)

0
ϕ(t)dt ≤

∫ ε

0
ϕ(t)dt. (3.11)

Using the inequality (3.2), (3.4), (3.8) and (3.11), we obtain

∫ ε

0
ϕ(t)dt ≤

∫ S(xmi
,xmi

,xni
)

0
ϕ(t)dt

=

∫ S(Txmi−1,Txmi−1,Txni−1)

0
ϕ(t)dt

≤ µ

∫ S(xmi−1,xmi−1,xni−1)

0
ϕ(t)dt

≤ µ

∫ ε

0
ϕ(t)dt, (3.12)

which is a contradiction with our assumption that 0 < µ < 1. Thus, the sequence {xn} is a
Cauchy sequence in X . Hence by completeness hypothesis of X , there exists u ∈ X such that

Tnx0 = u.
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From the given inequality (3.2), we find

∫ S(Tu,Tu,xn+1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Txn)

0
ϕ(t)dt

≤ q1

∫ S(u,u,xn)

0
ϕ(t)dt+ q2

∫ S(u,u,Tu)

0
ϕ(t)dt

+q3

∫ S(xn,xn,Txn)

0
ϕ(t)dt+ q4

∫ S(u,u,Txn)

0
ϕ(t)dt

+q5

∫ S(xn,xn,Tu)

0
ϕ(t)dt

+q6

∫ max{S(u,u,xn),S(xn,xn,Txn),S(xn,xn,Tu)}

0
ϕ(t)dt

+q7

∫ S(u,u,Tu)S(u,u,Txn)
2S(u,u,Txn)+S(xn,xn,Tu)+S(xn,xn,Txn)

0
ϕ(t)dt

= q1

∫ S(u,u,xn)

0
ϕ(t)dt+ q2

∫ S(u,u,Tu)

0
ϕ(t)dt

+q3

∫ S(xn,xn,xn+1)

0
ϕ(t)dt+ q4

∫ S(u,u,xn+1)

0
ϕ(t)dt

+q5

∫ S(xn,xn,Tu)

0
ϕ(t)dt

+q6

∫ max{S(u,u,xn),S(xn,xn,xn+1),S(xn,xn,Tu)}

0
ϕ(t)dt.

+q7

∫ S(u,u,Tu)S(u,u,xn+1)
2S(u,u,xn+1)+S(xn,xn,Tu)+S(xn,xn,xn+1)

0
ϕ(t)dt.

(3.13)

Taking the limit as n→∞ in (3.13) and using the condition (S1) and Lemma 2.2, we get

∫ S(Tu,Tu,u)

0
ϕ(t)dt ≤ (q2 + q5 + q6)

∫ S(Tu,Tu,u)

0
ϕ(t)dt, (3.14)

which implies S(Tu, Tu, u) = 0, that is, Tu = u since q2 + q5 + q6 < 1. This shows that u is a
fixed point of T .

Now, we show that the uniqueness of the fixed point. Let u1 be another fixed point of T with
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u1 6= u. Using the inequality (3.2) and Lemma 2.2, we obtain∫ S(u,u,u1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Tu1)

0
ϕ(t)dt

≤ q1

∫ S(u,u,u1)

0
ϕ(t)dt+ q2

∫ S(u,u,Tu)

0
ϕ(t)dt

+q3

∫ S(u1,u1,Tu1)

0
ϕ(t)dt+ q4

∫ S(u,u,Tu1)

0
ϕ(t)dt

+q5

∫ S(u1,u1,Tu)

0
ϕ(t)dt

+q6

∫ max{S(u,u,Tu),S(u1,u1,Tu1),S(u1,u1,Tu)}

0
ϕ(t)dt

+q7

∫ S(u,u,Tu)S(u,u,Tu1)
2S(u,u,Tu1)+S(u1,u1,Tu)+S(u1,u1,Tu1)

0
ϕ(t)dt

= q1

∫ S(u,u,u1)

0
ϕ(t)dt+ q2

∫ S(u,u,u)

0
ϕ(t)dt

+q3

∫ S(u1,u1,u1)

0
ϕ(t)dt+ q4

∫ S(u,u,u1)

0
ϕ(t)dt

+q5

∫ S(u1,u1,u)

0
ϕ(t)dt

+q6

∫ max{S(u,u,u),S(u1,u1,u1),S(u1,u1,u)}

0
ϕ(t)dt

+q7

∫ S(u,u,u)S(u,u,u1)
2S(u,u,u1)+S(u1,u1,u)+S(u1,u1,u1)

0
ϕ(t)dt

= (q1 + q4 + q5 + q6)

∫ S(u,u,u1)

0
ϕ(t)dt, (3.15)

which implies S(u, u, u1) = 0, that is, u = u1 since q1 + q4 + q5 + q6 < 1. Consequently, T has
a unique fixed point in X . This completes the proof.

If we take q1 = h and q2 = q3 = q4 = q5 = q6 = q7 = 0 in Theorem 3.1, then we obtain the
following result.

Corollary 3.2. ([13]) Let (X,S) be a complete S-metric space, and the function ϕ : [0,∞) →
[0,∞) be defined as in (3.1) and let T : X → X be a self-mapping of X such that∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ h

∫ S(x,x,y)

0
ϕ(t)dt, (3.16)

for all x, y ∈ X , where h ∈ (0, 1) is a constant. Then T has a unique fixed point u ∈ X and we
have Tnw = u for each w ∈ X .

Remark 3.3. (1) Corollary 3.2 is a generalization of Branciari [2] fixed point result from com-
plete metric space to the setting of complete S-metric space.

(2) In Corollary 3.2, if we set the function ϕ : [0,∞)→ [0,∞) as ϕ(t) = 1 for all t ∈ [0,∞),
then we obtain Theorem 3.1 of [24] for n = 1.

(3) Corollary 3.2 is also a generalization of Sedghi’s et al. result [24] to the case of integral
type contraction condition.

(4) Theorem 3.1 is a generalization of Theorem 2.4 of Özgür and Tas [13]. Indeed, if we take
q1 = h and q2 = q3 = q4 = q5 = q6 = q7 = 0 in Theorem 3.1, then we get Theorem 2.4 of [13].
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(5) Since an S-metric space is a generalization of a metric space. Corollary 3.2 is a general-
ization of the classical Banach fixed point theorem [1].

(6) If we set the S-metric as S : X3 → C and take the function ϕ : [0,∞) → [0,∞) as
ϕ(t) = 1 for all t ∈ [0,∞) in Corollary 3.2, then we get Theorem 3.1 in [14] and Corollary 2.5
in [7] for n = 1.

Example 3.4. Let X = R, a > 1 be a fixed real number and the function S : X3 → [0,∞) be
defined as

S(x, y, z) =
a

a+ 1
(|y − z|+ |y + z − 2x|),

for all x, y, z ∈ R. It can be easily seen that the function S is an S-metric on X . Now we show
that this S-metric can not be generated by any metric d. On the contrary, we suppose that there
exists a metric d such that

S(x, y, z) = d(x, z) + d(y, z), (3.17)

for all x, y, z ∈ R. Hence, we find

S(x, x, z) = 2d(x, z) =
2a
a+ 1

|x− z|,

and

d(x, z) =
a

a+ 1
|x− z|. (3.18)

Similarly, we get

S(y, y, z) = 2d(y, z) =
2a
a+ 1

|y − z|,

and

d(y, z) =
a

a+ 1
|y − z|. (3.19)

Using the equations (3.17), (3.18) and (3.19), we get
a

a+ 1
(|y − z|+ |y + z − 2x|) = a

a+ 1
|x− z|+ a

a+ 1
|y − z|,

which is a contradiction. Consequently, S is not generated by any metric and (R, S) is a complete
S-metric space.

Let us define the self-mapping T : R → R as T (x) = x
2 for all x ∈ R and the function

ϕ : [0,∞)→ [0,∞) as ϕ(t) = 2t for all t ∈ [0,∞). Then we get∫ ε

0
ϕ(t)dt =

∫ ε

0
2tdt = ε2 > 0,

for each ε > 0. Therefore T satisfies the inequality (3.16) of Corollary 3.2 for h = 1
2 . Indeed,

we have

a2

(a+ 1)2 |x− y|
2 ≤ 2a2

(a+ 1)2 |x− y|
2,

for all x, y ∈ R. Thus, T has a unique fixed point x = 0 in R.

Theorem 3.5. Let (X,S) be a complete S-metric space, and the function ϕ : [0,∞)→ [0,∞) be
defined as in (3.1) and let T : X → X be a self-mapping of X such that∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ a1

∫ S(x,x,y)

0
ϕ(t)dt

+a2

∫ max{S(x,x,y),S(x,x,Tx),S(y,y,Ty)}

0
ϕ(t)dt

+a3

∫ max{S(x,x,y),S(y,y,Ty),S(y,y,Tx)}

0
ϕ(t)dt,

(3.20)
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for all x, y ∈ X , where a1, a2, a3 are nonnegative reals such that a1 + 2a2 + 2a3 < 1. Then T
has a unique fixed point u ∈ X and we have Tnw = u for each w ∈ X .

Proof. Let x0 ∈ X and the sequence {xn} be defined as Tnx0 = xn for n = 1, 2, . . . . Suppose
that xn+1 6= xn for all n. Using the inequality (3.20), the conditions (S1), (S2) and Lemma 2.2,
we have∫ S(xn,xn,xn+1)

0
ϕ(t)dt =

∫ S(Txn−1,Txn−1,Txn)

0
ϕ(t)dt

≤ a1

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+a2

∫ max{S(xn−1,xn−1,xn),S(xn−1,xn−1,Txn−1),S(xn,xn,Txn)}

0
ϕ(t)dt

+a3

∫ max{S(xn−1,xn−1,xn),S(xn,xn,Txn),S(xn,xn,Txn−1)}

0
ϕ(t)dt

= a1

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+a2

∫ max{S(xn−1,xn−1,xn),S(xn−1,xn−1,xn),S(xn,xn,xn+1)}

0
ϕ(t)dt

+a3

∫ max{S(xn−1,xn−1,xn),S(xn,xn,xn+1),S(xn,xn,xn)}

0
ϕ(t)dt

≤ (a1 + a2 + a3)

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+(a2 + a3)

∫ S(xn,xn,xn+1)

0
ϕ(t)dt, (3.21)

which implies∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤

(a1 + a2 + a3

1− a2 − a3

) ∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt.

(3.22)

If we take d =
(

a1+a2+a3
1−a2−a3

)
, then we find d < 1 since a1 + 2a2 + 2a3 < 1. Using the inequality

(3.22) again, we obtain∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ dn

∫ S(x0,x0,x1)

0
ϕ(t)dt. (3.23)

Taking the limit as n→∞, in inequality (3.23), we get

lim
n→∞

∫ S(xn,xn,xn+1)

0
ϕ(t)dt = 0, (3.24)

since 0 < d < 1. The condition (3.24) implies

lim
n→∞

S(xn, xn, xn+1) = 0. (3.25)

Now, we show that {xn} is a Cauchy sequence. By the similar arguments used in the proof of
Theorem 3.1, we see that the sequence {xn} is Cauchy. Then there exists u ∈ X such that

Tnx0 = u,
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since by hypothesis (X,S) is a complete S-metric space. From the given inequality (3.20), we
find ∫ S(Tu,Tu,xn+1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Txn)

0
ϕ(t)dt

≤ a1

∫ S(u,u,xn)

0
ϕ(t)dt

+a2

∫ max{S(u,u,xn),S(u,u,Tu),S(xn,xn,Txn)}

0
ϕ(t)dt

+a3

∫ max{S(u,u,xn),S(u,u,Txn),S(xn,xn,Tu)}

0
ϕ(t)dt

= a1

∫ S(u,u,xn)

0
ϕ(t)dt

+a2

∫ max{S(u,u,xn),S(u,u,Tu),S(xn,xn,xn+1)}

0
ϕ(t)dt

+a3

∫ max{S(u,u,xn),S(u,u,xn+1),S(xn,xn,Tu)}

0
ϕ(t)dt.

(3.26)

Passing to the limit as n→∞ in (3.26) and using the condition (S1) and Lemma 2.2, we get∫ S(Tu,Tu,u)

0
ϕ(t)dt ≤ (a2 + a3)

∫ S(Tu,Tu,u)

0
ϕ(t)dt,

which implies S(Tu, Tu, u) = 0, that is, Tu = u since a2 + a3 < 1. This shows that u a fixed
point of T .

Now, we show that the fixed point of T is unique. For this, assume that u1 is another fixed
point of T with u1 6= u. Using the inequality (3.20), the condition (S1) and Lemma 2.2, we
obtain ∫ S(u,u,u1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Tu1)

0
ϕ(t)dt

≤ a1

∫ S(u,u,u1)

0
ϕ(t)dt

+a2

∫ max{S(u,u,u1),S(u,u,Tu),S(u1,u1,Tu1)}

0
ϕ(t)dt

+a3

∫ max{S(u,u,u1),S(u,u,Tu1),S(u1,u1,Tu)}

0
ϕ(t)dt

= a1

∫ S(u,u,u1)

0
ϕ(t)dt

+a2

∫ max{S(u,u,u1),S(u,u,u),S(u1,u1,u1)}

0
ϕ(t)dt

+a3

∫ max{S(u,u,u1),S(u,u,u1),S(u1,u1,u)}

0
ϕ(t)dt

= (a1 + a2 + a3)

∫ S(u,u,u1)

0
ϕ(t)dt, (3.27)

which implies S(u, u, u1) = 0, that is, u = u1 since a1 + a2 + a3 < 1. Thus, the fixed point of T
is unique. This completes the proof.
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Remark 3.6. (1) In Theorem 3.5, if we take a1 = h and a2 = a3 = 0, then we get Corollary 3.2
which is a generalization of Branciari [2] fixed point result from complete metric space to the
setting of complete S-metric space.

(2) Theorem 3.5 is a generalization of Theorem 2.4 of Özgür and Tas [13]. Indeed, if we take
a1 = h and a2 = a3 = 0 in Theorem 3.5, then we get Theorem 2.4 of [13].

(3) Since an S-metric space is a generalization of a metric space. Theorem 3.5 is a general-
ization of the classical Banach fixed point theorem [1].

Theorem 3.7. Let (X,S) be a complete S-metric space, and the function ϕ : [0,∞)→ [0,∞) be
defined as in (3.1) and let T : X → X be a self-mapping of X such that∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ a

∫ S(x,x,y)

0
ϕ(t)dt+ b

∫ S(x,x,Ty)

0
ϕ(t)dt

+c

∫ S(y,y,Tx)

0
ϕ(t)dt+ d

∫ S(x,x,Tx)

0
ϕ(t)dt

+e

∫ S(y,y,Ty)

0
ϕ(t)dt

+f

∫ S(y,y,Ty)[1+S(x,x,Tx)]
[1+S(x,x,y)]

0
ϕ(t)dt, (3.28)

for all x, y ∈ X , where a, b, c, d, e, f ≥ 0 are nonnegative reals satisfying a+3b+d+e+f < 1.
Then T has a unique fixed point u ∈ X and we have Tnw = u for each w ∈ X .

Proof. Let x0 ∈ X and the sequence {xn} be defined as Tnx0 = xn for n = 1, 2, . . . . Suppose
that xn+1 6= xn for all n. Using the inequality (3.28), the conditions (S1), (S2) and Lemma 2.2,
we have∫ S(xn,xn,xn+1)

0
ϕ(t)dt =

∫ S(Txn−1,Txn−1,Txn)

0
ϕ(t)dt

≤ a

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt+ b

∫ S(xn−1,xn−1,Txn)

0
ϕ(t)dt

+c

∫ S(xn,xn,Txn−1)

0
ϕ(t)dt+ d

∫ S(xn−1,xn−1,Txn−1)

0
ϕ(t)dt

+e

∫ S(xn,xn,Txn)

0
ϕ(t)dt

+f

∫ S(xn,xn,Txn)[1+S(xn−1,xn−1,Txn−1)]
[1+S(xn−1,xn−1,xn)]

0
ϕ(t)dt

= a

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt+ b

∫ S(xn−1,xn−1,xn+1)

0
ϕ(t)dt

+c

∫ S(xn,xn,xn)

0
ϕ(t)dt+ d

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+e

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

+f

∫ S(xn,xn,xn+1)[1+S(xn−1,xn−1,xn)]

[1+S(xn−1,xn−1,xn)]

0
ϕ(t)dt

≤ (a+ b+ d)

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

+(2b+ e+ f)

∫ S(xn,xn,xn+1)

0
ϕ(t)dt, (3.29)
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which implies∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤

( a+ b+ d

1− 2b− e− f

) ∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt. (3.30)

If we take β =
(

a+b+d
1−2b−e−f

)
, then we find β < 1 since a + 3b + d + e + f < 1. Using the

inequality (3.30) again, we obtain∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ βn

∫ S(x0,x0,x1)

0
ϕ(t)dt. (3.31)

Taking the limit as n→∞, in inequality (3.31), we get

lim
n→∞

∫ S(xn,xn,xn+1)

0
ϕ(t)dt = 0, (3.32)

since 0 < β < 1. The condition (3.32) implies

lim
n→∞

S(xn, xn, xn+1) = 0. (3.33)

Now, we show that {xn} is a Cauchy sequence. By the similar arguments used in the proof of
Theorem 3.1, we see that the sequence {xn} is Cauchy. Then there exists u ∈ X such that

Tnx0 = u,

since by hypothesis (X,S) is a complete S-metric space. From the given inequality (3.28), we
find ∫ S(Tu,Tu,xn+1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Txn)

0
ϕ(t)dt

≤ a

∫ S(u,u,xn)

0
ϕ(t)dt+ b

∫ S(u,u,Txn)

0
ϕ(t)dt

+c

∫ S(xn,xn,Tu)

0
ϕ(t)dt+ d

∫ S(u,u,Tu)

0
ϕ(t)dt

+e

∫ S(xn,xn,Txn)

0
ϕ(t)dt

+f

∫ S(xn,xn,Txn)[1+S(u,u,Tu)]
[1+S(u,u,xn)]

0
ϕ(t)dt

= a

∫ S(u,u,xn)

0
ϕ(t)dt+ b

∫ S(u,u,xn+1)

0
ϕ(t)dt

+c

∫ S(xn,xn,Tu)

0
ϕ(t)dt+ d

∫ S(u,u,Tu)

0
ϕ(t)dt

+e

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

+f

∫ S(xn,xn,xn+1)[1+S(u,u,Tu)]

[1+S(u,u,xn)]

0
ϕ(t)dt. (3.34)

Passing to the limit as n→∞ in (3.34) and using the condition (S1) and Lemma 2.2, we get∫ S(Tu,Tu,u)

0
ϕ(t)dt ≤ (c+ d)

∫ S(Tu,Tu,u)

0
ϕ(t)dt,

which implies S(Tu, Tu, u) = 0, that is, Tu = u since c + d < 1. This shows that u a fixed
point of T .
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Now, we show that the fixed point of T is unique. For this, assume that u1 is another fixed
point of T with u1 6= u. Using the inequality (3.28), the condition (S1) and Lemma 2.2, we
obtain ∫ S(u,u,u1)

0
ϕ(t)dt =

∫ S(Tu,Tu,Tu1)

0
ϕ(t)dt

≤ a

∫ S(u,u,u1)

0
ϕ(t)dt+ b

∫ S(u,u,Tu1)

0
ϕ(t)dt

+c

∫ S(u1,u1,Tu)

0
ϕ(t)dt+ d

∫ S(u,u,Tu)

0
ϕ(t)dt

+e

∫ S(u1,u1,Tu1)

0
ϕ(t)dt

+f

∫ S(u1,u1,Tu1)[1+S(u,u,Tu)]

[1+S(u,u,u1)]

0
ϕ(t)dt

= a

∫ S(u,u,u1)

0
ϕ(t)dt+ b

∫ S(u,u,u1)

0
ϕ(t)dt

+c

∫ S(u1,u1,u)

0
ϕ(t)dt+ d

∫ S(u,u,u)

0
ϕ(t)dt

+e

∫ S(u1,u1,u1)

0
ϕ(t)dt

+f

∫ S(u1,u1,u1)[1+S(u,u,u)]

[1+S(u,u,u1)]

0
ϕ(t)dt

= (a+ b+ c)

∫ S(u,u,u1)

0
ϕ(t), (3.35)

which implies S(u, u, u1) = 0, that is, u = u1 since a+ b+ c < 1. Thus, the fixed point of T is
unique. This completes the proof.

Remark 3.8. (1) In Theorem 3.7, if we take b = c = d = e = f = 0 and a = h then we obtain
Theorem 2.4 of [13].

(2) Theorem 3.7 is another generalization of Theorem 2.4 of [13].
(3) Since Theorem 3.7 is another generalization of Theorem 2.4 of [13], Theorem 3.7 gener-

alizes the classical Banach fixed point theorem.

Example 3.9. LetX = R be the complete S-metric space with the S-metric defined as S(x, y, z) =
|y − z|+ |y + z − 2x| for all x, y, z ∈ X . Let us define the self-mapping T : X → X as

T (x) =

{
x+ 2, if x ∈ {0, 2},

3, if otherwise,

for all x ∈ X and the function ϕ : [0,∞)→ [0,∞) as ϕ(t) = 2t for all t ∈ [0,∞). Then we get∫ ε

0
ϕ(t)dt =

∫ ε

0
2tdt = ε2 > 0,

for each ε > 0. Therefore T satisfies: (1) The inequality (3.2) in Theorem 3.1 for (by taking
x = 0 and y = 1)

(i) q1 = 0, q2 =
1
4 , q3 = q4 = q5 = q6 = q7 = 0;

(ii) q1 = q2 = 0, q3 =
1
4 , q4 = q5 = q6 = q7 = 0;

(iii) q1 = q2 = q3 = 0, q4 =
1
9 , q5 = q6 = q7 = 0;

(iv) q1 = q2 = q3 = q4 = q5 = q7 = 0, q6 =
1
4 .

(2) The inequality (3.20) in Theorem 3.5 for (by taking x = 0 and y = 1)
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(i) a1 = 0, a2 =
1
4 , a3 = 0;

(ii) a1 = 0, a2 = 0, a3 =
1
4 .

(3) The inequality (3.28) in Theorem 3.7 for (by taking x = 0 and y = 1)
(i) a = 0, b = 1

9 , c = d = e = f = 0;
(ii) a = b = c = e = f = 0, d = 1

4 ;
(iii) a = b = c = d = f = 0, e = 1

4 ;
(iv) a = b = c = d = e = 0, f = 9

50 .
Hence in all the above cases T has a unique fixed point x = 3. But T does not satisfy the

inequality (3.16) in Corollary 3.2. Indeed, if we take x = 0 and y = 1, the we obtain∫ 2

0
2tdt = 4 ≤ h

∫ 2

0
2tdt = 4h,

which is a contradiction since h ∈ (0, 1).

4 An application to Fredhlom Integral Equation

In this section, we give an application of the contraction condition (3.16) to the Fredhlom integral
equation

y(u) = h(u) + µ

∫ b

a

K(u, t)y(t)dt, (4.1)

where y : [a, b] → R with −∞ < a < b < ∞, K(u, t) is called kernel of the integral equation
(4.1) is continuous on the squared region [a, b]× [a, b] with |K(u, t)| ≤ M (M > 1) and h(u) is
continuous on [a, b].

LetC[a, b] = {f |f : [a, b]→ R is a continuous function}. Now,we define the function S : C[a, b]×
C[a, b]× C[a, b]→ [0,∞) by

S(x, y, z) = sup
t∈[a,b]

|y(t)− z(t)|+ sup
t∈[a,b]

|y(t) + z(t)− 2x(t)|, (4.2)

for all x, y, z ∈ C[a, b]. Then the function S is an S-metric. Now, we show that this S-metric
can not be generated by and metric d. We assume that this S-metric is generated by any metric
d, that is, there exists a metric d such that

S(x, y, z) = d(x, z) + d(y, z), (4.3)

for all x, y, z ∈ C[a, b]. Then we get

S(x, x, z) = 2d(x, z) = 2 sup
t∈[a,b]

|x(t)− z(t)|,

and

d(x, z) = sup
t∈[a,b]

|x(t)− z(t)|. (4.4)

Similarly, we obtain

S(y, y, z) = 2d(y, z) = 2 sup
t∈[a,b]

|y(t)− z(t)|,

and

d(y, z) = sup
t∈[a,b]

|y(t)− z(t)|. (4.5)

From equations (4.3), (4.4) and (4.5), we get

sup
t∈[a,b]

|y(t)− z(t)|+ sup
t∈[a,b]

|y(t) + z(t)− 2x(t)| = sup
t∈[a,b]

|x(t)− z(t)|

+ sup
t∈[a,b]

|y(t)− z(t)|,

which is a contradiction. Hence this S-metric is not generated by any metric d. Thus, (C[a, b], S)
is a complete S-metric space.
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Theorem 4.1. (Proposition 3.1, [13]) Let (C[a, b], S) be a complete S-metric space with the
S-metric defined in (4.2) and µ be a real number such that

|µ| < 1
M(b− a)

.

Then the Fredhlom integral equation (4.1) has a unique solution y : [a, b]→ R.

Proof. Let us define the function T : C[a, b]→ C[a, b] as

T (y(u)) = h(u) + µ

∫ b

a

K(u, t)y(t)dt.

Now we show that T satisfies the contractive condition (3.16). We get

S(Ty1, Ty1, T y2) = 2 sup
u∈[a,b]

|Ty1(u)− Ty2(u)|

= 2 sup
u∈[a,b]

∣∣∣µ ∫ b

a

K(u, t)[y1(u)− y2(u)]dt
∣∣∣

≤ 2|µ|M sup
u∈[a,b]

∣∣∣ ∫ b

a

[y1(u)− y2(u)]dt
∣∣∣

≤ 2|µ|M sup
u∈[a,b]

|y1(u)− y2(u)|
∣∣∣ ∫ b

a

dt
∣∣∣

≤ |µ|M(b− a)S(y1, y1, y2)

< S(y1, y1, y2),

which implies ∫ S(Ty1,Ty1,Ty2)

0
ϕ(t)dt <

∫ S(y1,y1,y2)

0
ϕ(t)dt.

Consequently, the contractive condition (3.16) is satisfied and the Fredhlom integral equation
(4.1) has a unique solution y.

5 Conclusion

In this paper, we prove existence and uniqueness of some fixed point theorems for self-mappings
that satisfy an integral type contraction in the setting of complete S-metric spaces and give some
consequences of the main results. We provide illustrated examples to validate the results in this
paper and also obtained an application to the Fredhlom integral equation. The results presented
in this paper generalize and extend several results from the existing literature.
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